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Abstract—The theory of Groebner Bases, which has recently been
honored with the ACM Paris Kanellakis Theory and Practice Award,
has become a crucial building block to computer algebra, and is
widely used in science, engineering, and computer science. It is well-
known that Groebner bases computation is EXP-SPACE in a general
polynomial ring setting.

However, for many important applications in computer science
such as satisfiability and automated verification of hardware and
software, computations are performed in a Boolean ring. In this paper,
we give an algorithm to show that Groebner bases computation is P-
SPACE in Boolean rings. We also show that with this discovery,
the Groebner bases method can theoretically be as efficient as
other methods for automated verification of hardware and software.
Additionally, many useful and interesting properties of Groebner
bases including the ability to efficiently convert the bases for different
orders of variables making Groebner bases a promising method in
automated verification.

Keywords—Algorithm, Complexity, Groebner basis, Applications
of Computer Science.

I. INTRODUCTION

S INCE its invention in 1965 by Bruno Buchberger, the
Groebner basis method has become one of the most

important techniques in providing automated problem-solving
tools to address challenges in robotics, computer-aided design,
systems design, modeling biological systems and many other
related areas [3], [4], [26], [29]. The method is implemented
in all major computer algebra systems including Mathematica,
Macsyma, Magma, Maple and Reduce. These software pro-
grams enable computers to manipulate mathematical equations
and expressions in symbolic form, and are heavily used in
science and mathematics. Buchberger’s work has recently been
honored with the ACM Paris Kanellakis Theory and Practice
Award, which honors specific theoretical accomplishments that
significantly affect the practice of computing. Nevertheless,
the field is still under active development both in the direction
of improving the method by new theoretical insights and in
finding new applications.

This paper is dedicated to investigating the theoretical
foundations for the Groebner basis method in Boolean rings.
We are interested in this special setting because the Groebner
basis method in Boolean rings can be used for automated
formal verification of hardware and software in computer
science.

While competitive approaches for automated formal veri-
fication are P-SPACE [2], [19], [20], it is well-known that
Groebner bases computation is EXP-SPACE in a general
setting over polynomial rings [18]. Therefore, for the theoret-
ical competitiveness of an alternative approach for automated

formal verification using Groebner bases it is very important
to derive a new algorithm for Groebner bases computation in
Boolean rings that is also P-SPACE.

The paper is organized as follows: In the next section, we
will summarize some basic facts about P-SPACE, Boolean
rings and the Buchberger’s algorithm for Groebner bases
computation in a general setting. In Section III, we give a
different algorithm for Groebner bases computation in Boolean
rings and prove that this new algorithm for Groebner Bases
computation is P-SPACE. Finally, in Section IV, we will
discuss possible applications of our work for automated formal
verification of hardware and software in computer science.

II. PRELIMINARIES

In this section, we will summarize some basic facts about
complexity, Boolean rings and the method of Groebner bases.

A. Time and Space Complexity

To analyze the efficiency of our algorithms, we utilize the
complexity of computational problems in terms of the amount
of memory that they require. Time and space are two of
the most important considerations when we seek practical
solutions to many computational problems. In fact, time and
space complexity are related to each other. Furthermore, space
complexity shares many of the features of time complexity and
serves as a further way of classifying problems according to
their computational difficulty.

Definition 1: The time and space complexity classes, P,
NP, P-SPACE, NP-SPACE, EXP-TIME and EXP-SPACE, are
defined as follows.

• P= {L|L is a language decided by a deterministic Turing
machine M that halts on all inputs in O(nk) steps on any
input of length n for some k}.

• NP= {L|L is a language decided by a nondeterministic
Turing machine M that halts on all inputs in O(nk) steps
on any input of length n}.

• P-SPACE= {L|L is a language decided by a deterministic
Turing machine M that halts on all inputs and uses O(nk)
maximum number of tape cells on any input of length n

for some k}.
• NP-SPACE= {L|L is a language decided by a nondeter-

ministic Turing machine M that halts on all inputs and
uses O(nk) maximum number of tape cells on any input
of length n}.

• EXP-TIME= {L|L is a language decided by a determin-
istic Turing machine M that halts on all inputs in O(2nk

)
steps on any input of length n for some k}.
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• EXP-SPACE= {L|L is a language decided by a nonde-
terministic Turing machine M that halts on all inputs and
uses O(2nk

) maximum number of tape cells on any input
of length n}.

