
 

 

 
Abstract—In this paper, we propose a method for three-

dimensional (3-D)-model indexing based on defining a new 
descriptor, which we call new descriptor using spherical harmonics. 
The purpose of the method is to minimize, the processing time on the 
database of objects models and the searching time of similar objects 
to request object. 

Firstly we start by defining the new descriptor using a new 
division of 3-D object in a sphere. Then we define a new distance 
which will be used in the search for similar objects in the database. 

 
Keywords—3D indexation, spherical harmonic, similarity of 3D 

objects.  

I. INTRODUCTION 

HE goal of the 3D indexing is to describe compactly a 3D 
object shape. The objective is firstly the shape recognition 

in very large databases. To do this, shape descriptors are used 
to obtain vectors features or 3D objects signatures that serve 
keys in objects retrieval. 

Just like the Fourier basis represents an important tool for 
evaluation of convolutions in a one- or two dimensional 
spaces, the spherical harmonic basis is a similar tool but 
defined on the surface of a sphere. Spherical harmonics have 
already been used in the field of computer graphics [1]-[4]. 
But spherical harmonics have just recently become feasible to 
be used in real time computer graphics. Spherical harmonics is 
used to compute graphics to a certain degree [5]. 

In this work we propose a new descriptor based on a 
random distribution’s centroid in which we use spherical 
harmonics calculated in spherical triangles. The new distance 
which is defined in this paper is used for measuring similarity 
-between request objects and objects models in database.  

II. STATE OF ART 

In order to solve the problem of data treatment: storing, 
editing and manipulating, very powerful programs was 
developed for importing the data files and exporting them in 
well-standardized formats, like IGES, DXF for CAD 
applications and VRML for visualization [6]. 

To evaluate the efficiency of the descriptor, the properties 
of invariance are required to eliminate differences due to 
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translation, rotation and magnification. 
The literature provides a lot of various 3D shape 

descriptors, describing geometric as well as topological 
properties of 3D shapes: global shape descriptors [7], [8]; 
local descriptors [9]; graph based methods [10], [11]; 
geometric methods based on 2D views of 3D models [12], 
[13]. 

In the rest of their work, the team of Leipzig has also 
proposed to apply a Fourier transform on the sphere S2 [13] by 
applying the proposed spherical harmonic. 

Then, to overcome the problem of invariance to rotation, 
the Princeton team proposed to apply the spherical harmonic 
decomposition of spherical functions defined by the 
intersection of the surface of the 3D object with a set of 
concentric spheres [14]. 

The spherical harmonics method of Princeton’s team gave 
better results in their database than their previous descriptor 
(distribution of D2 form). However, it is based on a 3D model 
voxelization; therefore, depends on the level of resolution of 
the voxelization, and resulting in a loss of detail in the 
description of the object.  

That is why [13] proposes to apply the method directly on 
3D meshes with new spherical functions. The results they 
obtained on their database with their method are less time 
consuming. 

However, these results also show that the encoded 
information does not really make specific requests on shapes, 
the main limitation is the number of concentric spheres and 
the number of coefficients harmonics remaining may be too 
low. The authors choose in practice 32 concentric spheres and 
16 harmonics per sphere. Thus, their descriptor has 32*16= 
512 coefficients. 

Different 3D shape description methods have been 
proposed in this research area. Teams [15] have realized a 
comparative study of 3D retrieval algorithms [14], [20]. Those 
algorithms can be clustered into two main families: 2D/3D 
approaches and 3D/3D approaches. The descriptor using 2D / 
3D approaches, the description model is obtained through 
different 2D projections of the 3D shape, whereas for the 
descriptor using 3D/3D approaches, the description model is 
obtained from the 3D information directly extracted from the 
3D shape [19], [21]. 

III. SPHERICAL HARMONIC METHOD 

A. Invariant 3D Shape Descriptors 

The properties of invariance are required to eliminate 
differences due to rotation, translation and magnification. To 
avoid of these dependencies, we shall normalize the models by 
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using the center of mass for translation, the root of the average 
square radius for scale and principal axis for rotation [7], [16]. 

B. Representation of Spherical Harmonics 

The gradient in spherical coordinates is [17]: 
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lP  is the Legendre polynomial associated of l degree and m 
order,   varies between  ,0  and   varies between  2,0  
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Spherical harmonic decomposition:   letmY m

l /  
Orthonormal basis in the Hilbert space L2 (S2) with S2 unit 
sphere [19]. 
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The Graphical Representation: 
Representative surfaces are bumpy spheres: bumps 

correspond to the parts where ),( m
lY  positive, dips are 

corresponding to the parts where ),( m
lY  is negative,  and  

describe the interval  ,0  and  2,0 . ),( m
lY  vanishes 

according l circles [18]. 
 m: circles along the meridian, an iso-longitude. 
 -m: circles in a parallel, an iso-latitude. 

