Search results for: H.E.S. Method
6686 Estimation of Functional Response Model by Supervised Functional Principal Component Analysis
Authors: Hyon I. Paek, Sang Rim Kim, Hyon A. Ryu
Abstract:
In functional linear regression, one typical problem is to reduce dimension. Compared with multivariate linear regression, functional linear regression is regarded as an infinite-dimensional case, and the main task is to reduce dimensions of functional response and functional predictors. One common approach is to adapt functional principal component analysis (FPCA) on functional predictors and then use a few leading functional principal components (FPC) to predict the functional model. The leading FPCs estimated by the typical FPCA explain a major variation of the functional predictor, but these leading FPCs may not be mostly correlated with the functional response, so they may not be significant in the prediction for response. In this paper, we propose a supervised FPCA method for a functional response model with FPCs obtained by considering the correlation of the functional response. Our method would have a better prediction accuracy than the typical FPCA method.
Keywords: Supervised, functional principal component analysis, functional response, functional linear regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 436685 Human Growth Curve Estimation through a Combination of Longitudinal and Cross-sectional Data
Authors: Sedigheh Mirzaei S., Debasis Sengupta
Abstract:
Parametric models have been quite popular for studying human growth, particularly in relation to biological parameters such as peak size velocity and age at peak size velocity. Longitudinal data are generally considered to be vital for fittinga parametric model to individual-specific data, and for studying the distribution of these biological parameters in a human population. However, cross-sectional data are easier to obtain than longitudinal data. In this paper, we present a method of combining longitudinal and cross-sectional data for the purpose of estimating the distribution of the biological parameters. We demonstrate, through simulations in the special case ofthePreece Baines model, how estimates based on longitudinal data can be improved upon by harnessing the information contained in cross-sectional data.We study the extent of improvement for different mixes of the two types of data, and finally illustrate the use of the method through data collected by the Indian Statistical Institute.Keywords: Preece-Baines growth model, MCMC method, Mixed effect model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21456684 Parameters Optimization of the Laminated Composite Plate for Sound Transmission Problem
Authors: Yu T. Tsai, Jin H. Huang
Abstract:
In this paper, the specific sound Transmission Loss (TL) of the Laminated Composite Plate (LCP) with different material properties in each layer is investigated. The numerical method to obtain the TL of the LCP is proposed by using elastic plate theory. The transfer matrix approach is novelty presented for computational efficiency in solving the numerous layers of dynamic stiffness matrix (D-matrix) of the LCP. Besides the numerical simulations for calculating the TL of the LCP, the material properties inverse method is presented for the design of a laminated composite plate analogous to a metallic plate with a specified TL. As a result, it demonstrates that the proposed computational algorithm exhibits high efficiency with a small number of iterations for achieving the goal. This method can be effectively employed to design and develop tailor-made materials for various applications.Keywords: Sound transmission loss, laminated composite plate, transfer matrix approach, inverse problem, elastic plate theory, material properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19826683 Integrating Fast Karnough Map and Modular Neural Networks for Simplification and Realization of Complex Boolean Functions
Authors: Hazem M. El-Bakry
Abstract:
In this paper a new fast simplification method is presented. Such method realizes Karnough map with large number of variables. In order to accelerate the operation of the proposed method, a new approach for fast detection of group of ones is presented. Such approach implemented in the frequency domain. The search operation relies on performing cross correlation in the frequency domain rather than time one. It is proved mathematically and practically that the number of computation steps required for the presented method is less than that needed by conventional cross correlation. Simulation results using MATLAB confirm the theoretical computations. Furthermore, a powerful solution for realization of complex functions is given. The simplified functions are implemented by using a new desigen for neural networks. Neural networks are used because they are fault tolerance and as a result they can recognize signals even with noise or distortion. This is very useful for logic functions used in data and computer communications. Moreover, the implemented functions are realized with minimum amount of components. This is done by using modular neural nets (MNNs) that divide the input space into several homogenous regions. Such approach is applied to implement XOR function, 16 logic functions on one bit level, and 2-bit digital multiplier. Compared to previous non- modular designs, a clear reduction in the order of computations and hardware requirements is achieved.
