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Abstract—Parametric models have been quite popular for A general model for such a data set is :

studying human growth, particularly in relation toiological
parameters such as peak size velocity and agealtgiee velocity.
Longitudinal data are generally considered to kel viior fittinga
parametric model to individual-specific data, amd $tudying the
distribution of these biological parameters in anhn population.
However, cross-sectional data are easier to olk&in longitudinal
data. In this paper, we present a method of comgitongitudinal
and cross-sectional data for the purpose of edti#te distribution
of the biological parameters. We demonstrate, ginaimulations in
the special case ofthePreece Baines model, homaist based on
longitudinal data can be improved upon by harngssthe

yij =h(t)+e&;, j=12,..,n, i=12,..,n, 1
whereh is the growth function ane;;’s are additive random
errors. Apart from the functidn one is typically interested in
estimating its derivative (referred to as the “oitig function)
and various biological parameters, such as the tpoif
inflection of the velocity function (referred to #ise age at
takeoff and the age at peak height velocity), temeities at
these ages (referred to as takeoff velocity andk gezight

information contained in cross-sectional data.Welgtthe extent of velocity, respectively) and the limiting value tofor large age
improvement for different mixes of the two typesdata, and finally (referred to as final height). One may also seebstamate the

illustrate the use of the method through data ctée by the Indian age-specific quantiles of the height variable, Wwhiepends on
Statistical Institute.

Keywords—Preece-Baines growth model, MCMC method

Mixed effect model

|. INTRODUCTION

ROWTH curves arise naturally in a wide variety o

applied areas, including biology, psychology, ecuits
and sociology. In a broad sense, a ‘growth cure@reésents
the way a physical or conceptual variable grows dwvee. In
the context of human growth, the physical variatda be the
height (stature) of a person, or some other bodyedsion.
Ideally, these variables may be measured at diffgreints of
time for many individuals, leading to a longitudimata set.
The time, expense and effort associated with longiial
studies may be substantial. As a result, thereals® cross-
sectional studies, where one individual is measaorggonce.

An individual growth curve is generally a smootmdtion

that represents the central tendency in the sizagesgraph of
a particular individual. Longitudinal growth dateeeoften of
the form (ti, yi1), (tiaYiz)s wor (bims Yin), @ = 1,2, ..., m, where
nis the number of individuals; is the number of
observations for théth individual, 1 < i < n,and y;;is the
observed size variable at aggregarded without loss of
generality as the ‘height’ variable in this paper.
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the value of the functiorh at that age, as well as the
distribution of the error. When covariates are pnésall these
estimation problems become regression problems.

If the number of measurements per individual igéarone
can use nonparametric smoothing or regression [16],with

fage as the explanatory variable, to estimate tmetifurh.

Staniswalis and Lee [20] provided a nonparametrathod
that can even handle covariates. However, it iseratinusual
to find a longitudinal data set with a large numbéiheight
measurements per individual, let alone height daith

covariates. Consequently, there has been emphasis o
parametric models of the form:

yij = h(t”, Ti) + Sij' ] = 1,2, o N, i
=12,..,n (2)

where the functiothhas a known functional form, with an
unknown vector parameter;controlling its shape. Potthoff
and Roy [17]considered a modelmhat is possibly nonlinear
(e.g., polynomial) in the age variable, but is #nen the
parametert;. Since this model lies in the framework of
multivariate linear models, Pothoff and Roy's (1P6vbrk
was followed up by many other researchers. Howewbgn
there are only a handful of observations per imtlial, a
parsimonious model can be fitted to individual gtovdata
only if the model is allowed to be nonlinear in {@rameters.
Simplest examples of such models include the exm@aie
growth model and the logistic growth model, whileorm
complex models with larger number of parametersetasgo
been considered [9], [12]. One of the most pophks been
model | of Preece and Baines [18], given by
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2(hmax - he)
e50(t=0) } gs1(t-0)

h(t; SorS1» 0, hmax' he) = hmax - (3)

function h for any specific individual. In particular, it is
generally a smoother function. Zemel and Johns2@h fiave
reported issues of interpretability and model vgfidhat can

wheres,and s; are parameters controlling the rates of growtharise, when one attempts to fit the Preece Bainadeh(3) to

at different stages,,,.,is the final height, andgyis the height

cross sectional data. Similar problems arise in ¢hse of

at a threshold agé. One can use nonlinear regression [2] tspline models that are linear in the parameters], [13

fit any of these models to individual growth curvAsange of
nonparametric and parametric methods for longitaidoata
can be found in [6], [22].

