
The Analogue of a Property of Pisot Numbers in
Fields of Formal Power Series

Wiem Gadri

Abstract—This study delves into the intriguing properties of
Pisot and Salem numbers within the framework of formal Laurent
series over finite fields, a domain where these numbers’ spectral
characteristics, Λm(β) and lm(β), have yet to be fully explored.
Utilizing a methodological approach that combines algebraic number
theory with the analysis of power series, we extend the foundational
work of Erdos, Joo, and Komornik to this setting. Our research
uncovers bounds for lm(β), revealing how these depend on the degree
of the minimal polynomial of β and thus offering a characterization
of Pisot and Salem formal power series. The findings significantly
contribute to our understanding of these numbers, highlighting their
distribution and properties in the context of formal power series. This
investigation not only bridges number theory with formal power series
analysis but also sets the stage for further interdisciplinary research
in these areas.

Keywords—Pisot numbers, Salem numbers, Formal power series,
Minimal polynomial degree.

I. INTRODUCTION

P ISOT and Salem numbers occupy a distinctive place in

number theory, known for their unique algebraic and

spectral properties. These numbers are integral to various

mathematical disciplines, including algebraic number theory

and dynamical systems, due to their intriguing characteristics

and the complex problems they present. The study of Pisot

and Salem numbers has evolved over the years, leading to

a rich body of knowledge that explores their applications

and theoretical significance. Formal power series and Laurent

series over finite fields provide a fertile ground for advancing

this exploration, offering new perspectives and challenges in

understanding these numbers.

In recent developments, the analysis of sequences and

the distribution of specific number types have garnered

attention, leading to significant findings about the structure

and properties of mathematical constructs. The foundational

work of Erdos et al. [1] has paved the way for deepening our

understanding of these areas, particularly in the context of real

numbers and their formal series representations.

In the real numbers case many authors studied the sequence

{yk+1 − yk}k≥0 where (yk)k is an increasing sequence 0 =
y0 < y1 < . . . ,m ≥ 1 of numbers of the form y = εnq

n +
· · ·+ ε0 with n ≥ 0 et εi ∈ {0, . . . ,m}. Erdos et al. [1] were

the first to analyse the properties of the sequence {yk+1 −
yk}k≥0. They proved that for q > A (where A is the golden

number: the root > 1 of the equation X2 − X − 1), there

exists an infinity of k such that yk+1 − yk = 1. Furthermore,

for q < A and q a Pisot number, they proved that yk+1 − yk
does not converge to 0.
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Furthermore, in [2], Erdos and Joo proved that yk+1−yk ≤
1 for all k. And if q is a Pisot number satisfying the equation

Xr − Xr−1 − . . . − X − 1 = 0 with r > 1, then for m =

1, inf
k
(yk+1 − yk) =

1

q
. The analogue of our work in the

real numbers case was treated in [3], [4], [1] and [5]. In [3],

Bugeaud has proved for 1 < q < 2 that q is a Pisot number

if and only if lm(q) > 0 for all m where

lm(q) = inf{|y| : y ∈ Λm, y �= 0}, m = 1, 2, · · ·
and

Λm = {y = εnq
n+εn−1q

n−1+· · ·+ε1q+ε0 : −m ≤ εi ≤ m}.
In the same way, Erdos et al. [4] proved that if q < A then

l2(q) > 0 if and only if q is a Pisot number where A is the

golden number.

Erdos et al. in [1] and [8] another proof of the result of

Bugeaud [3]. In [6], Komornik et al. had determined the exact

values of lm(q) for some Pisot number q. They started by

giving a simpler proof to the theorem of Erdos et al. [2]. Next,

they proved that l1(q) = q2−2 if q is the Pisot number solution

of the equation X3−X2−1. They ended by showing that for

Ak−2 < m ≤ Ak−1 and k ≥ 1, lm(A) =| FkA−Fk+1 | where

A is the golden number and (Fk)k is the Fibonacci sequence

( F0 = 0, F1 = 1 and Fk = Fk−1 + Fk−2 for k = 2, 3, · · · ).