Keywords: Boolean functions, simplification, Karnough map, implementation of logic functions, modular neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20746682 Grating Scale Thermal Expansion Error Compensation for Large Machine Tools Based on Multiple Temperature Detection
Authors: Wenlong Feng, Zhenchun Du, Jianguo Yang
Abstract:
To decrease the grating scale thermal expansion error, a novel method which based on multiple temperature detection is proposed. Several temperature sensors are installed on the grating scale and the temperatures of these sensors are recorded. The temperatures of every point on the grating scale are calculated by interpolating between adjacent sensors. According to the thermal expansion principle, the grating scale thermal expansion error model can be established by doing the integral for the variations of position and temperature. A novel compensation method is proposed in this paper. By applying the established error model, the grating scale thermal expansion error is decreased by 90% compared with no compensation. The residual positioning error of the grating scale is less than 15μm/10m and the accuracy of the machine tool is significant improved.Keywords: Thermal expansion error of grating scale, error compensation, machine tools, integral method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19716681 A Study on the Interlaminar Shear Strength of Carbon Fiber Reinforced Plastics Depending on the Lamination Methods
Authors: Min Sang Lee, Hee Jae Shin, In Pyo Cha, Sun Ho Ko, Hyun Kyung Yoon, Hong Gun Kim, Lee Ku Kwac
Abstract:
The prepreg process among the CFRP (Carbon Fiber Reinforced Plastic) forming methods is the short term of ‘Pre-impregnation’, which is widely used for aerospace composites that require a high quality property such as a fiber-reinforced woven fabric, in which an epoxy hardening resin is impregnated the reality. However, that this process requires continuous researches and developments for its commercialization because the delamination characteristically develops between the layers when a great weight is loaded from outside to supplement such demerit, three lamination methods among the prepreg lamination methods of CFRP were designed to minimize the delamination between the layers due to external impacts. Further, the newly designed methods and the existing lamination methods were analyzed through a mechanical characteristic test, Interlaminar Shear Strength test. The Interlaminar Shear Strength test result confirmed that the newly proposed three lamination methods, i.e. the Roll, Half and Zigzag laminations, presented more excellent strengths compared to the conventional Ply lamination. The interlaminar shear strength in the roll method with relatively dense fiber distribution was approximately 1.75% higher than that in the existing ply lamination method, and in the half method, it was approximately 0.78% higher.
Keywords: Carbon Fiber Reinforced Plastic (CFRP), Pre-Impregnation, Laminating Method, Interlaminar Shear Strength (ILSS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29226680 Controlled Synchronization of an Array of Nonlinear System with Time Delays
Authors: S.M. Lee, J.H. Koo, J.H. Park, S.C. Won
Abstract:
In this paper, we propose synchronization of an array of nonlinear systems with time delays. The array of systems is decomposed into isolated systems to establish appropriate Lyapunov¬Krasovskii functional. Using the Lyapunov-Krasovskii functional, a sufficient condition for the synchronization is derived in terms of LMIs(Linear Matrix Inequalities). Delayed feedback control gains are obtained by solving the sufficient condition. Numerical examples are given to show the validity the proposed method.
