Search results for: characterization of seismic motion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1592

Search results for: characterization of seismic motion

422 Further Development in Predicting Post-Earthquake Fire Ignition Hazard

Authors: Pegah Farshadmanesh, Jamshid Mohammadi, Mehdi Modares

Abstract:

In nearly all earthquakes of the past century that resulted in moderate to significant damage, the occurrence of postearthquake fire ignition (PEFI) has imposed a serious hazard and caused severe damage, especially in urban areas. In order to reduce the loss of life and property caused by post-earthquake fires, there is a crucial need for predictive models to estimate the PEFI risk. The parameters affecting PEFI risk can be categorized as: 1) factors influencing fire ignition in normal (non-earthquake) condition, including floor area, building category, ignitability, type of appliance, and prevention devices, and 2) earthquake related factors contributing to the PEFI risk, including building vulnerability and earthquake characteristics such as intensity, peak ground acceleration, and peak ground velocity. State-of-the-art statistical PEFI risk models are solely based on limited available earthquake data, and therefore they cannot predict the PEFI risk for areas with insufficient earthquake records since such records are needed in estimating the PEFI model parameters. In this paper, the correlation between normal condition ignition risk, peak ground acceleration, and PEFI risk is examined in an effort to offer a means for predicting post-earthquake ignition events. An illustrative example is presented to demonstrate how such correlation can be employed in a seismic area to predict PEFI hazard.

Keywords: Fire risk, post-earthquake fire ignition (PEFI), risk management, seismicity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1342
421 A New Automatic System of Cell Colony Counting

Authors: U. Bottigli, M.Carpinelli, P.L. Fiori, B. Golosio, A. Marras, G. L. Masala, P. Oliva

Abstract:

The counting process of cell colonies is always a long and laborious process that is dependent on the judgment and ability of the operator. The judgment of the operator in counting can vary in relation to fatigue. Moreover, since this activity is time consuming it can limit the usable number of dishes for each experiment. For these purposes, it is necessary that an automatic system of cell colony counting is used. This article introduces a new automatic system of counting based on the elaboration of the digital images of cellular colonies grown on petri dishes. This system is mainly based on the algorithms of region-growing for the recognition of the regions of interest (ROI) in the image and a Sanger neural net for the characterization of such regions. The better final classification is supplied from a Feed-Forward Neural Net (FF-NN) and confronted with the K-Nearest Neighbour (K-NN) and a Linear Discriminative Function (LDF). The preliminary results are shown.

Keywords: Automatic cell counting, neural network, region growing, Sanger net.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1437
420 Modeling of Bio Scaffolds: Structural and Fluid Transport Characterization

Authors: Sahba Sadir, M. R. A. Kadir, A. Öchsner, M. N. Harun

Abstract:

Scaffolds play a key role in tissue engineering and can be produced in many different ways depending on the applications and the materials used. Most researchers used an experimental trialand- error approach into new biomaterials but computer simulation applied to tissue engineering can offer a more exhaustive approach to test and screen out biomaterials. This paper develops the model of scaffolds and Computational Fluid Dynamics that show the value of computer simulations in determining the influence of the geometrical scaffold parameter porosity, pore size and shape on the permeability of scaffolds, magnitude of velocity, drop pressure, shear stress distribution and level and the proper design of the geometry of the scaffold. This creates a need for more advanced studies that include aspects of dynamic conditions of a micro fluid passing through the scaffold were characterized for tissue engineering applications and differentiation of tissues within scaffolds.

Keywords: Scaffold engineering, Tissue engineering, Cellularstructure, Biomaterial, Computational fluid dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
419 Seismic Retrofitting of RC Buildings with Soft Storey and Floating Columns

Authors: Vinay Agrawal, Suyash Garg, Ravindra Nagar, Vinay Chandwani

Abstract:

Open ground storey with floating columns is a typical feature in the modern multistory constructions in urban India. Such features are very much undesirable in buildings built in seismically active areas. The present study proposes a feasible solution to mitigate the effects caused due to non-uniformity of stiffness and discontinuity in load path and to simultaneously hold the functional use of the open storey particularly under the floating column, through a combination of various lateral strengthening systems. An investigation is performed on an example building with nine different analytical models to bring out the importance of recognising the presence of open ground storey and floating columns. Two separate analyses on various models of the building namely, the equivalent static analysis and the response spectrum analysis as per IS: 1893-2002 were performed. Various measures such as incorporation of Chevron bracings and shear walls, strengthening the columns in the open ground storey, and their different combinations were examined. The analysis shows that, in comparison to two short ones separated by interconnecting beams, the structural walls are most effective when placed at the periphery of the buildings and used as one long structural wall. Further, it can be shown that the force transfer from floating columns becomes less horizontal when the Chevron Bracings are placed just below them, thereby reducing the shear forces in the beams on which the floating column rests.