We summarize the relationship between complexity classes in
the following proposition [22], [23].

Proposition 1: P ⊆ NP ⊆ P-SPACE = NP-SPACE ⊆ EXP-
TIME ⊆ EXP-SPACE.

B. Boolean Rings

Boolean algebras, which were introduced by Boole to codify
the laws of thought, have become a popular topic of research
since then. The discovery of the duality between Boolean
algebras and Boolean spaces by Stone [24], [25], [5] was
a major breakthrough of the field. Stone also proved that
Boolean algebras and Boolean rings are the same in the sense
that one can convert from one algebraic structure to the other.
In spite of its long history and elegant algebraic properties,
the Boolean ring representation has rarely been used in the
computational context.

Definition 2: A ring K = 〈K,+, ·, 0, 1〉 is Boolean if K

satisfies x2 ≈ x,∀x ∈ K.
Lemma 1: If K is a Boolean ring, then K is commutative

and x + x ≈ 0 [5].
Every Boolean algebra (K,∧,∨) gives rise to a ring (K,+, ·)
by defining a + b = (a ∧ ¬b) ∨ (b ∧ ¬a) (this operation is
called XOR in the case of logic) and a · b = a ∧ b. The
zero element of this ring coincides with the 0 of the Boolean
algebra; the multiplicative identity element of the ring is the
1 of the Boolean algebra. Conversely, if a Boolean ring K

is given, we can turn it into a Boolean algebra by defining
x ∨ y = x + y + x · y and x ∧ y = x · y. Since these two
sets of operations are inverses of each other, we can say that
every Boolean ring arises from a Boolean algebra, and vice
versa. Furthermore, a map f : A → B is a homomorphism
of Boolean algebras if and only if it is a homomorphism of
Boolean rings. The categories of Boolean rings and Boolean
algebras are equivalent. By using these translations, there
exists a Boolean polynomial for each Boolean formula and
vice versa.

Since congruences on rings are associated with ideals, it
follows that the same must hold for Boolean algebras. An ideal
of the Boolean algebra K is a subset I such that ∀x, y ∈ I

we have x ∨ y ∈ I and ∀a ∈ K we have a ∧ x ∈ I . This
notion of ideal coincides with the notion of ring ideal in the
Boolean ring K. An ideal I of R is called prime if I �= K

and if a ∧ b ∈ I always implies a ∈ I or b ∈ I . An ideal
I of K is called maximal if I �= K and if the only ideal
properly containing I is K itself. These notions coincide with
ring theoretic ones of prime ideal and maximal ideal in the
Boolean ring K.

Despite its extremely simplicity, the Boolean ring represen-
tation has not been used extensively both in logical reasoning
and in computation. The main reason, which has been shared
by other researchers, is that the XOR operator used in Boolean
rings is nilpotent and hence negation does not appear in the
normal forms. This makes Boolean ring formulas hard to read

for human because one cannot tell which predicate symbol is
negated and which one is not. Especially, when a formula is
long, it is almost impossible to make a natural interpretation
of its meaning.

For model checking, we are interested in checking the
correctness of a model only, not what the proofs look like.
The efficiency of model checking very much depends on
efficient internal data structure, which can provide a uniform
representation and fast basic operations. Particularly, unlike
Boolean algebras when “don’t care” (DC) conditions are
involved, Boolean rings can provide a satisfactory algebraic
framework for effectively handle of the problems.

C. The Method of Groebner Bases in General Settings

Once the Boolean formulas have been converted into
and equivalent system of polynomials in the corresponding
Boolean ring, one can use the results from symbolic com-
putation to perform calculation on the polynomial system. In
this section, we give a short introduction to basic facts on
admissible term orders, weight vectors, and the method of
Groebner bases. We refer to [3], [4], [6], [26], [27], [29] for
missing details.

Let K be a computable field such as the field of rational
numbers and K[x1, . . ., xn] the polynomial ring in n variables
over K. We denote the set of power products in the variables
x1, x2, . . . , xn by [X].

Definition 3: A total order on [X] is called an admissible
term order iff

1) 1 = x0
1 · x

0
2 · · ·x

0
n < t, ∀t ∈ [X] \ {1}, and

2) s < t⇒ s · u < t · u, ∀s, t, u ∈ [X].

