3D Objects Indexing Using Spherical Harmonic for Optimum Measurement Similarity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33121
3D Objects Indexing Using Spherical Harmonic for Optimum Measurement Similarity

Authors: S. Hellam, Y. Oulahrir, F. El Mounchid, A. Sadiq, S. Mbarki

Abstract:

In this paper, we propose a method for three-dimensional (3-D)-model indexing based on defining a new descriptor, which we call new descriptor using spherical harmonics. The purpose of the method is to minimize, the processing time on the database of objects models and the searching time of similar objects to request object. Firstly we start by defining the new descriptor using a new division of 3-D object in a sphere. Then we define a new distance which will be used in the search for similar objects in the database.

Keywords: 3D indexation, spherical harmonic, similarity of 3D objects.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1098986

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2234

References:


[1] B.Cabral, N. Max and R. Springmeyer. Bidirectional Reflection Functions from Surface Bump Maps SIGGRAPH 273-281, 1987
[2] Volker Schönefeld, Spherical Harmonics,1st July 2005
[3] Gerig, G. Styner, M. Jones, D., Weinberger, D. Lieberman, J., 2001. Shape analysis of brain ventricles using spharm. In: MMBIA , pp. 171- 178.
[4] B.K.P Horn. Extended Gaussian Images. Proc. of the IEEE, 72(12):1671–1686, dec. 1984.
[5] http://scienceblogs.de/mathlog/2011/09/30/topologie-von-flachenclxxxvii/
[6] S.B. Kang and K. Ikeuchi. The complex EGI: a new representation for 3D pose determination. IEEE Trans. on Pattern Analysis and Machine Intelligence, 16(3):249–258, March 1994.21, hal-00538470, version 1 - 22 Nov 2010
[7] Brecbuhler, Ch., Gerig, G., Kuhler, O., 1995. Parameterization of closed surfaces for 3D shape description. Computer Image and Vision Understanding 61 (2), 154-170.
[8] R. Ohbuchi, T.Minamitani, and T .Takei. Shape-similarity search of 3D models by using enhanced shape functions. In Int. J. of Computer Applications inTechnology (IJCAT), 23(3/4/5):70-85, 2005.
[9] P. Papadakis, I. Pratikakis, S. Perantonis, and T. Theoharis. Efficient 3D Shape Matching and Retrieval using a Concrete Radialized Spherical Projection Representation. Pattern Recognition Journal, 40(9):2437– 2452, Sept. 2007.
[10] M. Ben-Chen and C. Gostman. Characterizing Shape Using Confor- mal Factors. In Eurographics Workshop on 3D Object Retrieval, Crete, Greece., April 2008.
[11] T. Tung and F. Schmitt. The augmented multiresolutionReeb graph approach for content-based retrieval of 3D shapes. International Journal of Shape Modeling (IJSM), 11(1):91–120, June 2005.
[12] S. Biasotti, D. Giorgi, M. Spagnuolo, and B. Falcidieno. Reeb graphs for shape analysis and applications. Theoretical Computer Science, 392 (1- 3):5–22, 2008.22 hal-00538470, version 1 - 22 Nov 2010
[13] D.V. Vranic. 3D Model Retrieval. PhD thesis, University of Leipzig, 2004.
[14] M. Kazhdan, B. Chazelle, D. Dobkin, T. Funkhouser, and S. Rusinkiewicz. A Reflective Symmetry Descriptor for 3D Models. Algorithmica, 38(1):201–225, 2003.
[15] J.W.H. Tangelder and R.C. Veltkamp, “A survey of content based 3D shape retrieval methods,” Multimedia Tools and Applications, vol. 39, no. 3, pp. 441–471, Sept. 2008.
[16] Gerig, G. Styner, M. Jones, D., Weinberger, D. Lieberman, J., 2001. Shape analysis of brain ventricles using spharm. In: MMBIA , pp. 171- 178.
[17] René Lagrange, Polynômes et fonctions de Legendre coll. Mémorial des sciences mathématiques, n° 97, Gauthier-Villars, 1939.
[18] W. E. Byerly. Spherical Harmonics, chapter 6, pages 195-218.New York: Dover, 1959. An elementary treatise on fourier's series and spherical, cylindrical, and ellipsoidal harmonics, with applications to problems in mathematical physics.
[19] M. Mousa, R. Chaine, and S. Akkouche. Frequency-based representation of 3d models using spherical harmonics. In WSCG’06 : Proceedings of the 14th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, volume 14, pages 193– 200, Plzen, Czech Republic, January 30 - February 3 2006.
[20] T. Zaharia and F. Prêteux, “3D versus 2D/3D shape descriptors: A comparative study,” in SPIE Conf. on Image Processing: Algorithms and Systems III - IS & T/ SPIE Symposium on Electronic Imaging, Science and Technology ’03, San Jose, CA, Jan. 2004, vol. 5298
[21] M. Chaouch and A. Verroust-Blondet, “A new descriptor for 2D depth image indexing and 3D model retrieval,” in Proc. ICIP’07, vol. 6, 2007, pp. 373–376.