Keywords: Equivalent static analysis, floating column, open ground storey, response spectrum analysis, shear wall, stiffness irregularity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486
418 Chitosan/Casein Microparticles: Preparation, Characterization and Drug Release Studies

Authors: Selvakumar Dhanasingh, Shunmuga Kumar Nallaperumal

Abstract:

Microparticles carrier systems made from naturally occurring polymers based on chitosan/casein system appears to be a promising carrier for the sustained release of orally and parenteral administered drugs. In the current study we followed a microencapsulation technique based aqueous coacervation method to prepare chitosan/casein microparticles of compositions 1:1, 1:2 and 1:5 incorporated with chloramphenicol. Glutaraldehyde was used as a chemical cross-linking agent. The microparticles were prepared by aerosol method and studied by optical microscopy, infrared spectroscopy, thermo gravimetric analysis, swelling studies and drug release studies at various pH. The percentage swelling of the polymers are found to be in the order pH 4 > pH 10 > pH 7 and the increase in casein composition decrease the swelling percentage. The drug release studies also follow the above order.

Keywords: Chitosan/casein micro particles, chloramphenicol, drug release, microencapsulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3175
417 Synthesis and Characterization of PEG-Silane Functionalized Iron Oxide Nanoparticle as MRI T2 Contrast Agent

Authors: Mu-Jen Young, Cheng-Yen Wu, Wen-Yuan Hsieh

Abstract:

Iron oxide nanoparticle was synthesized by reactive-precipitation method followed by high speed centrifuge and phase transfer in order to stabilized nanoparticles in the solvent. Particle size of SPIO was 8.2 nm by SEM, and the hydraulic radius was 17.5 nm by dynamic light scattering method. Coercivity and saturated magnetism were determined by VSM (vibrating sample magnetometer), coercivity of nanoparticle was lower than 10 Hc, and the saturated magnetism was higher than 65 emu/g. Stabilized SPIO was then transferred to aqueous phase by reacted with excess amount of poly (ethylene glycol) (PEG) silane. After filtration and dialysis, the SPIO T2 contrast agent was ready to use. The hydraulic radius of final product was about 70~100 nm, the relaxation rates R2 (1/T2) measured by magnetic resonance imaging (MRI) was larger than 200(sec-1).

Keywords: Contrast Agent, Iron Oxide Nanoparticle, Magnetic Resonance Imaging, Nanoparticle Stabilization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3181
416 Suitability of Class F Flyash for Construction Industry: An Indian Scenario

Authors: M. N. Akhtar, J. N. Akhtar

Abstract:

The present study evaluates the properties of class F fly ash as a replacement of natural materials in civil engineering construction industry. The low-lime flash similar to class F is the prime variety generated in India, although it has significantly smaller volumes of high-lime fly ash as compared to class C. The chemical and physical characterization of the sample is carried out with the number of experimental approaches in order to investigate all relevant features present in the samples. For chemical analysis, elementary quantitative results from point analysis and scanning electron microscopy (SEM)/dispersive spectroscopy (EDS) techniques were used to identify the element images of different fractions. The physical properties found very close to the range of common soils. Furthermore, the fly ash-based bricks were prepared by the same sample of class F fly ash and the results of compressive strength similar to that of Standard Clay Brick Grade 1 available in the local market of India.