One can also treat the vector parametesppearing in the

particularly while determining the population distrtion of
biological parameters.

On the other hand, cross sectional data are génenatch
more abundant than longitudinal data. Thus, onétrigek to

model (2) as a random vector, which has a proltgbilicombine the strengths of the two types of data,sfuwing

distribution over the population. This amounts sswaning a
random effects model. Estimation of this model gare rise
to estimation of the population distribution of iars
biological parameters that are functionstgf e.g., the final
height, the takeoff and peak height velocities atie
corresponding ages, and so on. Work in this aregarbevith
the Pothoff-Roy model [19] and has continued eweees[3],
(71, (8], [13], [14].

Because of the above mentioned difficulties of wiihg
longitudinal data, some studies are designed tk tdéfferent
individuals over different age ranges. The différage ranges
used in the study may have only partial overlaps Tay, the
duration of the study can be shorter. Huggins amesth[13]
considered analysis of this type of data.

longitudinal data problems.

In this paper, we present a method of estimating th
population distribution of the biological paramstdrom a
combination of longitudinal and cross-sectional adathe
work is motivated by an anthropometric study condddy
the Indian Statistical Institute under the leadigrsiof
Professor S.R. Das during the 1950's and 196®s fthe
Sarshuna-Barisha (S-B) region of Kolkata. The dsgt of
male subjects obtained from this study reflects 298
individuals, many of whom were tracked over thed gzériod
for different durations. The variables include agfefure and a
few other anthropometric characteristics. The numbégé
observations per individual ranges from 1 to 2%, tfe age
interval 0.5 to 21. Lack of samples in the 19-orrenand 10-

However, many large scale studies on human growti-less age ranges come in the way of fitting ssoeable

happen to be entirely cross-sectional. With theat,done
seeks to obtain age-specific height quantiles foe t
population, which can be used as reference for eoimgp the
growth of an individual subject. The trajectori€fsaospecific
guantile of height over different ages are sometimederred
to as centile growth curves or reference centilartsh A
combination of these charts for different quantitesised as a
reference for the growth trajectory of growing dnén. The
shapes of these curves can be very different fl@mrshape of
an individual growth curve.

The estimation of centile growth curves has tradiily
relied on normal distribution theory. Typically, antiles for
an age are computed from the mean and the staddaiation
estimated from cross-sectional data for that agel the
quantiles for different ages are smoothed to obtantile
growth curve. In this context, the LMS method[5kHeecome
a classical work on growth chart construction.hé thormal
distribution assumption holds, then extreme questil
computed from the mean and standard deviation reafinie
even for short data. In large scale studies, sscheone used
to develop the National Center of Health Statis(NEHS)
growth chart [11],quantiles are computed from erogity
observed fractions. More recently, semiparametactjle
regression models have been used for this pur@ddedo that
conditional quantiles can
distributional assumption.

Even if one assumes a model such as (2) andribdistn

for 7;'s, the observed data can be seen as samples frem t «.
Sincet,,

convolution of the distributions of;;’s and z;'s. The
dependence of the location parameter of this Oigion on
age can have a very different form than the shdpéhe
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parametric model in most of the cases. Excludingtlaer 5
cases due to convergence problems, only 36 casdelard to

be amenable to fitting a reasonable parametric m@te the
other hand, there is arelatively healthy countodéltnumber

of observations, which may be tapped for improved
estimation.

