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Abstract—In functional linear regression, one typical problem is 

to reduce dimension. Compared with multivariate linear regression, 
functional linear regression is regarded as an infinite-dimensional case, 
and the main task is to reduce dimensions of functional response and 
functional predictors. One common approach is to adapt functional 
principal component analysis (FPCA) on functional predictors and 
then use a few leading functional principal components (FPC) to 
predict the functional model. The leading FPCs estimated by the 
typical FPCA explain a major variation of the functional predictor, but 
these leading FPCs may not be mostly correlated with the functional 
response, so they may not be significant in the prediction for response. 
In this paper, we propose a supervised FPCA method for a functional 
response model with FPCs obtained by considering the correlation of 
the functional response. Our method would have a better prediction 
accuracy than the typical FPCA method. 
 

Keywords—Supervised, functional principal component analysis, 
functional response, functional linear regression.  

I. INTRODUCTION 

E consider prediction problem of functional response by 
using functional linear model as follows. If both 

responses and regressors are functions, the required model is 
denoted in its simplest formulation 
 

NitdssXstψttY iii ,...,2,1),()(),()()(    , (1) 

 
where α(t) is an intercept term, X(t) is the functional predictor 
process with the mean function μ(t), Y(t) is the functional 
response process with the mean function v(t) and ψ(t, s) is 
bivariate slope function. ψ(t, s), X(t) and Y(t) are assumed to be 
smooth and square integrable on domain T. 

Compared with the classic regression problem, the main 
challenge in this functional linear model is that even a single 
functional predictor can lead to a saturated model due to its high 
flexibility. 

A common strategy to address this problem is through the 
FPCA. The FPCA method estimates the functional linear model 
(1) in two steps: estimating the FPCs for the functional 
predictor; and then using several leading FPCs in the functional 
linear model. This topic has been extensively studied in the 
literature such as [1]-[3]. Reference [4] applied a functional 
logistic regression to predict the high-risk birth rate based on 
periodically stimulated fetal heart rate tracings. Reference [5] 
considered response model related with the integral of a 
functional predictor. Reference [6] applied multinomial 

 
Hyon I Paek, Sang Rim Kim, and Hyon A Ryu are with Faculty of Applied 

Mathematics, Kim Chaek University of Technology, Pyongyang, Democratic 

functional regression model to predict the land usage by using 
with coarse resolution sensing data. Reference [7] considered 
partial functional linear quantile regression by using with slope 
function estimated FPC basis. 

However, one limitation of conventional FPCA is that the 
estimation of FPCs of predictors is separated from the 
regression model used to predict the response and the leading 
FPCs focus on explaining the maximum variation of the 
functional predictor. Thus, the estimated FPCs may not have 
the maximum prediction power for Y and the prediction model 
may not be optimal. In practice, they usually use as many FPCs 
as possible, which results excessive variability into the model. 

Our method is to use the information from the response 
function to estimate FPCs to improve prediction performance 
of FPCs for the response function Y. This method is called 
supervised functional principal component analysis (sFPCA).  

Reference [8] introduced a supervised principal component 
analysis (sPCA) method for multivariate regression and [9] 
proposed a supervised singular value decomposition (SupSVD) 
model. Reference [10] considered a principal component 
regression in the generalized linear model by using selected 
principal components as new predictors. 

However, above methods could not be applied to functional 
response model. It is not trivial to extend sPCA to the functional 
case. Reference [11] proposed a functional singular component 
analysis method to quantify the dependence of pairs of 
functional data (X, Y). Reference [12] extended SupSVD model 
to FPCA and proposed a supervised sparse functional principal 
component analysis (SupSFPCA). The estimation is based on 
the penalized likelihood function that imposes smoothness and 
sparsity penalty on PC loadings. Reference [13] composed the 
integrated residual sum of squares which makes use of the 
association between the functional response and the predictors 
and obtained supervised principal components that minimize 
the integrated residual sum of squares to estimate functional 
linear model.  

In this paper, we proposed a framework that uses the 
information of the response function to improve the prediction 
performance of the estimated FPCs. If we ignore the response 
function in estimation FPCs of the predictor to predict the 
response, then we might not estimate FPCs practically 
significant to prediction. Therefore, we proposed an estimation 
method of functional response model based on supervised 
FPCA with considering the correlation between the response 
function and FPCs in FPC estimation step. 

The rest of the paper is organized as follows. A review of 
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typical FPCA is outlined in Section II. Main contents of our 
method are described in Section III. Section IV gives 
concluding. 

II. ESTIMATION OF FUNCTIONAL RESPONSE LINEAR MODEL 

BASED ON FPCA 

We first review the classical FPCA method for estimating the 
functional linear model (1), which is also called unsupervised 
FPCA method. The error functions εi are assumed to be iid, 
square integrable, mean zero and independent of the regressors 
Xi, which are iid with the same distribution as a square 
integrable random function X in L2.  