Keywords: Synchronization, Delay, Lyapunov method, LMI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14516679 Development of Bicomponent Fibre to Combat Insects
Authors: M. Bischoff, F. Schmidt, J. Herrmann, J. Mattheß, G. Seide, T. Gries
Abstract:
Crop yields have not increased as dramatically as the demand for food. One method to counteract this is to use pesticides to keep away predators, e.g. several forms of insecticide are available to fight insects. These insecticides and pesticides are both controversial as their application and their residue in the food product can also harm humans. In this study an alternative method to combat insects is studied. A physical insect-killing effect of SiO2 particles is used. The particles are applied on fibres to avoid erosion in the fields, which would occur when applied separately. The development of such SiO2 functionalized PP fibres is shown.Keywords: Agriculture, environment, insects, protection, silica, textile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16296678 Passive Non-Prehensile Manipulation on Helix Path Based on Mechanical Intelligence
Authors: Abdullah Bajelan, Adel Akbarimajd
Abstract:
Object manipulation techniques in robotics can be categorized in two major groups including manipulation with grasp and manipulation without grasp. The original aim of this paper is to develop an object manipulation method where in addition to being grasp-less, the manipulation task is done in a passive approach. In this method, linear and angular positions of the object are changed and its manipulation path is controlled. The manipulation path is a helix track with constant radius and incline. The method presented in this paper proposes a system which has not the actuator and the active controller. So this system requires a passive mechanical intelligence to convey the object from the status of the source along the specified path to the goal state. This intelligent is created based on utilizing the geometry of the system components. A general set up for the components of the system is considered to satisfy the required conditions. Then after kinematical analysis, detailed dimensions and geometry of the mechanism is obtained. The kinematical results are verified by simulation in ADAMS.Keywords: Mechanical intelligence, Object manipulation, Passive mechanism, Passive non-prehensile manipulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12776677 A Study of General Attacks on Elliptic Curve Discrete Logarithm Problem over Prime Field and Binary Field
Authors: Tun Myat Aung, Ni Ni Hla
Abstract:
This paper begins by describing basic properties of finite field and elliptic curve cryptography over prime field and binary field. Then we discuss the discrete logarithm problem for elliptic curves and its properties. We study the general common attacks on elliptic curve discrete logarithm problem such as the Baby Step, Giant Step method, Pollard’s rho method and Pohlig-Hellman method, and describe in detail experiments of these attacks over prime field and binary field. The paper finishes by describing expected running time of the attacks and suggesting strong elliptic curves that are not susceptible to these attacks.cKeywords: Discrete logarithm problem, general attacks, elliptic curves, strong curves, prime field, binary field, attack experiments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11876676 An Innovative Fuzzy Decision Making Based Genetic Algorithm
Authors: M. A. Sharbafi, M. Shakiba Herfeh, Caro Lucas, A. Mohammadi Nejad
Abstract:
Several researchers have proposed methods about combination of Genetic Algorithm (GA) and Fuzzy Logic (the use of GA to obtain fuzzy rules and application of fuzzy logic in optimization of GA). In this paper, we suggest a new method in which fuzzy decision making is used to improve the performance of genetic algorithm. In the suggested method, we determine the alleles that enhance the fitness of chromosomes and try to insert them to the next generation. In this algorithm we try to present an innovative vaccination in the process of reproduction in genetic algorithm, with considering the trade off between exploration and exploitation.Keywords: Genetic Algorithm, Fuzzy Decision Making.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16206675 Step Height Calibration Using Hamming Window Band-Pass Filter
Authors: Dahi Ghareab Abdelsalam Ibrahim
Abstract:
Axial and lateral measurements of a step depth standard are presented. The axial measurement is performed based on the ISO 5436 profile analysis. The lateral measurement is performed based on the Hamming window band-pass filter method. The method is applied to calibrate a groove structure of a step depth standard of 60 nm. For the axial measurement, the computed results show that the depth of the groove structure is 59.7 ± 0.6 nm. For the lateral measurement, the computed results show that the difference between the two line edges of the groove structure is 151.7 ± 2.5 nm. The method can be applied to any step height/depth regardless of the sharpness of the line edges.
Keywords: Hamming window, band-pass filter, metrology, interferometry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1186674 Comparison between the Conventional Methods and PSO Based MPPT Algorithm for Photovoltaic Systems
Authors: Ramdan B. A. Koad, Ahmed. F. Zobaa
Abstract:
Since the output characteristics of photovoltaic (PV) system depends on the ambient temperature, solar radiation and load impedance, its maximum power point (MPP) is not constant. Under each condition PV module has a point at which it can produce its MPP. Therefore, a maximum power point tracking (MPPT) method is needed to uphold the PV panel operating at its MPP. This paper presents comparative study between the conventional MPPT methods used in (PV) system: Perturb and Observe (P&O), Incremental Conductance (IncCond), andParticle Swarm Optimization (PSO) algorithmfor (MPPT) of (PV) system. To evaluate the study, the proposed PSO MPPT is implemented on a DC-DC cuk converter and has been compared with P&O and INcond methods in terms of their tracking speed, accuracy and performance by using the Matlab tool Simulink. The simulation result shows that the proposed algorithm is simple, and is superior to the P&O and IncCond methods.
