Cr Induced Magnetization in Zinc-Blende ZnO Based Diluted Magnetic Semiconductors
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32799
Cr Induced Magnetization in Zinc-Blende ZnO Based Diluted Magnetic Semiconductors

Authors: Bakhtiar Ul Haq, R. Ahmed, A. Shaari, Mazmira Binti Mohamed, Nisar Ali

Abstract:

The capability of exploiting the electronic charge and spin properties simultaneously in a single material has made diluted magnetic semiconductors (DMS) remarkable in the field of spintronics. We report the designing of DMS based on zinc-blend ZnO doped with Cr impurity. The full potential linearized augmented plane wave plus local orbital FP-L(APW+lo) method in density functional theory (DFT) has been adapted to carry out these investigations. For treatment of exchange and correlation energy, generalized gradient approximations have been used. Introducing Cr atoms in the matrix of ZnO has induced strong magnetic moment with ferromagnetic ordering at stable ground state. Cr:ZnO was found to favor the short range magnetic interaction that reflect tendency of Cr clustering. The electronic structure of ZnO is strongly influenced in the presence of Cr impurity atoms where impurity bands appear in the band gap.

Keywords: ZnO, Density functional theory, Diluted magnetic semiconductors, Ferromagnetic materials, FP-L(APW+lo).

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1100725

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833

References:


[1] I. Appelbaum, D. Monsma, K. Russell, V. Narayanamurti, and C. Marcus, Spin-valve photodiode. Applied physics letters, 83(18) (2003) 3737.
[2] A. Kalitsov, M. Chshiev, I. Theodonis, N. Kioussis, and W. Butler, Spin-transfer torque in magnetic tunnel junctions. Physical Review B, 79(17) (2009) 174416.
[3] F. Junginger, M. Klaui, D. Backes, U. Rudiger, T. Kasama, R.E. Dunin- Borkowski, L.J. Heyderman, C.A. Vaz, and J.A.C. Bland, Spin torque and heating effects in current-induced domain wall motion probed by transmission electron microscopy. Applied physics letters, 90(13) (2007) 132506.
[4] D. A. Allwood, G. Xiong, C. Faulkner, D. Atkinson, D. Petit, and R. Cowburn, Magnetic domain-wall logic. Science, 309(5741) (2005) 1688.
[5] G. Schmidt, D. Ferrand, L. Molenkamp, A. Filip, and B. Van Wees, Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Physical Review B, 62(8) (2000) R4790.
[6] S. A. Chambers and Y.K. Yoo, New materials for spintronics. MRS bulletin, 28(10) (2003) 706.
[7] J. Furdyna, Diluted magnetic semiconductors: an interface of semiconductor physics and magnetism. Journal of Applied Physics, 53(11) (1982) 7637.
[8] Y. Ohno, D. Young, B.a. Beschoten, F. Matsukura, H. Ohno, and D. Awschalom, Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature, 402(6763) (1999) 790.
[9] R. Fiederling, M. Keim, G. A. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L. Molenkamp, Injection and detection of a spin-polarized current in a light-emitting diode. Nature, 402(6763) (1999) 787.
[10] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 287(5455) (2000) 1019.
[11] T. Fukumura, Z. Jin, A. Ohtomo, H. Koinuma, and M. Kawasaki, An oxide-diluted magnetic semiconductor: Mn-doped ZnO. Applied physics letters, 75(21) (1999) 3366.
[12] M. Venkatesan, C. Fitzgerald, J. Lunney, and J. Coey, Anisotropic ferromagnetism in substituted zinc oxide. Physical review letters, 93(17) (2004) 177206.
[13] Y. Chen, F. Zhou, Q. Song, H. Yan, X. Yang, and T. Wei, Electronic structure and magnetic properties of Cr monodoped and (Cr, Al) codoped ZnO. Physica B: Condensed Matter, 407(3) (2012) 464.
[14] H.-H. Huang, C.-A. Yang, P.-H. Huang, C.-H. Lai, T. Chin, H. Huang, H. Bor, and R. Huang, Room-temperature fabricated ZnCoO diluted magnetic semiconductors. Journal of Applied Physics, 101(9) (2007) 09H116.
[15] Y. Chen, K. Ding, L. Yang, B. Xie, F. Song, J. Wan, G. Wang, and M. Han, Nanoscale ferromagnetic chromium oxide film from gas-phase nanocluster deposition. Applied physics letters, 92(17) (2008) 173112.
[16] H. Liu, X. Zhang, L. Li, Y. Wang, K. Gao, Z. Li, R. Zheng, S. Ringer, B. Zhang, and X. Zhang, Role of point defects in room-temperature ferromagnetism of Cr-doped ZnO. Applied physics letters, 91(7) (2007) 072511.
[17] K. Sato and H. Katayama-Yoshida, Electronic structure and ferromagnetism of transition-metal-impurity-doped zinc oxide. Physica B: Condensed Matter, 308 (2001) 904.
[18] B.K. Roberts, A.B. Pakhomov, V.S. Shutthanandan, and K.M. Krishnan, Ferromagnetic Cr-doped ZnO for spin electronics via magnetron sputtering. Journal of Applied Physics, 97(10) (2005) 10D310.
[19] K. Ueda, H. Tabata, and T. Kawai, Magnetic and electric properties of transition-metal-doped ZnO films. Applied physics letters, 79 (2001) 988.
[20] Z. Weng, Z. Huang, and W. Lin, Magnetism of Cr-doped ZnO with intrinsic defects. Journal of Applied Physics, 111(11) (2012) 113915.
[21] A. Ashrafi, I. Suemune, H. Kumano, and S. Tanaka, Nitrogen-doped ptype ZnO layers prepared with H2O vapor-assisted metalorganic molecular-beam epitaxy. Japanese journal of applied physics, 41(11B) (2002) L1281.
[22] A. Ashrafi, I. Suemune, H. Kumano, and K. Uesugi, Growth Activation of ZnO Layers with H2O Vapor on a‐Face of Sapphire Substrate by Metalorganic Molecular‐Beam Epitaxy. physica status solidi (a), 192(1) (2002) 224.
[23] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k. An augmented plane wave plus local orbitals program for calculating crystal properties, Vienna University of Technology, Austria, (2001).
[24] J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Physical review letters, 77(18) (1996) 3865.
[25] P. Gopal and N.A. Spaldin, Magnetic interactions in transition-metaldoped ZnO: An ab initio study. Physical Review B, 74(9) (2006) 094418.
[26] B. Ul Haq, R. Ahmed, S. Goumri-Said, A. Shaari, and A. Afaq, Electronic structure engineering of ZnO with the modified Becke– Johnson exchange versus the classical correlation potential approaches. Phase Transitions,(ahead-of-print) (2013) 1.
[27] B. Ul Haq, A. Afaq, R. Ahmed, and S. Naseem, a Comprehensive DFT Study of Zinc Oxide in Different Phases. International Journal of Modern Physics C, 23(06) (2012).
[28] B.U. Haq, R. Ahmed, and S. Goumri-Said, Tailoring ferromagnetism in chromium-doped zinc oxide. Materials Research Express, 1(1) (2014) 016108.
[29] B. Ul Haq, R. Ahmed, A. Shaari, A. Afaq, B. Tahir, and R. Khenata, First-principles investigations of Mn doped zinc-blende ZnO based magnetic semiconductors: Materials for spintronic applications. Materials Science in Semiconductor Processing, (2014).
[30] B. Ul Haq, R. AHMED, A. SHAARI, A. AFAQ, and R. HUSSAIN, A Study of Cr doping on the Structural and Electronic Properties of ZnO: A First Principles Study. Sains Malaysiana, 43(6) (2014) 813.
[31] S.-M. Zhou, H.-C. Gong, B. Zhang, Z.-L. Du, X.-T. Zhang, and S.-X. Wu, Synthesis and photoluminescence of a full zinc blende phase ZnO nanorod array. Nanotechnology, 19(17) (2008) 175303.
[32] L. Li, W. Wang, H. Liu, X. Liu, Q. Song, and S. Ren, First principles calculations of electronic band structure and optical properties of Crdoped ZnO. The Journal of Physical Chemistry C, 113(19) (2009) 8460.
[33] J. Ren, H. Zhang, and X. Cheng, Electronic and magnetic properties of all 3d transition‐metal doped ZnO monolayers. International Journal of Quantum Chemistry, (2013).
[34] X. Li, J. Zhang, B. Xu, and K. Yao, Half-metallic ferromagnetism in Cudoped zinc-blende ZnO from first principles study. Journal of Magnetism and Magnetic Materials, 324(4) (2012) 584.
[35] K. Sato, P. Dederics, and H. Katayama-Yoshida, Curie temperatures of III–V diluted magnetic semiconductors calculated from first principles. EPL (Europhysics Letters), 61(3) (2003) 403.