Keywords: Flyash, class F, class C, chemical, physical, SEM, EDS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 817
415 Preparation and Characterization of Photocatalyst for the Conversion of Carbon Dioxide to Methanol

Authors: D. M. Reddy Prasad, Nur Sabrina Binti Rahmat, Huei Ruey Ong, Chin Kui Cheng, Maksudur Rahman Khan, D. Sathiyamoorthy

Abstract:

Carbon dioxide (CO2) emission to the environment is inevitable which is responsible for global warming. Photocatalytic reduction of CO2 to fuel, such as methanol, methane etc. is a promising way to reduce greenhouse gas CO2 emission. In the present work, Bi2S3/CdS was synthesized as an effective visible light responsive photocatalyst for CO2 reduction into methanol. The Bi2S3/CdS photocatalyst was prepared by hydrothermal reaction. The catalyst was characterized by X-ray diffraction (XRD) instrument. The photocatalytic activity of the catalyst has been investigated for methanol production as a function of time. Gas chromatograph flame ionization detector (GC-FID) was employed to analyze the product. The yield of methanol was found to increase with higher CdS concentration in Bi2S3/CdS and the maximum yield was obtained for 45 wt% of Bi2S3/CdS under visible light irradiation was 20 μmole/g. The result establishes that Bi2S3/CdS is favorable catalyst to reduce CO2 to methanol.

Keywords: Photocatalyst, Carbon dioxide reduction, visible light, Irradiation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2007
414 Application of Rapid Prototyping to Create Additive Prototype Using Computer System

Authors: Meftah O. Bashir, Fatma A. Karkory

Abstract:

Rapid prototyping is a new group of manufacturing processes, which allows fabrication of physical of any complexity using a layer by layer deposition technique directly from a computer system. The rapid prototyping process greatly reduces the time and cost necessary to bring a new product to market. The prototypes made by these systems are used in a range of industrial application including design evaluation, verification, testing, and as patterns for casting processes. These processes employ a variety of materials and mechanisms to build up the layers to build the part. The present work was to build a FDM prototyping machine that could control the X-Y motion and material deposition, to generate two-dimensional and three-dimensional complex shapes. This study focused on the deposition of wax material. This work was to find out the properties of the wax materials used in this work in order to enable better control of the FDM process. This study will look at the integration of a computer controlled electro-mechanical system with the traditional FDM additive prototyping process. The characteristics of the wax were also analysed in order to optimise the model production process. These included wax phase change temperature, wax viscosity and wax droplet shape during processing.

Keywords: Rapid prototyping, wax, manufacturing processes, additive prototyping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650
413 Preparation and Characterization of MoO3/Al2O3 Catalyst for Oxidative Desulfurization of Diesel using H2O2: Effect of Drying Method and Mo Loading

Authors: Azam Akbari, Mohammadreza Omidkhah, Jafar Toufighi Darian

Abstract:

The mesoporous MoO3/γ-Al2O3 catalyst was prepared by incipient wetness impregnation method aiming to investigate the effect of drying method and molybdenum content on the catalyst property and performance towards the oxidation of benzothiophene (BT), dibenzothiophene (DBT) and 4,6-dimethyle dibenzothiophene (4,6-DMDBT) with H2O2 for deep oxidative desulfurization of diesel fuel. The catalyst was characterized by XRD, BET, BJH and SEM method. The catalyst with 10wt.% and 15wt.% Mo content represent same optimum performance for DBT and 4,6-DMDBT removal, but a catalyst with 10wt.% Mo has higher efficiency than 15wt.% Mo for BT conversion. The SEM images show that use of rotary evaporator in drying step reaches a more homogenous impregnation. The oxidation reactivity of different sulfur compounds was studied which followed the order of DBT>4,6-DMDBT>>BT.

Keywords: desulfurization, oxidation, MoO3/Al2O3 catalyst

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2967
412 Feasibility of Ground Alkali-Active Sandstone Powder for Use in Concrete as Mineral Admixture

Authors: Xia Chen, Hua-Quan Yang, Shi-Hua Zhou

Abstract:

Alkali-active sandstone aggregate was ground by vertical and ball mill into particles with residue over 45 μm less than 12%, and investigations have been launched on particles distribution and characterization of ground sandstone powder, fluidity, heat of hydration, strength as well as hydration products morphology of pastes with incorporation of ground sandstone powder. Results indicated that ground alkali-active sandstone powder with residue over 45 μm less than 8% was easily obtainable, and specific surface area was more sensitive to characterize its fineness with extension of grinding length. Incorporation of sandstone powder resulted in higher water demand and lower strength, advanced hydration of C3A and C2S within 3days and refined pore structure. Based on its manufacturing, characteristics and influence on properties of pastes, it was concluded that sandstone powder was a good selection for use in concrete as mineral admixture.