Let f be a non-zero polynomial in K[x1, . . ., xn] and ≺ be
an admissible term order. We denote

• lpp≺(f) the leading power product of f with respect to
≺.

• lc≺(f) the leading coefficient of f with respect to ≺.
• in≺(f) = lc≺(f) · lpp≺(f) the initial term of f with

respect to ≺.

Definition 4: [Polynomial Reduction] Let f, g, h ∈
K[X], F ⊂ K[X]. We say that g reduces to h with respect
to f denoted by g →f h iff there are power products
s, t ∈ [X] such that s has a non-vanishing coefficient c in g,
s = lpp≺(f) · t, and h = g − c

lc≺(f) · t · f . We say that g

reduces to h with respect to F denoted by g →F h iff there
is f ∈ F such that g →f h.

A power product (or term) u ∈ [X] is said to be a direct divisor
of another power product t �= u if u divides t but there is no
power product v such that u divides v and v divides t. In other
words, u has exactly one less variables than t.

Definition 5: Let G be a finite subset of K[X] \ {0}, ≺
be an admissible term order over [X], and I be an ideal in
K[X]. Then G is a Groebner basis of I with respect to ≺ iff
〈G≺〉 = 〈I≺〉. Furthermore, G is called a minimal Groebner
basis iff lpp≺(f) � lpp≺(g), ∀f, g ∈ G, f �= g. G is called
a reduced Groebner basis iff ∀f, g ∈ G, f �= g, we cannot
reduce f by g. G is normed iff lc≺(g) = 1, ∀g ∈ G.
The following important theorem is based on [3].
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Theorem 1: Let I = 〈F 〉 be an ideal in K[X] and ≺ be
a term order on [X]. The ideal I has a unique finite normed
reduced Groebner basis.
Let G be the unique finite normed reduced Groebner basis of
I with respect to ≺. Every monic monomial m can be reduced
by G to an irreducible polynomial denoted by nf(m). Clearly
(m−nf(m)) ∈ I . We say that a monic monomial m is minimal
reducible iff m is reducible (i.e. m �= nf(m) and all its direct
divisors are irreducible.

Definition 6: Let f, g ∈ K[X], t = lcm(lpp≺(f), lpp≺(g)).
Then

cp(f, g) = (t−
t

lc≺(f) · lpp≺(f)
· f, t−

t

lc≺(g) · lpp≺(g)
· g)

is called the critical pair of f and g. The difference of the
elements of the critical pair s-pol(f, g) = t

lc≺(f)·lpp≺(f) · f −
t

lc≺(g)·lpp≺(g) · g is called the S-polynomial of f and g.

Buchberger’s algorithm [3]:

Input: a finite subset F ⊂ K[X], a term order ≺.
Output:a Groebner basis G of F w.r.t. ≺.

• Step 1: G← F

C ← {{g1, g2} | g1, g2 ∈ G, g1 �= g2}
• Step 2: While not all pairs {g1, g2} ∈ C are marked

choose an unmarked pair {g1, g2};
mark {g1, g2};
h← normal form of s-pol(f, g) w.r.t. G ;
if h �= 0 then

C ← {{g, h} | g ∈ G};
G← G ∪ {h};

• Step 3: Return G.

Lemma 2: Groebner basis computation is EXP-SPACE in
general [18].
Given an ideal I and an admissible term order ≺, we denote
the reduced Groebner basis of I with respect to ≺ by GB(I,≺
). The following lemma gives us many different ways to check
whether or not a set of polynomials is a Groebner basis.

Lemma 3: Let I be an ideal in K[X], ≺ a term order, F ⊂
K[X], and 〈F 〉 = I. The following statements are equivalent
[29]:

1) F is a Groebner basis of I with respect to ≺ .

2) f is reducible to 0 with respect to F , ∀f ∈ I.

3) f is reducible with respect to F , ∀f ∈ I \ {0}.
4) →F is a Church-Rosser reduction relation.