Keywords: Incremental Conductance (IncCond) Method, Perturb and Observe (P&O) Method, Photovoltaic Systems (PV) and Practical Swarm Optimization Algorithm (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57446673 Modeling and Numerical Simulation of Sound Radiation by the Boundary Element Method
Authors: Costa, E.S., Borges, E.N.M., Afonso, M.M.
Abstract:
The modeling of sound radiation is of fundamental importance for understanding the propagation of acoustic waves and, consequently, develop mechanisms for reducing acoustic noise. The propagation of acoustic waves, are involved in various phenomena such as radiation, absorption, transmission and reflection. The radiation is studied through the linear equation of the acoustic wave that is obtained through the equation for the Conservation of Momentum, equation of State and Continuity. From these equations, is the Helmholtz differential equation that describes the problem of acoustic radiation. In this paper we obtained the solution of the Helmholtz differential equation for an infinite cylinder in a pulsating through free and homogeneous. The analytical solution is implemented and the results are compared with the literature. A numerical formulation for this problem is obtained using the Boundary Element Method (BEM). This method has great power for solving certain acoustical problems in open field, compared to differential methods. BEM reduces the size of the problem, thereby simplifying the input data to be worked and reducing the computational time used.
Keywords: Acoustic radiation, boundary element
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14886672 Topology Optimization of Aircraft Fuselage Structure
Authors: Muniyasamy Kalanchiam, Baskar Mannai
Abstract:
Topology Optimization is a defined as the method of determining optimal distribution of material for the assumed design space with functionality, loads and boundary conditions [1]. Topology optimization can be used to optimize shape for the purposes of weight reduction, minimizing material requirements or selecting cost effective materials [2]. Topology optimization has been implemented through the use of finite element methods for the analysis, and optimization techniques based on the method of moving asymptotes, genetic algorithms, optimality criteria method, level sets and topological derivatives. Case study of Typical “Fuselage design" is considered for this paper to explain the benefits of Topology Optimization in the design cycle. A cylindrical shell is assumed as the design space and aerospace standard pay loads were applied on the fuselage with wing attachments as constraints. Then topological optimization is done using Finite Element (FE) based software. This optimization results in the structural concept design which satisfies all the design constraints using minimum material.Keywords: Fuselage, Topology optimization, payloads, designoptimization, Finite Element Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41046671 3D Objects Indexing Using Spherical Harmonic for Optimum Measurement Similarity
Authors: S. Hellam, Y. Oulahrir, F. El Mounchid, A. Sadiq, S. Mbarki
Abstract:
In this paper, we propose a method for three-dimensional (3-D)-model indexing based on defining a new descriptor, which we call new descriptor using spherical harmonics. The purpose of the method is to minimize, the processing time on the database of objects models and the searching time of similar objects to request object. Firstly we start by defining the new descriptor using a new division of 3-D object in a sphere. Then we define a new distance which will be used in the search for similar objects in the database.