Keywords: Concrete, mineral admixture, hydration, structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 684
411 Electrospinning and Characterization of Silk Fibroin/Gelatin Nanofibre Mats

Authors: S. Mohammadzadehmoghadam, Y. Dong

Abstract:

In this study, Bombyx mori silk fibroin/gelatin (SF/GT) nanocomposite with different GT ratio (SF/GT 100/0, 90/10 and 70/30) were prepared by electrospinning process and crosslinked with glutaraldehyde (GA) vapor. Properties of crosslinked SF/GT nanocomposites were investigated by scanning electron microscopy (SEM), mechanical test, water uptake capacity (WUC) and porosity. From SEM images, it was found that fiber diameter increased as GT content increased. The results of mechanical test indicated that the SF/GT 70/30 nanocomposites had both the highest Young’s modulus of 342 MPa and the highest tensile strength of about 14 MPa. However, porosity and WUC decreased from 62% and 405% for pristine SF to 47% and 232% for SF/GT 70/30, respectively. This behavior can be related to higher degree of crosslinking as GT ratio increased which altered the structure and physical properties of scaffolds. This study showed that incorporation of GT into SF nanofibers can enhance mechanical properties of resultant nanocomposite, but the GA treatment should be optimized to control and fine-tune other properties to warrant their biomedical application.

Keywords: Electrospinning, gelatin, mechanical properties, nanocomposites, silk fibroin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 865
410 C-V Characterization and Analysis of Temperature and Channel Thickness Effects on Threshold Voltage of Ultra-thin SOI MOSFET by Self-Consistent Model

Authors: Shuvro Chowdhury, Esmat Farzana, Rizvi Ahmed, A. T. M. Golam Sarwar, M. Ziaur Rahman Khan

Abstract:

The threshold voltage and capacitance voltage characteristics of ultra-thin Silicon-on-Insulator MOSFET are greatly influenced by the thickness and doping concentration of the silicon film. In this work, the capacitance voltage characteristics and threshold voltage of the device have been analyzed with quantum mechanical effects using the Self-Consistent model. Reduction of channel thickness and adding doping impurities cause an increase in the threshold voltage. Moreover, the temperature effects cause a significant amount of threshold voltage shift. The temperature dependence of threshold voltage has also been observed with Self- Consistent approach which are well supported from experimental performance of practical devices.

Keywords: C-V characteristics, Self-Consistent Analysis, Siliconon-Insulator, Ultra-thin film.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2664
409 Characterization of Lubricity of Mucins at Polymeric Surfaces for Biomedical Applications

Authors: Seunghwan Lee

Abstract:

The lubricating properties of commercially available mucins originating from different animal organs, namely bovine submaxillary mucin (BSM) and porcine gastric mucin (PGM), have been characterized at polymeric surfaces for biomedical applications. Atomic force microscopy (AFM) and pin-on-disk tribometry have been employed for tribological studies at nanoscale and macroscale contacts, respectively. Polystyrene (PS) was employed to represent ‘rigid’ contacts, whereas poly(dimethylsiloxane) (PDMS) was employed to represent ‘soft contacts’. To understand the lubricating properties of mucins in correlation with the coverage on surfaces, adsorption properties of mucins onto the polymeric substrates have been characterized by means of optical waveguide light-mode spectroscopy (OWLS). Both mucins showed facile adsorption onto both polymeric substrates, but the lubricity was highly dependent upon the pH change between 2 and 7.

Keywords: Bovine submaxillary mucin (BSM), Porcine Gastric Mucin (PGM), lubricity, biomedical.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2328
408 An Images Monitoring System based on Multi-Format Streaming Grid Architecture

Authors: Yi-Haur Shiau, Sun-In Lin, Shi-Wei Lo, Hsiu-Mei Chou, Yi-Hsuan Chen

Abstract:

This paper proposes a novel multi-format stream grid architecture for real-time image monitoring system. The system, based on a three-tier architecture, includes stream receiving unit, stream processor unit, and presentation unit. It is a distributed computing and a loose coupling architecture. The benefit is the amount of required servers can be adjusted depending on the loading of the image monitoring system. The stream receive unit supports multi capture source devices and multi-format stream compress encoder. Stream processor unit includes three modules; they are stream clipping module, image processing module and image management module. Presentation unit can display image data on several different platforms. We verified the proposed grid architecture with an actual test of image monitoring. We used a fast image matching method with the adjustable parameters for different monitoring situations. Background subtraction method is also implemented in the system. Experimental results showed that the proposed architecture is robust, adaptive, and powerful in the image monitoring system.