III. GROEBNER BASES COMPUTATION IS P-SPACE IN

BOOLEAN RINGS

In this section, we define a decision problem for Groebner
bases computation in Boolean rings using linear algebra, and
then prove that the Groebner bases computation is in P-
SPACE. We make use of linear algebra techniques in [18],
where the authors showed that Groebner bases computation is
EXP-SPACE in general. Using the condition x2 ≈ x, for all x

in a Boolean ring K, it is easy to derive a linear degree bound
for polynomials over a Boolean ring as follows.

Proposition 2: The degree of polynomials in a Boolean ring
K[X] is bounded by n, where n is the number of variables.

Even though the degree bound for polynomials in K[X] (and
hence the degree bound for polynomials in a Groebner basis)
is linear in n, which is significantly smaller than the doubly
exponential degree bound of (d2

2 +d)2
n−1

[10] for polynomials
of a Groebner basis in a general setting, a polynomial of degree
n in a Boolean ring may still have 2n monomials. This means
that a Groebner basis computation in that we store intermediate
polynomials may still be EXP-SPACE. Fortunately, one can
use on-the-fly techniques in that only necessary intermediate
results will be recorded to improve the situation.

Let F = {f1, . . . fs} be a set of polynomials in a Boolean
ring K[X], and ≺ be a term order on [X]. Even though we
do not know the reduced Groebner basis of F with respect to
the term order ≺ yet, the existence and uniqueness of such
a Groebner basis are guaranteed in Section II. Therefore, for
every polynomial p there exists a unique normal form of p

with respect to the reduced Groebner basis. Since p→∗
GB(F,≺)

nf(p), p− nf(p) is in I = 〈F 〉 and hence

p− nf(p) =

s∑

i=1

fi · hi

for some fi in F ind hi in K[X]. In other words, nf(p) is the
smallest monic polynomial with respect to the term order ≺
in the I-coset of p. Alternatively, [13] showed that finding
the normal form of a polynomial can be transformed into
solving a linear algebra system of size 2O(n) × 2O(n) without
knowing the reduced Groebner basis of I with respect to the
term order ≺. If we expand all polynomials (including the
unknown polynomials hi and nf(p)) to sums of monomials:
hi =

∑
x∈[X],deg(x)≤n hi,x · x, fi =

∑
x∈[X],deg(x)≤n fi,x · x

and nf(p) =
∑

x∈[X],deg(x)≤n rx ·x where the hi,x and rx are
unknown coefficients, we have

p =
∑

x∈[X],deg(x)≤n rx · x+∑s

i=1(
∑

x∈[X],deg(x)≤n fi,x · x)·

(
∑

x∈[X],deg(x)≤n hi,x · x)

=
∑

x∈[X],deg(x)≤n(rx+∑s

i=1

∑
u,v∈[X],u·v=x fi,u · hi,v) · x

= M.b

(1)

where b =(h1,1, . . . , h1,x, . . . , hs,1, . . . , hs,x, r1, . . . , rx, . . .)T ,
and M is a matrix of Boolean values (i.e. 0 and 1). The rows
of matrix M correspond to terms 1, . . . , x1, . . . , x1 · x2 · · ·xn

and the columns correspond to the unknowns hi,xs and rxs
for all monomial x from 1 to x1 · x2 · · ·xn. Matrix M is
free of rows and columns with all zeros, and the rows are
rearranged with respect to the order of the monomials. For the
columns, we arrange the columns correspond to hxs before
the columns correspond to rxs. Also, column rx corresponds
to term x will come before column ry corresponds to term
y if x ≺ y. Finding nf(p) can be done using the following
algorithm:

Algorithm [Normal Form]:
Given: a set of polynomials F , a term order ≺ and a

polynomial p.
Find: the normal form nf(p) of p with respect to I = 〈F 〉

and ≺.
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• Step 1: Build M and b as in Equation 1.
• Step 2: Find a full row rank sub-matrix

– 1a. Add the first non-zero row of M into an empty
matrix M+

– 1b. For row from 2 to the last row of M

If rank(M+ ∪ row) �= rank(M+)
add row into M+

• Step 3: Find a full column rank sub-matrix
– 1a. Add the first non-zero column of M+ into an

empty matrix M ′

Add the corresponding element of vector b into an
empty vector b′

– 1b. For col from 2 to the last column of M+

If rank(M ′ ∪ col) �= rank(M ′)
add col into M ′

add the corresponding element of vector b into b′.
• Step 4: Return the solution of p = M ′.b′

It is easy to see that Algorithm “Normal Form” always
terminates and returns the normal form of p with respect to
the given ideal I and term order ≺.