We first show how to reduce the estimation of the kernel to 
the case of the zero intercept function α. Taking the 
expectations of both sides of (1), we obtain 

 

 dsssttt XY )(),()()( 
 

 
which leads to 
 

)())()()(,()()( tdsssXstttY iXiYi     
 
We assume that the population mean functions µY and µX can 

be estimated well enough. In the case of fully observed 
functions, or functions transformed to functional objects, e.g. 
by spline smoothing of individual trajectories, we can use the 
estimators 
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We replace the curves Xi and Yi by Xi
c
i tXtX ̂)()(   and 

Yi
c

i tYtY ̂)()(   to obtain an estimator ̂  in the model 

 

)()(),()( tdssXsttY i
C
i

C
i    , i=1, 2, …, N.               (2) 

 
The intercept function is then estimated by 

 dsssttt XY )(ˆ),(ˆ)(ˆ)(ˆ  .We therefore assume that the data 

follow the population model 
 

)()(),()( tdssXsttY                            (3) 
 

and that EX = 0, which implies EY = 0.  
Our objective is to derive an estimator of the kernel ψ in (3). 

Firstly, we should find a suitable expression for the kernel ψ. 
Since we assume zero mean functions, we have the expansions 
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where the i  are the FPCs of X and the uj are the FPC’s of Y.  

Assuming that  dtdsst ),(2 , we will show that 
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Since the FPCs of a square integrable random function form 

a basis in L2([0,1]), the bivariate functions {υi(s)uj(t), 0≤s,t≤1, 
i,j≥1} form a basis in L2([0,1]×[0,1]). Therefore, the kernel ψ 
has the expansion 
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where we can show that ][/][ 2
  EE kk  .(cf. [3]) 

Since   ][ 2E , setting ][   kk E , (5) and its 

estimator lead to the expressions 
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The parameter ][   kk E  can be estimated as follows. 
 





N

i
kiik uYX

N 1
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1

ˆ  
 

 
The truncation levels p and q can be selected using the 

cumulative variance percentage approach. In more detail, 
 

%}99:inf{

1
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However, this procedure’s prediction performance may not 

be optimal in many complex problems due to some reasons. 
First, the prediction power of those FPCs might not coincide 
with the amount of variation they explain. For instance, the 
response variable might only depend on the 10th FPC instead 
of any of the first 9 FPCs. Second, given a small sample size, a 
large value of p introduces excessive variability into the model, 
making the model selection a very difficult task. Therefore, 
there is necessity to improve the prediction performance of the 
estimated FPCs for each functional predictor. 

III. METHOD 

A. Supervised FPCA 

Let us assume that E(X(t)) = 0 and E(Y(t)) = 0 in the following 
discussion. We can centralize X(t) and Y(t). We estimate FPC 

υ1(t), υ2(t), …as follows. The estimate )(ˆ tk  maximizes 
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 
2

2,)1(,
)(



 


YEC
Q

,              (7) 

 

subject to 0ˆ,,1  j , for every j < k and 0 ≤ θ ≤ 1. Here 

the norm   ,
2  and < f, g> denotes the usual L2 

inner product 
T

dttgtfgf )()(, . C denotes the empirical 

covariance operator:  
T

dtttCC )(),(ˆ  , where the empirical 

covariance function  


n

i ii tXsX
n

tsC
1

)()(
1

),(ˆ , and Xi(t) is 

an independent realization of the stochastic process X(t). 
Let’s take a closer look at the formalization of Q(υ) shown in 

(7). The first term in the numerator,   C,  represents the 
variation within the functional predictor X(t) that can be 

explained by υ(t); the second part in the numerator,  2,  YE  

represents the dynamical correlation between υ and response 
function Y. The balance between these two terms is controlled 
by the weight parameter θ. Specifying θ = 1 will give rise to 
unsupervised FPCA. On the other hand, specifying θ less than 
1 will lead to supervised FPCA. The weight parameter θ can be 
treated as a tuning parameter and can be determined using 
cross-validation. 

The main reasons behind the ‘squared’ covariance, the 
second term on the numerator in (7), are two-fold. First, we 
wish to keep this term, which describes the association between 
the estimated FPC and the response function, of the numerator 
in (7) positive, since the variance of the FPC scores in the first 
term is always positive. Second, it can also help to convert the 
estimation process into an eigenvalue decomposition problem. 

B. Smooth Supervised FPCA 

The FPCs obtained using (7) might need to be further 
smoothed or regularized. We define another type of norm as

222
fDff   , in which  

T
dttffD )(2 . The 

smooth estimate for the k-th supervised FPC is obtained by 
maximizing 

 

 
2

2,)1(,
)(


 


YEC

Q ,                  (8) 

 
subject to 0ˆ,,1  j 

, for every j < k and 0 ≤ θ ≤ 1. 

The smoothing parameter λ controls the degree of smoothness. 
If λ = 0, there is no penalty on the roughness of the estimated 
component )(ˆ t  and the smooth supervised FPCs will reduce to 

the regular supervised FPCs. On the other hand, a very large 
value of λ will force the estimated component )(ˆ t  taking a 

linear form. 