Keywords: Motion detection, grid architecture, image monitoring system, and background subtraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1566
407 Robust On-Body Communications using Creeping Wave: Methodology and Analysis

Authors: M. Ali, K. Masood

Abstract:

In this paper methodology to exploit creeping wave for body area network BAN communication reliability are described. Creeping wave propagation effects are visualized & analyzed. During this work Dipole, IA antennas various antennas were redesigned using existing designs and their propagation characteristics were verified for optimum performance when used on BANs. These antennas were then applied on body shapes-including rectangular, spherical and cylindrical so that all the effects of actual human body can be taken nearly into account. Parametric simulation scheme was devised so that on Body channel characterization can be visualized at front, curved and back region. In the next phase multiple inputs multiple output MIMO scheme was introduced where virtual antennas were used in order to diminish the effects of antennas on the propagation of waves. Results were, extracted and analyzed at different heights. Finally based on comparative measurement and analysis it was concluded that on body propagation can be exploited to gain spatial diversity.

Keywords: BAN, Creeping Wave, MIMO, WIAs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679
406 Isolation and Characterization of Collagen from Chicken Feet

Authors: P. Hashim, M. S. Mohd Ridzwan, J. Bakar

Abstract:

Collagen was isolated from chicken feet by using papain and pepsin enzymes in acetic acid solution at 4°C for 24h with a yield of 18.16% and 22.94% by dry weight, respectively. Chemical composition and characteristics of chicken feet collagen such as amino acid composition, SDS-PAGE patterns, FTIR spectra and thermal properties were evaluated. The chicken feet collagen is rich in the amino acids glycine, glutamic acid, proline and hydroxyproline. Electrophoresis pattern demonstrated two distinct α-chains (α1 and α2) and β chain, indicating that type I collagen is a major component of chicken feet collagen. The thermal stability of collagen isolated by papain and pepsin revealed stable denaturation temperatures of 48.40 and 53.35°C, respectively. The FTIR spectra of both collagens were similar with amide regions in A, B, I, II and III. The study demonstrated that chicken feet collagen using papain isolation method is possible as commercial alternative ingredient. 

Keywords: Chicken feet, collagen, papain, pepsin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8302
405 Prediction of the Torsional Vibration Characteristics of a Rotor-Shaft System Using Its Scale Model and Scaling Laws

Authors: Jia-Jang Wu

Abstract:

This paper presents the scaling laws that provide the criteria of geometry and dynamic similitude between the full-size rotor-shaft system and its scale model, and can be used to predict the torsional vibration characteristics of the full-size rotor-shaft system by manipulating the corresponding data of its scale model. The scaling factors, which play fundamental roles in predicting the geometry and dynamic relationships between the full-size rotor-shaft system and its scale model, for torsional free vibration problems between scale and full-size rotor-shaft systems are firstly obtained from the equation of motion of torsional free vibration. Then, the scaling factor of external force (i.e., torque) required for the torsional forced vibration problems is determined based on the Newton’s second law. Numerical results show that the torsional free and forced vibration characteristics of a full-size rotor-shaft system can be accurately predicted from those of its scale models by using the foregoing scaling factors. For this reason, it is believed that the presented approach will be significant for investigating the relevant phenomenon in the scale model tests.

Keywords: Torsional vibration, full-size model, scale model, scaling laws.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2713
404 Flow Analysis of Viscous Nanofluid Due to Rotating Rigid Disk with Navier’s Slip: A Numerical Study

Authors: Khalil Ur Rehman, M. Y. Malik, Usman Ali

Abstract:

In this paper, the problem proposed by Von Karman is treated in the attendance of additional flow field effects when the liquid is spaced above the rotating rigid disk. To be more specific, a purely viscous fluid flow yield by rotating rigid disk with Navier’s condition is considered in both magnetohydrodynamic and hydrodynamic frames. The rotating flow regime is manifested with heat source/sink and chemically reactive species. Moreover, the features of thermophoresis and Brownian motion are reported by considering nanofluid model. The flow field formulation is obtained mathematically in terms of high order differential equations. The reduced system of equations is solved numerically through self-coded computational algorithm. The pertinent outcomes are discussed systematically and provided through graphical and tabular practices. A simultaneous way of study makes this attempt attractive in this sense that the article contains dual framework and validation of results with existing work confirms the execution of self-coded algorithm for fluid flow regime over a rotating rigid disk.