Example 1: Let F = {x + x · y, y + x · y} and ≺ be the
lexicographic order on [x, y] where x ≺ y. In this example we
illustrate how the normal form of a polynomial p = y with
respect to I = 〈F 〉 and ≺ can be calculated using Algorithm
“Normal Form”. First, we expand all polynomials (including
the unknown polynomials hi and nf(p)) to sums of monomials:

p = (r1 + rx · x + ry · y + rxy · x · y) + (x + x · y)(b1+
bx · x + by · y + bxy · x · y) + (y + x · y)(c1+
cx · x + cy · y + cxy · x · y

= r1 + (rx + bx + b1) · x + (c1 + ry + cy) · y+
(rxy + b1 + cy + bx + c1) · x · y

The corresponding linear algebra system is y = M · b, where
b = (b1, bx, by, bxy , c1, cx, cy, cxy , r1, rx, ry, rxy)T and

M =

0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 1 0 0 0 1 0
1 1 0 0 1 0 1 0 0 0 0 1

Notice that the rows of matrix M correspond to terms
1, x, y, x · y and the columns correspond to the unknowns
b1, bx, by, bxy , c1, cx, cy, cxy , r1, rx, ry, rxy . The rank of M

is 4. Following Algorithm “Normal Form”, Column 1, 5, 9
and 10 of matrix M will be added into M ′

M ′ =

0 0 1 0
1 0 0 1
0 1 0 0
1 1 0 0

The solution of the linear algebra system p = M ′ · b′ is
(1, 1, 0, 1)T , where b′ = (b1, c1, r1, rx)T . This means that
nf(p) = 0 + 1 · x = x. Moreover, h1 = 1, h2 = 1, and
nf(p)+f1 ·h1+f2 ·h2 = x+(x+x·y)·1 +(y+x·y)·1 = y = p.

It is easy to double check using Buchberger algorithm that
the reduced Groebner basis of F with respect to ≺ is {x+ y}
and therefore the result from Algorithm “Normal Form” is the
same as when the Groebner basis is used for calculating the
normal form of p.

To analyze the complexity of Algorithm “Normal Form”, we
notice that linear algebra operations can be done using parallel
computation. Following [11] we first formalize the work of
parallel algorithms using a parallel random access machine
consists of a set of processors P0, P1, . . ., an unbounded global
memory, a set of input registers, and a finite program. Each
processor has an accumulator, an unbounded local memory, a
program counter, and a flag indicating whether the processor
is running or not. All memory locations and accumulators
are capable of holding arbitrary non-negative integers. The
program consists of a sequence of possibly labeled instructions
chosen from the following list

Instruction Note

LOAD operand From memory into the accumulator
STORE operand Write to memory
ADD operand Increase the value at operand
SUB operand Decrease the value at operand
JUMP label Change program counter
READ operand From input register into the accumulator
FORK label Start the first inactive processor at label
HALT Stop the processor

Each operand may be a literal, an address or an indirect
address. Each processor may access either global memory
or its local memory, but not the local memory of any other
processor. Initially, the input to the machine is placed in
the input registers, all memory is cleared, the length of the
input is placed in the accumulator of P0, and P0 is started.
At each step in the computation, each running processor
simultaneously executes the instruction given by its program
counter in one unit of time, then advances its counter by one
unless the instruction causes a jump. A FORK label instruction
executed by processor Pi selects the first inactive processor
Pj , clears Pj’s local memory, copies Pi’s accumulator into
Pj’s accumulator and starts Pj running at label. Simultaneous
reads of a location in global memory are allowed, but if
two processors try to write into the same memory location
simultaneously, the parallel machine immediately halts and
rejects the input. Several processors may read a location while
one processor writes into it; all reads are performed before
the the value of the location is changed. Execution continues
until a HALT is executed by processor P0 or when two
processors attempt to write into the same memory location
simultaneously. The input is accepted only if there is some
computation in which P0 halts with a one in its accumulator;
the time required to accept the input is the minimum over all
such computations of the number of instructions executed by
P0.

Lemma 4: [11] Let L be accepted by a deterministic T (n)
time-bounded parallel random access machine, where n is the
size of input. Then L is accepted by T (n)2 space-bounded
Turing machine.