Il. ESTIMATING POPULATION DISTRIBUTION OF PARAMETERS

Consider the random effects model defined by (2) Hre
additional assumptions:
(@) 74,1, ...,T,are samples from a common population
distributionf, and
(b)ey, €5, ..., €, are samples from a distributign
For fully cross-sectional data; =1 for i = 1,2, ...,n Here,
we permit a part of the data to be cross-sectidfalassume a
functional form of f subject to an unspecified vector
paramete®, and a functional form ¢f subject to an
unspecified scale parameter The problem of estimating the
population distribution of biological parameters then
reduced to the problem of estimati@gSince the distribution
of any function oft; can be derived fronf(z;; 8), this
distribution can always be estimated by substitytance# is
estimated.

The likelihood for@ ando is

y n ni
1 iy — h(ti; T
Hf(ff:‘”l_[;q’(y’ ;t, ”).
‘ i1

i=1

)
T,,...,T, are unobserved, these can be treated as

nuisance parameters. Maximizing the likelihood inhe t
presence of the nuisance parameters is usuallgrrdifficult.
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A standard approach to this problem is to maxintize
likelihood (4) with respect t@ , ¢ andt,, 5, ..., T,, . The other
approach is to integrate the likelihood with red$ptx the

nuisance parameters, i.e., to maximize the intedrat
likelihood

Yij — h(tij; 7))
1_[ | f(rl,e)l_[ o () ar ©

The EM algorithm and Gibb's sampling [15] provide

computational methods for solving such problemserEsgo,
the nonlinear nature of the functiohcomplicates the
optimization problem that needs to be solved ab estep of an
iterative procedure.

If f is treated as prior density foy then the corresponding

posterior is

91(T1|y11,. o Yings 0, 0') o
f(z;0) 1_[ (y” h(ty; T ))

If the number of individuals is large, the averagehese
posterior distributions should resemble the cordistribution
of thet;’s, even if the prior distribution is not the saamthat
distribution. Instead of using a prior density, ean use the
longitudinal part of the data set to estimatg for the
corresponding individuals, use these estimgtedo estimate

(6)

0, and substitute the latter jfto get an empirical version of

the prior density. The use of an empirically deteed density
in place of the prior is in the spirit of the enigi Bayes
approach [4]. We can then iterate over this engiaess, by
treating the average posterior distribution at gigaar step
as the prior distribution at the next step, urti tprior’ and
the average of the posteriors come sufficientlgelo

The Markov Chain Monte Carlo technique is a coneeni
tool for implementing this method. The crux of fhreblem is
to avoid computing the proportionality constant(6§, even
though the samples need to be drawn from an averatie
posterior densities (and not the posterior derssttiemselves).
In order to make this possible, the average ofgbsterior
densities is viewed as a mixture distribution, ®attthe
samples from the targeted density can be obtaingd
judiciously pooling samples from the posterior dées of the
individuals.

The steps to be used, adapted from the Metropaistihigs
algorithm [1], are as follows.

» Estimatet; for each individuali correspondingto the

defined by (6) with@and oreplaced by@® and &,
respectively, as follows. Generatsamples from a
proposal distribution, say, t3,...,ty. Foyj =12,..,.M
compute
_ gi(T;D’u' o Ying e(k)’ é-\)

9i(Tolyiz, = Vin;; 09, 6)
wherer, is the mean of the distributiofi for
60 =0". Ifr;; >1 accept the sample}; else,
accept it Wlth probability;;. Let M; be the number
of selected samples.

« Draw N samples from the average posterior asfollows.
Let

T',:j

TLL‘I(ML' > O)
p' = N . . N
CoYM nI(M; > 0)
fori = 1,2, ...,nandn,, my,, ..., m, be multinomial
with parametersN, py,p,, ...,pn. Then, fof =
1,2, ...,n the desired sample would consistmf

samples selected with replacement from fifie
samples generated from the posterior density ,of
as mentioned in Step Il.
» Define the updated estim#é*Das thatobtained from
the sample of siz& generated in Step lll.