Keywords: Nanoparticles, Newtonian fluid model, chemical reaction, heat source/sink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 962
403 Comprehensive Study on the Linear Hydrodynamic Analysis of a Truss Spar in Random Waves

Authors: Roozbeh Mansouri, Hassan Hadidi

Abstract:

Truss spars are used for oil exploitation in deep and ultra-deep water if storage crude oil is not needed. The linear hydrodynamic analysis of truss spar in random sea wave load is necessary for determining the behaviour of truss spar. This understanding is not only important for design of the mooring lines, but also for optimising the truss spar design. In this paper linear hydrodynamic analysis of truss spar is carried out in frequency domain. The hydrodynamic forces are calculated using the modified Morison equation and diffraction theory. Added mass and drag coefficients of truss section computed by transmission matrix and normal acceleration and velocity component acting on each element and for hull section computed by strip theory. The stiffness properties of the truss spar can be separated into two components; hydrostatic stiffness and mooring line stiffness. Then, platform response amplitudes obtained by solved the equation of motion. This equation is non-linear due to viscous damping term therefore linearised by iteration method [1]. Finally computed RAOs and significant response amplitude and results are compared with experimental data.

Keywords: Truss Spar, Hydrodynamic analysis, Wave spectrum, Frequency Domain

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2394
402 Modeling of Water Erosion in the M'Goun Watershed Using OpenGIS Software

Authors: M. Khal, Ab. Algouti, A. Algouti

Abstract:

Water erosion is the major cause of the erosion that shapes the earth's surface. Modeling water erosion requires the use of software and GIS programs, commercial or closed source. The very high prices for commercial GIS licenses, motivates users and researchers to find open source software as relevant and applicable as the proprietary GIS. The objective of this study is the modeling of water erosion and the hydrogeological and morphophysical characterization of the Oued M'Goun watershed (southern flank of the Central High Atlas) developed by free programs of GIS. The very pertinent results are obtained by executing tasks and algorithms in a simple and easy way. Thus, the various geoscientific and geostatistical analyzes of a digital elevation model (SRTM 30 m resolution) and their combination with the treatments and interpretation of satellite imagery information allowed us to characterize the region studied and to map the area most vulnerable to water erosion.

Keywords: Central High-Atlas, hydrogeology, M’Goun watershed, OpenGIS, water erosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 895
401 A Framework for Data Mining Based Multi-Agent: An Application to Spatial Data

Authors: H. Baazaoui Zghal, S. Faiz, H. Ben Ghezala

Abstract:

Data mining is an extraordinarily demanding field referring to extraction of implicit knowledge and relationships, which are not explicitly stored in databases. A wide variety of methods of data mining have been introduced (classification, characterization, generalization...). Each one of these methods includes more than algorithm. A system of data mining implies different user categories,, which mean that the user-s behavior must be a component of the system. The problem at this level is to know which algorithm of which method to employ for an exploratory end, which one for a decisional end, and how can they collaborate and communicate. Agent paradigm presents a new way of conception and realizing of data mining system. The purpose is to combine different algorithms of data mining to prepare elements for decision-makers, benefiting from the possibilities offered by the multi-agent systems. In this paper the agent framework for data mining is introduced, and its overall architecture and functionality are presented. The validation is made on spatial data. Principal results will be presented.