Keywords: 3D indexation, spherical harmonic, similarity of 3D objects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22406670 The Effect of Cooperative Learning on Academic Achievement of Grade Nine Students in Mathematics: The Case of Mettu Secondary and Preparatory School
Authors: Diriba Gemechu, Lamessa Abebe
Abstract:
The aim of this study was to examine the effect of cooperative learning method on student’s academic achievement and on the achievement level over a usual method in teaching different topics of mathematics. The study also examines the perceptions of students towards cooperative learning. Cooperative learning is the instructional strategy in which pairs or small groups of students with different levels of ability work together to accomplish a shared goal. The aim of this cooperation is for students to maximize their own and each other learning, with members striving for joint benefit. The teacher’s role changes from wise on the wise to guide on the side. Cooperative learning due to its influential aspects is the most prevalent teaching-learning technique in the modern world. Therefore the study was conducted in order to examine the effect of cooperative learning on the academic achievement of grade 9 students in Mathematics in case of Mettu secondary school. Two sample sections are randomly selected by which one section served randomly as an experimental and the other as a comparison group. Data gathering instruments are achievement tests and questionnaires. A treatment of STAD method of cooperative learning was provided to the experimental group while the usual method is used in the comparison group. The experiment lasted for one semester. To determine the effect of cooperative learning on the student’s academic achievement, the significance of difference between the scores of groups at 0.05 levels was tested by applying t test. The effect size was calculated to see the strength of the treatment. The student’s perceptions about the method were tested by percentiles of the questionnaires. During data analysis, each group was divided into high and low achievers on basis of their previous Mathematics result. Data analysis revealed that both the experimental and comparison groups were almost equal in Mathematics at the beginning of the experiment. The experimental group out scored significantly than comparison group on posttest. Additionally, the comparison of mean posttest scores of high achievers indicates significant difference between the two groups. The same is true for low achiever students of both groups on posttest. Hence, the result of the study indicates the effectiveness of the method for Mathematics topics as compared to usual method of teaching.Keywords: Cooperative learning, academic achievement, experimental group, comparison group.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21226669 Risk-Management by Numerical Pattern Analysis in Data-Mining
Authors: M. Kargar, R. Mirmiran, F. Fartash, T. Saderi
Abstract:
In this paper a new method is suggested for risk management by the numerical patterns in data-mining. These patterns are designed using probability rules in decision trees and are cared to be valid, novel, useful and understandable. Considering a set of functions, the system reaches to a good pattern or better objectives. The patterns are analyzed through the produced matrices and some results are pointed out. By using the suggested method the direction of the functionality route in the systems can be controlled and best planning for special objectives be done.Keywords: Analysis, Data-mining, Pattern, Risk Management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12786668 A Detection Method of Faults in Railway Pantographs Based on Dynamic Phase Plots
Authors: G. Santamato, M. Solazzi, A. Frisoli
Abstract:
Systems for detection of damages in railway pantographs effectively reduce the cost of maintenance and improve time scheduling. In this paper, we present an approach to design a monitoring tool fitting strong customer requirements such as portability and ease of use. Pantograph has been modeled to estimate its dynamical properties, since no data are available. With the aim to focus on suspensions health, a two Degrees of Freedom (DOF) scheme has been adopted. Parameters have been calculated by means of analytical dynamics. A Finite Element Method (FEM) modal analysis verified the former model with an acceptable error. The detection strategy seeks phase-plots topology alteration, induced by defects. In order to test the suitability of the method, leakage in the dashpot was simulated on the lumped model. Results are interesting because changes in phase plots are more appreciable than frequency-shift. Further calculations as well as experimental tests will support future developments of this smart strategy.Keywords: Pantograph models, phase-plots, structural health monitoring, vibration-based condition monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14936667 Effect of Out-of-Plane Deformation on Relaxation Method of Stress Concentration in a Plate with a Circular Hole
Authors: Shingo Murakami, Shinichi Enoki
Abstract:
In structures, stress concentration is a factor of fatigue fracture. Basically, the stress concentration is a phenomenon that should be avoided. However, it is difficult to avoid the stress concentration. Therefore, relaxation of the stress concentration is important. The stress concentration arises from notches and circular holes. There is a relaxation method that a composite patch covers a notch and a circular hole. This relaxation method is used to repair aerial wings, but it is not systematized. Composites are more expensive than single materials. Accordingly, we propose the relaxation method that a single material patch covers a notch and a circular hole, and aim to systematize this relaxation method. We performed FEA (Finite Element Analysis) about an object by using a three-dimensional FEA model. The object was that a patch adheres to a plate with a circular hole. And, a uniaxial tensile load acts on the patched plate with a circular hole. In the three-dimensional FEA model, it is not easy to model the adhesion layer. Basically, the yield stress of the adhesive is smaller than that of adherents. Accordingly, the adhesion layer gets to plastic deformation earlier than the adherents under the yield load of adherents. Therefore, we propose the three-dimensional FEA model which is applied a nonlinear elastic region to the adhesion layer. The nonlinear elastic region was calculated by a bilinear approximation. We compared the analysis results with the tensile test results to confirm whether the analysis model has usefulness. As a result, the analysis results agreed with the tensile test results. And, we confirmed that the analysis model has usefulness. As a result that the three-dimensional FEA model was used to the analysis, it was confirmed that an out-of-plane deformation occurred to the patched plate with a circular hole. The out-of-plane deformation causes stress increase of the patched plate with a circular hole. Therefore, we investigated that the out-of-plane deformation affects relaxation of the stress concentration in the plate with a circular hole on this relaxation method. As a result, it was confirmed that the out-of-plane deformation inhibits relaxation of the stress concentration on the plate with a circular hole.