Steps Il to IV are iterated until the estimates @&f
fromsuccessive steps come sufficiently close. Toyufation
distribution of any function ofr; can be obtained fronf
evaluated at the converged valu@.of

I1l. SIMULATION RESULTS

For the purpose of simulation, we assume that the
densityp of the measurement errors is normal with mean 0 and
variances?. As for the growth functiorh,we work with the
Preece-Baines model (3) having five parameterstti®sake
of identifiability, it is assumed that, < s;.It can be shown,
by analyzing the derivative of the growth functidhat the
ages at takeoff;,, and peak height velocity,,,, are defined
in terms of the model parameters as

Lto

2 Sy — Sg) —+/(s; — Sp)% — 45458
1og((1 0) = /(51 — 50) 1o>+9,

S1— S 25,

b 2 S, — — 45,8

tony = log<( ! ! 0) + 0
Sl - SO

A necessary condition for the existence of thesedistinct
ages is that

So) — \/(51 —5¢)?

254

S
234242
So

™

longitudinal part of the data, through nonlinear least

squares [2].
observed data, and denote the estimator@fy. Also

Estimat® by using these estimates as Other biological parameters of interest can be esged as

the final height,h,,,,, the takeoff velocity'(t;,,) and the

estimates from the pooled data, and denote the estimatpeak height velocit}ﬂ,’(tph,,).

by 6. Set the index of iteratiédn= 0 The conditions for the simulation study are
«  For each individual (for whichn; can be 1 orgreater than mostlydetermined by the characteristics of the Sita

1), generate Samp|es from the posterior density,_—l,of mentioned in Section 1. Any Computational method tfee
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model parameters may be affected by the differedérs of
theirmagnitude and the various constraints. Itofe# from a
preliminary analysis of the S-B data that an untairsed set
of parameters of somewhat comparable magnitude is

(3+2v2)sg
a=lo(3so)a=lo —a
1 g 1 - 350 2 g 1 _ (3+2\/§)50 ’
S1
az; = E' Ay = lOg(hmax - he)' ds = lOg(hB)

The distribution of these transformed parametebsained
from the nonlinear least squares fit of the longdjital part of
the S-B data, appeared to be normal, with a ramkriance-
covariance matrix. Accordingly, the first two pripal
components, with empirically determined coefficeentvere
used for the simulations. Thus, the random parameted
here

model parameters,, s, 8, hyqax @andhgare nonlinear functions
thereof. Independent normal distributions for theot
components ofare assumed.

As for estimation of parameters of the distributifia, we
assume that the distribution is bivariate normal] astimate

its parameters through the sample mean and the lsamp

variance-covariance matrix. The parametetis estimated
from the longitudinal part of the data by averagmgr the
error sum of squares, after the parameters been estimated
through nonlinear regression, separately for eadividual.
The proposal distribution is considered to be theariate
normal distributions, with mean and dispersion magiven
by the current mean and dispersion matrix of themanents
of 1.

While evaluating the proposed method for a mixture

oflongitudinal and cross-sectional data, the inmgourt
guestions are as follows. (a)ls there any valuetiaddto the

estimate from the cross-sectional part of the déxXWould

the performance be substantially better if the sEctional
part of the data are replaced by equivalent amaafnt
longitudinal data?

is a vectawith two components, such that the
parametersa,, ..., asare linear functions of these, and the

Even where there is an exception (e.g., in the cagmak
height velocity), the mean squared error follows tirder.

In Figure 1, histograms of biological parametershefthree
data sets are compared with their respectively tneans. In
Figure 2, standard errors are compared
estimated values seem to be mostly in line withttte®retical
values.