Keywords: Databases, data mining, multi-agent, spatial datamart.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2023
400 The Effects of Misspecification of Stochastic Processes on Investment Appraisal

Authors: George Yungchih Wang

Abstract:

For decades financial economists have been attempted to determine the optimal investment policy by recognizing the option value embedded in irreversible investment whose project value evolves as a geometric Brownian motion (GBM). This paper aims to examine the effects of the optimal investment trigger and of the misspecification of stochastic processes on investment in real options applications. Specifically, the former explores the consequence of adopting optimal investment rules on the distributions of corporate value under the correct assumption of stochastic process while the latter analyzes the influence on the distributions of corporate value as a result of the misspecification of stochastic processes, i.e., mistaking an alternative process as a GBM. It is found that adopting the correct optimal investment policy may increase corporate value by shifting the value distribution rightward, and the misspecification effect may decrease corporate value by shifting the value distribution leftward. The adoption of the optimal investment trigger has a major impact on investment to such an extent that the downside risk of investment is truncated at the project value of zero, thereby moving the value distributions rightward. The analytical framework is also extended to situations where collection lags are in place, and the result indicates that collection lags reduce the effects of investment trigger and misspecification on investment in an opposite way.

Keywords: GBM, real options, investment trigger, misspecification, collection lags

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486
399 On the Fatigue Behavior of a Triphasic Composite

Authors: G. Minak, D. Ghelli, A. Zucchelli

Abstract:

This paper presents the results of an experimental characterization of a glass fibre-epoxy composite. The behavior of the traditional two-phase composite has been compared with the one of a new three-phase composite where the epoxy matrix was modified by addition of a 3% weight fraction of montmorillonite nano-particles. Two different types of nano-clays, Cloisite® 30B and RXG7000, produced by Southern Clay Products Inc., have been considered. Three-point bending tests, both monotonic and cyclic, were carried out. A strong reduction of the ultimate flexural strength upon nano-modification has been observed in quasi-static tests. Fatigue tests yielded a smaller strength loss. In both quasi-static and fatigue tests a more pronounced tendency to delamination has been noticed in three-phase composites, especially in the case of 30B nano-clay, with respect to the standard two-phase glass fiber composite.

Keywords: Bending fatigue, epoxy resin, glass fiber, montmorillonite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2424
398 Geometrically Non-Linear Axisymmetric Free Vibration Analysis of Functionally Graded Annular Plates

Authors: Boutahar Lhoucine, El Bikri Khalid, Benamar Rhali

Abstract:

In this paper, the non-linear free axisymmetric vibration of a thin annular plate made of functionally graded material (FGM) has been studied by using the energy method and a multimode approach. FGM properties vary continuously as well as non-homogeneity through the thickness direction of the plate. The theoretical model is based on the classical plate theory and the Von Kármán geometrical non-linearity assumptions. An approximation has been adopted in the present work consisting of neglecting the in-plane deformation in the formulation. Hamilton’s principle is used to derive the governing equation of motion. The problem is solved by a numerical iterative procedure in order to obtain more accurate results for vibration amplitudes up to 1.5 times the plate thickness. The numerical results are given for the first axisymmetric non-linear mode shape for a wide range of vibration amplitudes and they are presented either in tabular form or in graphical form to show the effect that the vibration amplitude and the variation in material properties have significant effects on the frequencies and the bending stresses in large amplitude vibration of the functionally graded annular plate.

Keywords: Non-linear vibrations, Annular plates, Large amplitudes, FGM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2154
397 Modular Hybrid Robots for Safe Human-Robot Interaction

Authors: J. Radojicic, D. Surdilovic, G. Schreck

Abstract:

The paper considers a novel modular and intrinsically safe redundant robotic system with biologically inspired actuators (pneumatic artificial muscles and rubber bellows actuators). Similarly to the biological systems, the stiffness of the internal parallel modules, representing 2 DOF joints in the serial robotic chains, is controlled by co-activation of opposing redundant actuator groups in the null-space of the module Jacobian, without influencing the actual robot position. The decoupled position/stiffness control allows the realization of variable joint stiffness according to different force-displacement relationships. The variable joint stiffness, as well as limited pneumatic muscle/bellows force ability, ensures internal system safety that is crucial for development of human-friendly robots intended for human-robot collaboration. The initial experiments with the system prototype demonstrate the capabilities of independently, simultaneously controlling both joint (Cartesian) motion and joint stiffness. The paper also presents the possible industrial applications of snake-like robots built using the new modules.