Keywords: Stress concentration, patch, out-of-plane deformation, Finite Element Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22976666 Performance Prediction of a 5MW Wind Turbine Blade Considering Aeroelastic Effect
Authors: Dong-Hyun Kim, Yoo-Han Kim
Abstract:
In this study, aeroelastic response and performance analyses have been conducted for a 5MW-Class composite wind turbine blade model. Advanced coupled numerical method based on computational fluid dynamics (CFD) and computational flexible multi-body dynamics (CFMBD) has been developed in order to investigate aeroelastic responses and performance characteristics of the rotating composite blade. Reynolds-Averaged Navier-Stokes (RANS) equations with k-ω SST turbulence model were solved for unsteady flow problems on the rotating turbine blade model. Also, structural analyses considering rotating effect have been conducted using the general nonlinear finite element method. A fully implicit time marching scheme based on the Newmark direct integration method is applied to solve the coupled aeroelastic governing equations of the 3D turbine blade for fluid-structure interaction (FSI) problems. Detailed dynamic responses and instantaneous velocity contour on the blade surfaces which considering flow-separation effects were presented to show the multi-physical phenomenon of the huge rotating wind- turbine blade model.Keywords: Computational Fluid Dynamics (CFD), Computational Multi-Body Dynamics (CMBD), Reynolds-averageNavier-Stokes (RANS), Fluid Structure Interaction (FSI), FiniteElement Method (FEM)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29306665 Fault Detection and Diagnosis of Broken Bar Problem in Induction Motors Base Wavelet Analysis and EMD Method: Case Study of Mobarakeh Steel Company in Iran
Authors: M. Ahmadi, M. Kafil, H. Ebrahimi
Abstract:
Nowadays, induction motors have a significant role in industries. Condition monitoring (CM) of this equipment has gained a remarkable importance during recent years due to huge production losses, substantial imposed costs and increases in vulnerability, risk, and uncertainty levels. Motor current signature analysis (MCSA) is one of the most important techniques in CM. This method can be used for rotor broken bars detection. Signal processing methods such as Fast Fourier transformation (FFT), Wavelet transformation and Empirical Mode Decomposition (EMD) are used for analyzing MCSA output data. In this study, these signal processing methods are used for broken bar problem detection of Mobarakeh steel company induction motors. Based on wavelet transformation method, an index for fault detection, CF, is introduced which is the variation of maximum to the mean of wavelet transformation coefficients. We find that, in the broken bar condition, the amount of CF factor is greater than the healthy condition. Based on EMD method, the energy of intrinsic mode functions (IMF) is calculated and finds that when motor bars become broken the energy of IMFs increases.
Keywords: Broken bar, condition monitoring, diagnostics, empirical mode decomposition, Fourier transform, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8106664 An ACO Based Algorithm for Distribution Networks Including Dispersed Generations
Authors: B. Bahmani Firouzi, T. Niknam, M. Nayeripour
Abstract:
With Power system movement toward restructuring along with factors such as life environment pollution, problems of transmission expansion and with advancement in construction technology of small generation units, it is expected that small units like wind turbines, fuel cells, photovoltaic, ... that most of the time connect to the distribution networks play a very essential role in electric power industry. With increase in developing usage of small generation units, management of distribution networks should be reviewed. The target of this paper is to present a new method for optimal management of active and reactive power in distribution networks with regard to costs pertaining to various types of dispersed generations, capacitors and cost of electric energy achieved from network. In other words, in this method it-s endeavored to select optimal sources of active and reactive power generation and controlling equipments such as dispersed generations, capacitors, under load tapchanger transformers and substations in a way that firstly costs in relation to them are minimized and secondly technical and physical constraints are regarded. Because the optimal management of distribution networks is an optimization problem with continuous and discrete variables, the new evolutionary method based on Ant Colony Algorithm has been applied. The simulation results of the method tested on two cases containing 23 and 34 buses exist and will be shown at later sections.