Proof: We construct a Turing machine that simulates
the work of the parallel random access machine by keeping
track of the contents of P0’s accumulator when it halts and
verifying that no two writes occur simultaneously at the same
memory location. To enumerate the active processors at any
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level of the computation tree (see Figure 1), one needs at
most log(2T (n)) = T (n) space to write down a processor
number. Writing down the contents of an accumulator takes
at most T (n) + log n = O(T (n)) space because addition and
subtraction are the only arithmetic operators, and numbers can
increase in length by at most one at each step. Writing down
the level of the computation tree takes log T (n) space, and the
program counter takes only constant space.

P

Level

Level

Level 0

k

T(n)

2T(n)

0

P0

PP
a b

Fig. 1. Computation tree

From any node on the tree, there are at most two children
on the next level. Also, on any level of the tree there is only
one P0 node. Since the parallel machine is deterministic, at
any step for each of the running processors there is exactly
one instruction which can be executed. At level k, the Turing
machine checks if P0 executed the ith instruction of its
program, leaving c in its accumulator by recursively checking
the instruction executed by P0 at level k − 1 and the ensuing
contents of its accumulator, and the contents of the memory
location referenced by instruction i. Since we need to go up to
the root of the tree, T (n)·T (n) = O(T 2(n)) memory space are
needed. To verify that two writes do not occur simultaneously
at level k, the Turing machine cycles through all pairs of pos-
sible active processors, check the executed instructions of the
processors, the contents of their accumulators, and the contents
of the memory locations referenced by the instructions. Again,
2 · T (n) · T (n) = O(T 2(n)) memory space are needed.
We now state and analyze the complexity of Algorithm “Nor-
mal Form”. Notice that we do not want to write down the
whole matrix M because by doing so it would require an
exponential amount of memory space. We will show how to
solve the linear algebra system using on-the-fly calculations.

Lemma 5: Algorithm “Normal Form” is in P-SPACE.
Proof: Let s be the number of polynomials in F and

S be the biggest number of monomials in all polynomials
of F . Finding the value of any element in M requires
O(s · S · n) memory space. Furthermore, Csanky [7] has
given parallel algorithms that takes O(log2(2n)) ∼ O(n2)
time and uses O(24n) processors for: (a) inverting an order

2n matrix, (b) solving a system of 2n linear equations in
2n unknowns, (c) computing an order 2n determinant, (d)
finding the characteristic polynomial of an order 2nmatrix.
The bound on the number of processors has been decreased
to O(22.876·n) in [21] and O(22.851·n) in [12]. It is also known
that the rank of a Hermitian matrix is equal to the number of
its nonzero characteristic roots. Hence, if M is a Hermitian
matrix and fM (λ) = det(λ.I−M) = λk +c1.λ

k−1 + · · ·+ck

is its characteristic polynomial, then rank(A) = k − i, where
0 ≤ i ≤ k is the largest integer such that ck−i �= 0 and
ck−i+1 = ck−i+1 = · · · ck = 0

One can compute the rank of a sub-matrix M ′ of M in
O(n2) time as follows [16]:

1) First, one calculates MT ·M . This takes O(n) time and
uses O(n2) processors.

2) Next, one calculates the coefficients c1, . . . , ck of
the characteristic polynomial of MT M . This takes
O(log2(2n)) ∼ O(n2) time and uses O(24n) proces-
sors. The bound on the number of processors has been
decreased to O(22.851·n) as mentioned before.

3) Finally, one determines the largest integer i such that
ck−i �= 0 and ck−i+1 = ck−i+1 = · · · ck = 0. This can
be done in O(log 2n) ∼ O(n) time and O(2n) proces-
sors using the fan-in technique. Then rank(M ′) = k− i.

These O(n2) time-bounded parallel algorithms, which uses
O(22.851·n) processors and shares a common memory, can be
converted into a O((n2 · 2.851 · n)2) ∼ O(n6) space-bounded
Turing machine using Lemma 4. Therefore, Algorithm “Nor-
mal Form” is in P-SPACE.
We now define a decision problem for Groebner bases com-
putation in Boolean rings using linear algebra as follows.