Keywords: bellows actuator, human-robot interaction, hyper redundant robot, pneumatic muscle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1971
396 Development and Characterization of Normoxic Polyhydroxyethylacrylate (PHEA) Gel Dosimeter using Raman Spectroscopy

Authors: Aifa Afirah Rozlan, Mohamad Suhaimi Jaafar, Azhar Abdul Rahman

Abstract:

Raman spectroscopy are used to characterize the chemical changes in normoxic polyhydroxyethylacrylate gel dosimeter (PHEA) induced by radiation. Irradiations in the low dose region are performed and the polymerizations of PHEA gels are monitored by the observing the changes of Raman shift intensity of the carbon covalent bond of PHEA originated from both monomer and the cross-linker. The variation in peak intensities with absorbed dose was observed. As the dose increase, the peak intensities of covalent bond of carbon in the polymer gels decrease. This point out that the amount of absorbed dose affect the polymerization of polymer gels. As the absorbed dose increase, the polymerizations also increase. Results verify that PHEA gel dosimeters are sensitive even in lower dose region.

Keywords: normoxic polymer gel, ascorbic acid, Ramanspectroscopy, radiation dosimetry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1914
395 Computer Vision Applied to Flower, Fruit and Vegetable Processing

Authors: Luis Gracia, Carlos Perez-Vidal, Carlos Gracia

Abstract:

This paper presents the theoretical background and the real implementation of an automated computer system to introduce machine vision in flower, fruit and vegetable processing for recollection, cutting, packaging, classification, or fumigation tasks. The considerations and implementation issues presented in this work can be applied to a wide range of varieties of flowers, fruits and vegetables, although some of them are especially relevant due to the great amount of units that are manipulated and processed each year over the world. The computer vision algorithms developed in this work are shown in detail, and can be easily extended to other applications. A special attention is given to the electromagnetic compatibility in order to avoid noisy images. Furthermore, real experimentation has been carried out in order to validate the developed application. In particular, the tests show that the method has good robustness and high success percentage in the object characterization.

Keywords: Image processing, Vision system, Automation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3298
394 Characterization and Development of Anthropomorphic Phantoms Liver for Use in Nuclear Medicine

Authors: Ferreira F. C. L., Souza D. N., Rodrigues T. M. A., Cunha C. J., Dullius M. A., Andrade J. E., Sousa A. H., Vieira J. P. C., Carvalho Júnior A. B., Santos L. P. B., Passos R. O.

Abstract:

The objective this study was to characterize and develop anthropomorphic liver phantoms in tomography hepatic procedures for quality control and improvement professionals in nuclear medicine. For the conformation of the anthropomorphic phantom was used in plaster and acrylic. We constructed three phantoms representing processes with liver cirrhosis. The phantoms were filled with 99mTc diluted with water to obtain the scintigraphic images. Tomography images were analyzed anterior and posterior phantom representing a body with a greater degree cirrhotic. It was noted that the phantoms allow the acquisition of images similar to real liver with cirrhosis. Simulations of hemangiomas may contribute to continued professional education of nuclear medicine, on the question of image acquisition, allowing of the study parameters such of the matrix, energy window and count statistics.

Keywords: Nuclear medicine, liver phantom, control quality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
393 Inventory and Characterization of Selected Deep Sea Fish Species as an Alternative Food Source from Southern Java Ocean and Western Sumatra Ocean, Indonesia

Authors: S.H. Suseno, T.A.Yang, W.N. Abdullah , N.A. Febrianto, W.N. Asti, B. Bahtiar, Hamidah, A. Suman, Desniar, A. Hartoyo

Abstract:

Sixteen selected deep-sea fish obtained from Southern Java Ocean and Western Sumatra Ocean was analyzed to determine its proximate, fatty acid and mineral composition. The moisture content was ranged from 64.38 to 86.04 %, ash from 0.17 to 0.69 %, the fat content was 1.54 – 13.30 % while the protein content varied from 15.84 to 23.60%. Among the fatty acids, oleic acid and palmitic acid was the dominant MUFA and SFA. Linoleic acid was the highest PUFA found at the selected deep-sea fish. Phospor was the highest macroelement concentration on selected deep-sea fish, followed by K, Ca, Mg and Iod, Fe and Zn among microelement. The trace concentration was found at Se microelement.

Keywords: deep-sea fish, fatty acid, microelement, macroelement, monounsaturated fatty acid, proximate, polyunsaturated fatty acids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1820