TABLE |
BIAS AND STANDARD ERROR FOR BIOLOGICAL PARAMETERS
Data type 1 Data type 2 Data type 3
Biological Bias Bias Bias
parameter (Std err) (Std err) (Std err)
Age at takeoff 0.09 0.15 0.230
(year) (0.38) (0.65) (0.7)
Takeoff velocity -0.12 -0.099 -0.11
(cm/year) (0.09) (0.31) (0.37)
Age at 0.24 0.27 0.27
PHYV (year) (0.19) (0.49) (0.52)
PHV -0.56 -0.15 -0.31
(cml/year) (0.33) (0.69) 11
Final height 0.93 0.91 1.07
(cm) (1.35) (1.99) (2.18)
TABLE II
BIAS AND STANDARD ERROR FORMATHEMATICAL PARAMETERS
Data type 1 Data type 2 Data type 3
Mathematical Bias Bias Bias
parameter (Std err) (Std err) (Std err)
So —-0.002 -0.002 -0.002
(cmlyear) (0.006) (0.013) (0.012)
S -0.07 -0.03 0.019
(cml/year) (0.07) (0.13) (0.16)
0 0.29 0.3 0.36
(year) (0.17) (0.46) (0.4)
Ronaz 0.93 0.91 1.07
(cm) (1.35) (1.99) (2.18)
hy 1.07 0.76 0.98
(cm) (0.94) (1.95) (2.37)

IV. DATA ANALYSIS

In order to answer these questions, we repeatedlytyming to the Sarshuna-Barisha (boys) data, wee not

(100times) generate three types of data. Thetfi of data
consists of 50 individuals each with 10 data pofhsight at
ages 4-21).The second type comprises 10 individealtsh
with 10 data points and 400 individuals with onlyeodata
point (i.e., cross-sectional data). The third tygedata is a
subset of the second one, where only the longitdgiart of
the data is included.

By using the above method, we can find
estimateddistribution of individual specific biologl
parameters and compare them with the true meastandard
deviation. Table | gives a comparison of the bias #he
standard deviation of the biological parametersreged from
the three types of data. Table 2 gives a similangarison for
the parameters of the mathematical model. As erdecthe
bias and the standard deviation for the second bfpdata
(mixture of 20% longitudinal and 80% cross-sectlodata)
generally lies in between those of the other tvpesy
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thatthere are 36 cases with 10 to 18 data pointsarrange?7
to 18 years, where estimation of the model pararsstbject
to the constraint (7) is possible. For the remar262 cases,
there are many with only with a few observationdiiding 16
cases with only one observation. This makes itirsitde to
estimate the population distribution of individysdsific

th&iological parameters, using conventional methods.

Application of the method proposed in this paperegi
riseto the summary of mean and standard error abgical
andmathematical parameters, reported
comparison,the summary from the longitudinal péthe data
are alsoreported alongside. The standard deviati&msy
substantialimprovement when the additional 262 Tame
included inthe analysis.
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DATATYPE1 DATATYPE 2 DATA TYPE 3 TABLE “I

MEAN AND STANDARD ERROR OFESTIMATED BIOLOGICAL AND

MATHEMATICAL PARAMETERS, USING FULL DATA AND A PART OF DATA
Whole data set Part of data set
Mathematical Mean Mean
parameter (Std err) (Std err)
& 0% 0 o1 o2 1 L7 B I | S 2 - & % 0 on o2 on
Aae attakeaft Age at takeaft fge attakeaft So 0.0926 0.10
(cml/year) (0.0027) (0.012)
I [T 5 1.089 1.17
(cmlyear) (0.029) (0.14)
- Bl 0 14.72 14.73
A A T =
W40 S0 8D 0 40 50 6D w40 s B0 (vear) (0.040) (0.15)
Takeoff vetecity Takeoff velocity Takeoff velocity hmaz 16630 1665
(cm) (0.125) (0.46)
hg 154.36 154.22
(cm) (0.323) (1.34)
Biological Mean Mean
W mm W W W mm parameter (Std err) (Std err)
Final height Final height Final height Age at takeoﬁ 10.20 10.49
(year) (0.12) (0.55)
Takeoff velocity 4.02 411
(cmlyear) (0.052) (0.18)
Age at 14.3 14.33
Bon oW 6% R TR R TR PHYV (year) (0.042) (0.18)
Age at peak height velocity Age at peak helg ht veletity Age at peak hekght velotity
PHV 7.9 8.04
r (cml/year) (0.07) (0.24)
Final height 166.30 166.5
J (cm) (0.125) (0.46)
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