Problem 1: [Groebner bases] Given a set of polynomials
F in K[X] and a term order ≺ on [X], does it have 1 in the
set {m − nf(m) : for all minimal reducible monomial m of
degree at most n}?

We derive an algorithm to solve the decision problem for
Groebner bases computation in Boolean rings using linear
algebra as follows:

Algorithm [GB Computation using Linear Algebra]:

Given: a set of polynomials F and a term order ≺.
Find: the reduced Groebner basis of I = 〈F 〉 with respect

to ≺.

• Step 1: Set G′ = ∅; Build matrix M and vector b as in
Equation 1.

• Step 2: For all monomial m, 1 �≺ m ≺ x1 · x2 · · ·xn do
If 1 = m + nf(m) then stop and return {1}

Add m+nf(m) into G′ when m is minimal reducible.
• Step 3: Return G′.

Example 2: Let F = {x + x · y, y + x · y} and ≺
be the lexicographic order on [x, y] where x ≺ y. In this
example we illustrate how the reduced Groebner basis of
I = 〈F 〉 with respect to ≺ can be calculated using Algorithm
“GB using Linear Algebra”. As illustrated in Example 1, the
corresponding linear algebra system is p = M ′ · b′, where

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:3, No:9, 2009 

702International Scholarly and Scientific Research & Innovation 3(9) 2009 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:3
, N

o:
9,

 2
00

9 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
22

47
.p

df



b′ = (b1, c1, r1, rx)T and

M ′ =

0 0 1 0
1 0 0 1
0 1 0 0
1 1 0 0

The solution of the linear algebra system m = M ′ · b′

for monomials m = x and m = y are (0, 0, 0, 1)T and
(1, 1, 0, 1)T , respectively. We do not need to find the normal
form of x · y because one of its divisors, y, is reducible
and hence x · y is not minimal reducible monic monomial.
Therefore, the set of polynomials m + nf(m) for all minimal
reducible monic monomials of degree ≤ 2 is {x + y}. This is
indeed the reduced Groebner basis of I with respect to ≺.

It is easy to see that Algorithm “GB using Linear Alge-
bra” always terminates. The correctness of the algorithm is
guaranteed by the following lemma.

Lemma 6: The set of polynomials m− nf(m) for all mini-
mal reducible monic monomials of degree ≤ n is equal to the
reduced Groebner basis G of I = 〈F 〉 with respect to ≺.

Proof: We denote the set of polynomials m− nf(m) for
all minimal reducible monic monomials of degree ≤ n by G′.
Clearly G′ ⊆ I . All polynomial in G can be written in the form
m − nf(m), where m is the leading term of the polynomial.
Since G is reduced, m must be a minimal reducible monic
monomial of degree ≤ n, and hence G ⊆ G′. That is, for all
f ∈ I , f is reducible by G and hence by G′. Therefore, G′ is
a Groebner basis of I with respect to ≺. It is easy to see that
G′is reduced and monic. Consequently, G′ = G.

Lemma 7: Algorithm “GB using Linear Algebra” is in P-
SPACE.

Proof: Step 2 of the algorithm enumerates all monic
monomials up to degree n. In every pass through the loop,
one needs to check at most

∑n−1
i=1

n!
i!·(n−i)! = 2n − 2 direct

divisors of m and the monomial m itself to see if m is
minimal reducible. In case m is minimal reducible, we output
m−nf(m). According to Lemma 5, this step requires a O(n6)
space-bounded Turing machine. Therefore, the algorithm is in
P-SPACE.

IV. CONCLUSION AND DISCUSSION

Groebner bases considered as a Church-Rosser reduction
relation or a term rewriting system has been used for propo-
sitional satisfiability in [8], [9], [15], [14], [17]. Techniques
from algebraic geometry have also been proposed for symbolic
model checking in lieu of BDDs [1].

We showed in this paper that there exists an algorithm
for Groebner basis computation in Boolean rings that is P-
SPACE. With this discovery, the Groebner Bases method
is theoretically as efficient as other methods for automated
verification of hardware and software. However, the algorithm
we found is far from practical use. We have been working on
new data structures, techniques and algorithms for Groebner
basis computation in Boolean rings where specific structures
of model checking problems has been taken into account [28].
A more practical algorithm for Groebner basis computation in
Boolean rings may help to develop more robust and scalable

model checking methods based on novel and alternative tech-
nologies.
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