Spherical Harmonic Decomposition (S.H.D): 

Let ),( f be a harmonic function defined on the closed 

interval  1,1  [19]. 









l

lm

m
llm

l

YCf ),(),(
0

        (9) 

 

mlC ,  are the harmonic coefficients of order ( , m) 

Hermitian Scalar Product: 
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where *f  is the complex conjugate of  f  indeed: 
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We have: 

*
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*
,mlC : is the complex conjugate of mlC , . 
From (12), it is sufficient to calculate the coefficients mlC ,  

for m positive, so that reduced half of the computation time. 
The dimension of the L2 (S2) space is 12 l  . : is the set of 

points which create the 3D object 

The Indicator Function: 
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where s is the set of points belonging to the object and the 
sphere (S2) with radius r. Thus: )( 2Ss    

We calculate the coefficients of the spherical harmonics for 
different cases of m: 
 0m

 
 lm 0

 
 lm 

 
We use a numerical method Simpson and we subsequently 

construct the matrix H given by the following expression: 
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This matrix is represented by a 2l +1 rows and N columns, 

where N is the number of points which represents the 3D 
object. 

Each row kR  characterize the point kP  by the 12 l  

coefficients of spherical harmonic 
k
mlC ,  , where Nk 1  and 

lml  . 
In each column mC  we calculate the different coefficients 

k
mlC ,

 for all points defining the object. 
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C. Measurement of Similarity Based On New Distance 
Using Spherical Harmonic Coefficients 

We define for same value l the coefficient ijF : 
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Where i indicate the object iO  and iN  is the number of points 

in iO . 

The role of the factor 
12

1

l
 is to calculate the average of the 

sum of coefficients values k
mlC ,

 for each point. 

To calculate the similarity between two objects iO  and jO , 

we use the similarity distance defined by the following 
expression: 
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We use the power 
iN

1 and the  ji NN ,min  in the formula of 

the similarity distance in order to mitigate the effect of varying 
the number of points in the search for similar objects. 

Special Case: 

When jN  is positive infinity the object jO  becomes 

opaque ( jO is dominant to iO ) . Then in this case, dS  is 

defined by the following expression: 
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iS only depends on the object iO . 

IV. EXPERIMENTS AND RESULTS 

Experience 1: 

For testing the new distance of similarity indicated in (15) 
for 3D objects, we have chosen three classes of objects: cars, 
planes and rabbits as have been shown in Fig. 1. 

In order to test the distance of similarity chosen, we 
compare an object to the other objects in the same class. 

Tables I-III show the number of points for each object per 
class type. 

 

 

Fig. 1 Three classes of objects: cars, planes and animals 
 

TABLE I 
NUMBER OF POINTS FOR EACH OBJECT IN THE CARS CLASS 

Object Number of Points 
Car 1 10466 
Car 2 30307 
Car 3 18472 
Car 4 7474 
Car 5 6318 

 
TABLE II 

NUMBER OF POINTS FOR EACH OBJECT IN THE PLANES CLASS 

Object Number of Points 
Plane 1 971 
Plane 2 3361 
Plane 3 1401 
Plane 4 1606 
Plane 5 5188 

 
TABLE III 

NUMBER OF POINTS FOR EACH OBJECT IN THE ANIMALS CLASS 

Object Number of Points 
Bunny 1 1494 
Bunny 2 26002 

Cow 2904 
Camel 9770 

Elephant 10589 
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Fig. 6 Measurement of similarity between bunny1 and others 
bunnies, with a camel and a cow 

 

 

Fig. 7 Measurement of similarity between bunny1 and bunnies 2 and 
3 
 

Fig. 7 shows that the dS  values almost the same, but did 

not stop to give the variations of the two curves and gives the 
relative error for the two curves shown in Table VI. 

 
TABLEVI 

MEASUREMENT ERROR BETWEEN THE Sd (BUNNY1-BUNNY2) AND Sd 
(BUNNY1-BUNNY3) 

l Sd12 Sd13 δr 

2 9,98060E-01 9,98385E-01 3,26036E-02 

5 9,98134E-01 9,98441E-01 3,07810E-02 

10 9,98262E-01 9,98537E-01 2,74928E-02 

15 9,98425E-01 9,98660E-01 2,34753E-02 

20 9,98597E-01 9,98791E-01 1,94376E-02 

25 9,98776E-01 9,98921E-01 1,45304E-02 

30 9,98955E-01 9,99056E-01 1,00506E-02 

35 9,99142E-01 9,99193E-01 5,08861E-03 

 

We note, in Table VI  that the relative error decreases as 
increases l. 

V. CONCLUSION AND FUTURE WORK 

In this paper, we have presented a new method for Three-
dimensional object indexing. To this end, we have benefit 

from advantages of spherical harmonic. First, we calculated 
the coefficients of spherical harmonics numerically. Next, we 
defined a new similarity distance and we justified our choice. 
In the end, we tested our distance on three different classes of 
objects: planes, cars and animals. Our results proof the 
efficiency of our similarity distance. But we hope, in the 
future work, to improve our results and minimize the relative 
error. Currently, we search to calculate directly the 
coefficients of spherical harmonics.  
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