Keywords: Distributed Generation, Optimal Operation Management of distribution networks, Ant Colony Optimization(ACO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17166663 Design, Modeling and Fabrication of a Tactile Sensor and Display System for Application in Laparoscopic Surgery
Authors: M. Ramezanifard, J. Dargahi, S. Najarian, N. Narayanan
Abstract:
One of the major disadvantages of the minimally invasive surgery (MIS) is the lack of tactile feedback to the surgeon. In order to identify and avoid any damage to the grasped complex tissue by endoscopic graspers, it is important to measure the local softness of tissue during MIS. One way to display the measured softness to the surgeon is a graphical method. In this paper, a new tactile sensor has been reported. The tactile sensor consists of an array of four softness sensors, which are integrated into the jaws of a modified commercial endoscopic grasper. Each individual softness sensor consists of two piezoelectric polymer Polyvinylidene Fluoride (PVDF) films, which are positioned below a rigid and a compliant cylinder. The compliant cylinder is fabricated using a micro molding technique. The combination of output voltages from PVDF films is used to determine the softness of the grasped object. The theoretical analysis of the sensor is also presented. A method has been developed with the aim of reproducing the tactile softness to the surgeon by using a graphical method. In this approach, the proposed system, including the interfacing and the data acquisition card, receives signals from the array of softness sensors. After the signals are processed, the tactile information is displayed by means of a color coding method. It is shown that the degrees of softness of the grasped objects/tissues can be visually differentiated and displayed on a monitor.Keywords: Minimally invasive surgery, Robotic surgery, Sensor, Softness, Tactile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17206662 Semi-Automatic Method to Assist Expert for Association Rules Validation
Authors: Amdouni Hamida, Gammoudi Mohamed Mohsen
Abstract:
In order to help the expert to validate association rules extracted from data, some quality measures are proposed in the literature. We distinguish two categories: objective and subjective measures. The first one depends on a fixed threshold and on data quality from which the rules are extracted. The second one consists on providing to the expert some tools in the objective to explore and visualize rules during the evaluation step. However, the number of extracted rules to validate remains high. Thus, the manually mining rules task is very hard. To solve this problem, we propose, in this paper, a semi-automatic method to assist the expert during the association rule's validation. Our method uses rule-based classification as follow: (i) We transform association rules into classification rules (classifiers), (ii) We use the generated classifiers for data classification. (iii) We visualize association rules with their quality classification to give an idea to the expert and to assist him during validation process.Keywords: Association rules, Rule-based classification, Classification quality, Validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17986661 A Mathematical Investigation of the Turkevich Organizer Theory in the Citrate Method for the Synthesis of Gold Nanoparticles
Authors: Emmanuel Agunloye, Asterios Gavriilidis, Luca Mazzei
Abstract:
Gold nanoparticles are commonly synthesized by reducing chloroauric acid with sodium citrate. This method, referred to as the citrate method, can produce spherical gold nanoparticles (NPs) in the size range 10-150 nm. Gold NPs of this size are useful in many applications. However, the NPs are usually polydisperse and irreproducible. A better understanding of the synthesis mechanisms is thus required. This work thoroughly investigated the only model that describes the synthesis. This model combines mass and population balance equations, describing the NPs synthesis through a sequence of chemical reactions. Chloroauric acid reacts with sodium citrate to form aurous chloride and dicarboxy acetone. The latter organizes aurous chloride in a nucleation step and concurrently degrades into acetone. The unconsumed precursor then grows the formed nuclei. However, depending on the pH, both the precursor and the reducing agent react differently thus affecting the synthesis. In this work, we investigated the model for different conditions of pH, temperature and initial reactant concentrations. To solve the model, we used Parsival, a commercial numerical code, whilst to test it, we considered various conditions studied experimentally by different researchers, for which results are available in the literature. The model poorly predicted the experimental data. We believe that this is because the model does not account for the acid-base properties of both chloroauric acid and sodium citrate.
