Physical Properties of Uranium Dinitride UN2 by Using Density Functional Theory (DFT and DFT+U)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Physical Properties of Uranium Dinitride UN2 by Using Density Functional Theory (DFT and DFT+U)

Authors: T. Zergoug, S.H. Abaidia, A. Nedjar, M. Y. Mokeddem

Abstract:

Physical properties of uranium dinitride (UN2) were investigated in detail using first principle calculations based on density functional theory (DFT). To study the strong correlation effects due to 5f uranium valence electrons, the on-site coulomb interaction correction U via the Hubbard-like term (DFT+U) was employed. The UN2 structural, mechanical and thermodynamic properties were calculated within DFT and Various U of DFT+U approach. The Perdew–Burke–Ernzerhof (PBE.5.2) version of the generalized gradient approximation (GGA) is used to describe the exchange-correlation with the projector-augmented wave (PAW) pseudo potentials. A comparative study shows that results are improved by using the Hubbard formalism for a certain U value correction like the structural parameter. For some physical properties the variation versus Hubbard-U is strong like Young modulus but for others it is weakly noticeable such as bulk modulus. We noticed also that from U=7.5 eV, elastic results don’t agree with the cubic cell because of the C44 values which turn out to be negative.

Keywords: Ab initio, bulk modulus, DFT, DFT + U.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1099362

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2561

References:


[1] Hiroki Shibata, TomohitoTsuru, Masaru Hirata, Yoshiyuki Kaji, First principles study on elastic properties and phase transition of NpN; Journal of Nuclear Materials 401 (2010) 113–117
[2] Ito, T. Kumigashira, H.; Souma, S.; Tahakashi, T. ; Suzuki, T. J Magn Mater 2001,68 , 226
[3] Matzke, H. Science of Advanced LMFBR Fuels; North Holland; Amesterdam, 1986.
[4] N. A. Curry, Proc. Phys. Soc., 1965, 86, 1193.
[5] L. Petit, A. Svane, Z. Szotek, W. Temmerman, Science 301 (2003) 498.
[6] A. Svane, L. Petit, Z. Szotek, W.M. Temmerman, Phys. Rev. B 76 (2007) 115116.
[7] P. Erdös, J.M. Robinson, The Physics of Actinide Compounds, Plenum, New York, 1983. pp. 4.
[8] B. Sun, P. Zhang, X.-G. Zhao, J. Chem. Phys. 128 (2008) 084705.
[9] S.L. Dudarev, M.R. Castell, G.A. Botton, S.Y. Savrasov, C. Muggelberg, G.A.D. Briggs, A.P. Sutton, D.T. Goddard, Micron 31 (2000) 363.
[10] Younsuk Yun, Hanchul Kim, Heemoon Kim, and Wangheon Park ; Abinition calculations of strongly correlated electrons: antiferromagnetic ground state of UO2 Nuclear Engineering and Technology, Vol 37, N°3; June 2005
[11] P. Larson, W.R.L. Lambrecht, A. Chantis, M. van Schilfgaarde, Phys. Rev. B 75 (2007) 045114.
[12] G. Jomard, B. Amadon, F. Bottin, M. Torrent, Phys. Rev. B 78 (2008) 075125.
[13] B. Dorado, B. Amadon, M. Freyss, M. Bertolus, Phys. Rev. B 79 (2009) 235125.
[14] Denis Gryaznov, Eugene Heifets and Eugene Kotomin; The firstprinciples treatment of the electron-correlation and spin–orbital effects in uranium mononitride nuclear fuels; Phys. Chem. Chem. Phys., 2012, 14, 4482–4490
[15] P.E. Blöchl, Phys. Rev. B 50 (1994) 17953.
[16] J.P. Perdew, K. Burke, Y. Wang, Phys. Rev. B 54 (1996) 16533.
[17] G. Kresse and J. Furthmuller, Comput. Mater. Sci., 1996, 6, 15.
[18] G. Kresse and J. Furthmuller, VASP the Guide, University of Vienna, Vienna, June 1, 2012
[19] Boris Dorado, Bernard Amadon, Michel Freyss, Marjorie Bertolus, Phys. Rev. B 79 (2009) 235125.
[20] H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188.
[21] Y. Le Page and P. Saxe, Phys. Rev. B 65, 104104 (2002).
[22] W.M. Olson, R.N.R. Mulford, J. Phys. Chem. 70 (1966) 2932–2934.
[23] M. Born, K. Huang, Theory of Crystal Lattices, Clarendon, Oxford, 1956.
[24] M.Y. Chou et al; Physical Review B, Volume 28, Number 8, October 83.
[25] A.R. Hall, J. Nucl. Mater. 37 (1969) 314–323.
[26] R. Hill, Proc. Phys. Soc. Lond. 65 (1952) 349–354.
[27] B. Mayer, H. Anton, E Bott, M. Methfessel, J. Sticht and P.C. Schmidt , Intermetallics 11 (2003) 23.
[28] R.A. Evarestov, A.I. Panin, A.V. Bandura, M.V. Losev, J. Phys.: Conf. Ser. 117(2008) 012015.
[29] R.E. Rundle, N.C. Baenziger, A.S. Wilson, R.A. McDonald, J. Am. Chem. Soc. 70(1948) 90.
[30] Yong Lu, Bao-Tian Wang, Rong-Wu Li, Hong-Liang Shi, Ping Zhang; Structural, electronic, mechanical, and thermodynamic properties of UN2: Systematic density functional calculations ; Journal of Nuclear Materials 410 (2011) 46–51
[31] E.A. Kotomin, R.W. Grimes, Y. Mastrikov, N.J. Ashley, J. Phys.: Condens. Matter 19 (2007) 106208.
[32] Y. Yun, H. Kim, H. Kim, K. Park, Nucl. Eng. Technol. 37 (2005) 3
[33] J.-P. Dancausse, S. Heathman, U. Benedict, L. Gerward, J. Staun Olsen, F. Hulliger, J. Alloys Compd. 191 (1993) 309.
[34] H.J. Matzke, Science of Advanced LMFBR Fuels, North-Holland, Amsterdam, 1986.
[35] M. Born, K Huang, Dynamical Theory of Crystal Lattices, Oxford, Clarendon (1956).
[36] Atsushi Togo, Fumiyasu Oba, and Isao Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2- type SiO2 at high pressures”, Phys. Rev. B, 78, 134106 (2008)
[37] P. F. Weck et al; First-principles study of single-crystal uranium monoand dinitride; chemical physics Letters 2007G. O. Young, “Synthetic structure of industrial plastics (Book style with paper title and editor),” in Plastics, 2nd ed. vol. 3, J. Peters, Ed. New York: McGraw-Hill, 1964, pp. 15–64.