C. Computational Details 

Let’s give the computational details on how to estimate the 
smooth supervised FPC υ(t) given a set of value for (θ, λ). To 

simplify the computation, we use the same B-spline basis 
functions to represent FPC υj(t), the functional predictor Xi(t) 
and the functional response Yi(t). Let Ф(t) = (φ1(t), φ2(t), …, 
φM(t))T, we can rewrite (X1(t), X2(t), …,Xn(t))T = SФ(t), where S 
is an n×M coefficient matrix. Similarly, we rewrite (Y1(t), Y2(t), 
…, Yn(t))T = RФ(t), where R is an n×M coefficient matrix. In 

addition, we represent )()()(
1

ttt TM

m mm  
β  and 

)()()(
1

tttu TM

m mm  
γ , in which β  and γ  denote the 

coefficient vectors (β1, β2, …, βM)T and (γ1, γ2, …, γM)T. Then 
the empirical covariance function can be expressed as  

 

)()(
1

),(ˆ ts
n

tsC TT  SS
 

 
Therefore, the first term in the numerator of (7) is given by 

 

ββ SWWSTT

n
C

1
,   ,                        (9) 

 
where W is an M×M matrix with elements wij = < φi(t), φj(t)>. 

For the second term in the numerator, we first derive the form 
of < Yi, υ>. For each Yi(t), < Yi, υ> is written as  

 

< Yi, υ> = 
T
i

T WRβ  = βTWi, 
 
where Ri is the i-th row of the coefficient matrix R, and Wi = 

T
iWR . Finally, the dynamical correlation term between Y and 

the FPC υ(t) is written as  
 

    RWβWRβ TT
i n

Y
n

YE
1

,
1

, 22     (10) 

 
For the denominator part in (8), the norm of υ(t) is given by  
 

ββββββ GDW TTT   
2                       (11) 

 
where D denotes a M×M matrix with element dij =  < D2φi(t), 
D2φj(t) > and G = W+λD. 

Putting (9), (10) and (11) together, Q(υ) in (8) is given by 
 

ββ

ββ

G

V
T

T

Q )(
 

 
where 

))1((
1

RWWRSWWSV TT

n
 

. 
 

Let βδ 2/1G , maximizing Q(υ) is equivalent to 

maximizing δT(G-1/2)TVG-1/2δ subject to δTδ = 1. Then δ1, …, 
δp will be the leading p eigenvector of the matrix: (G-1/2)TVG-

1/2. Consequently, we can derive j
-

j δβ 12/1 )(ˆ G . The 
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corresponding smooth supervised FPC is )(ˆ)(ˆ ttυ T
jj  β  for j 

= 1, …, p.  
)(ˆ tui  can be estimated by applying smooth unsupervised 

FPCA to Y(t). The estimate )(ˆ tuk  maximizes 

 

2

,
)(

u

uCu
uQ y 



 
 

subject to 0ˆ,,1  iuuu , for every i < k. Here Cy denotes 

the empirical covariance operator: 
 

 
T yy dttutCuC )(),(ˆ

 
 
where the empirical covariance function 

 
 n

i iiy tYsY
n

tsC
1

)()(
1

),(ˆ , and Yi(t) is an independent 

realization of the stochastic process Y (t). If we use the same 
smoothing parameter λ as in estimation of FPCs for predictor, 
then Q(u) is simplified in matrix form as follows: 

 

γγ

γγ

G

U
T

T

uQ )(
 

 
where 

RWWRU T

n

1


 
 

Let γη 2/1G , maximizing Q(u) is equivalent to 

maximizing ηT(G-1/2)TUG-1/2η subject to ηTη = 1. Then η1, …, ηq 
will be the leading q eigenvector of the matrix (G-1/2)TUG-1/2. 

Consequently, we can derive i
-

i ηγ 12/1 )(ˆ G . The 

corresponding smooth FPC is )(ˆ)(ˆ ttu T
ii  γ  for j = 1, …, q.  

D. Functional Regression 

With the estimated leading p FPCs )(ˆ),...,(ˆ),(ˆ 21 tυtυtυ p , we 

can estimate functional regression model of Y(t) on X(t).  
 

)()(),()( tdssXsttY     
 
The slope function is given by  
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The number of FPCs used in functional regression, p and q 

can be regarded as tuning parameters. We can determine the p 
as follows. First, we set p = 1, evaluate cross-validation error 
whenever p increases. The experience shows that we can 
choose p when the cross-validation error is decreased smaller 
than the fixed threshold value. We can choose q in the same 
way. 

Let x(s) denote  


M

i ii scsx
1

)()(  , then the estimate for 

response y(t) is given by 
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where C = (c1, c2,…, cM)T.  

IV. CONCLUSION 

In this paper, we consider the prediction problem of response 
function by using FPC of functional predictor. The classic 
FPCA method estimates FPCs to maximize the variation of FPC 
scores and ignore the response function. We proposed a 
supervised FPCA method to estimate FPCs related to the 
response function to improve the prediction performance of 
FPCs. 

Our method can be extended to the case that there are several 
functional predictors. In this case, it is worth to research a 
suitable determination method of several weight parameters for 
correlations between the response and FPCs of each predictor. 
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