Keywords: Gold nanoparticles, Citrate method, Turkevich organizer theory, population balance modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10076660 Improving Learning Abilities and Inclusion through Movement: The Movi-Mente© Method
Authors: Ivan Traina, Luigi Sangalli, Fabio Tognon, Angelo Lascioli
Abstract:
Currently, challenges regarding preschooler children are mainly focused on a sedentary lifestyle. Also, motor activity in infancy is seen as a tool for the separate acquisition of cognitive and socio-emotional skills rather than considering neuromotor development as a tool for improving learning abilities. The paper utilized an observational research method to shed light on the results of practicing neuromotor exercises in preschool children with disability as well as provide implications for practice.
Keywords: Children with disability, learning abilities, inclusion, neuromotor development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5926659 Wave Interaction with Defects in Pressurized Composite Structures
Authors: R. K. Apalowo, D. Chronopoulos, V. Thierry
Abstract:
A wave finite element (WFE) and finite element (FE) based computational method is presented by which the dispersion properties as well as the wave interaction coefficients for one-dimensional structural system can be predicted. The structural system is discretized as a system comprising a number of waveguides connected by a coupling joint. Uniform nodes are ensured at the interfaces of the coupling element with each waveguide. Then, equilibrium and continuity conditions are enforced at the interfaces. Wave propagation properties of each waveguide are calculated using the WFE method and the coupling element is modelled using the FE method. The scattering of waves through the coupling element, on which damage is modelled, is determined by coupling the FE and WFE models. Furthermore, the central aim is to evaluate the effect of pressurization on the wave dispersion and scattering characteristics of the prestressed structural system compared to that which is not prestressed. Numerical case studies are exhibited for two waveguides coupled through a coupling joint.Keywords: Finite element, prestressed structures, wave finite element, wave propagation properties, wave scattering coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9556658 Application of Mapping and Superimposing Rule for Solution of Parabolic PDE in Porous Medium under Cyclic Loading
Authors: Mohammad M. Toufigh, Ahad Ouria
Abstract:
This paper presents an analytical method to solve governing consolidation parabolic partial differential equation (PDE) for inelastic porous Medium (soil) with consideration of variation of equation coefficient under cyclic loading. Since under cyclic loads, soil skeleton parameters change, this would introduce variable coefficient of parabolic PDE. Classical theory would not rationalize consolidation phenomenon in such condition. In this research, a method based on time space mapping to a virtual time space along with superimposing rule is employed to solve consolidation of inelastic soils in cyclic condition. Changes of consolidation coefficient applied in solution by modification of loading and unloading duration by introducing virtual time. Mapping function is calculated based on consolidation partial differential equation results. Based on superimposing rule a set of continuous static loads in specified times used instead of cyclic load. A set of laboratory consolidation tests under cyclic load along with numerical calculations were performed in order to verify the presented method. Numerical solution and laboratory tests results showed accuracy of presented method.Keywords: Mapping, Consolidation, Inelastic porous medium, Cyclic loading, Superimposing rule.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17846657 The Hyperbolic Smoothing Approach for Automatic Calibration of Rainfall-Runoff Models
Authors: Adilson Elias Xavier, Otto Corrêa Rotunno Filho, Paulo Canedo de Magalhães
Abstract:
This paper addresses the issue of automatic parameter estimation in conceptual rainfall-runoff (CRR) models. Due to threshold structures commonly occurring in CRR models, the associated mathematical optimization problems have the significant characteristic of being strongly non-differentiable. In order to face this enormous task, the resolution method proposed adopts a smoothing strategy using a special C∞ differentiable class function. The final estimation solution is obtained by solving a sequence of differentiable subproblems which gradually approach the original conceptual problem. The use of this technique, called Hyperbolic Smoothing Method (HSM), makes possible the application of the most powerful minimization algorithms, and also allows for the main difficulties presented by the original CRR problem to be overcome. A set of computational experiments is presented for the purpose of illustrating both the reliability and the efficiency of the proposed approach.
Keywords: Rainfall-runoff models, optimization procedure, automatic parameter calibration, hyperbolic smoothing method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 419