In [7] and [9], Feng and Wen proved that the sequence

{yk+1 − yk}k≥0 can take an infinity of different values for q
a Pisot number and m ≥ q − 1. They even gave an algorithm

which determinate the value of inf
k
(yk+1 − yk).

A. Pisot and Salem Numbers in Formal Power Series

Let F be a finite field with characteristic p > 0. We

denote by F[X] the ring of polynomials over F and F(X)
the field of rational fractions with coefficients in F. We

equip F(X) with the metric absolute value | · | defined by

| A
B |= qdeg(A)−deg(B) for A,B ∈ F[X], B �= 0 and | 0 |= 0

which confer to F(X) a structure of metric field where the

complete is identified to the formal power series field X−1

denoted F((X−1)) An element f ∈ F((X−1)) takes the form:

f =

+∞∑
i=n0

aiX
−i with ai ∈ F, n0 ∈ Z and an0 �= 0.

Hence we define deg(f) = −n0 and | f |= qdeg(f), we note

[f ] the polynomial part of f and {f} = f − [f ] its fractional

part.

A formal power series f is algebraic over F[X], if it is a

root of a monic irreducible polynomial over F[X].
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An algebraic formal power series f with absolute value > 1
is said to be Pisot (respectively, Salem) if all its conjuguates

have an absolute value < 1 (resp. ≤ 1 and at least one

conjuguate with absolute value = 1).

A characterization of Pisot and Salem series is given by

the following theorem Batemann and Duquette:

Theorem 1. Let β ∈ F((X−1)) be algebraic such that |β| >
1 and its minimal polynomial is P (Y ) = Y d +Ad−1Y

d−1 +
· · · + A0, where Ai ∈ F[X] for i = 0, · · · , d − 1. Then β is
a Pisot ( resp. Salem ) if and only if |Ad−1| > max

k �=d−1
|Ak| (

resp. |Ad−1| = max
k �=d−1

|Ak| ).

Theorem 2. Let β ∈ F((X−1)) satisfying |β| > 1. Then β is
a Pisot if and only if there exists λ ∈ F((X−1)) \ {0} such
that lim

n→+∞{λβn} = 0.

B. β-Development of a Formal Series

The β-development is a generalization of the standard form

of a formal power series in B0 in base X with another base

in β ∈ F((X−1)) with |β| > 1.

Definition 1. Given a formal power series β such that |β| >
1. We call β-representation of f (f ∈ B0), every sequence
(ai(X))i≥1 of F[X] such that

f =
∞∑
i=1

ai(X)

βi
.

The particular development that we obtain with the following
algorithm:{

γ1 = βf, a1(X) = [γ1],
γn = β{γn−1} and an(X) = [γn], for n ≥ 2

(1)

is called β-development of f which will be denoted by dβ(f).

Remark 1. It is obvious that deg(ai) < deg(β), for i ≥ 2
and deg(a1) ≤ deg(β).

The object of this manuscript is the studying of Λm =
Λm(β) the set of formal power series ω with at least one

representation of the form

ω = εnβ
n + εn−1β

n−1 + ...+ ε1β + ε0

for n ∈ N such that deg(εi) ≤ m, for all 0 ≤ i ≤ n and the

value of:

lm(β) = inf{|ω| : ω ∈ Λm, ω �= 0}.
Remark 2. We give some properties of the set Λm.

i) Let t ∈ N, for all s ∈ N and v ∈ Λt we have βsv ∈ Λt.
ii) For all m, t ∈ N, with m ≤ t, we have

Λm ⊂ Λt, Λm ± Λt = Λmax(m,t) and ΛtΛm ⊂ Λm+t.

The main object of this paper is to prove the following two

theorems which characterize Pisot and Salem formal power

series, β, using lm(β) and give the values of lm(β) when β
is a Pisot or a Salem formal power series.

Theorem 3. Let β be a Pisot or a Salem formal power series
and d be the degree of its minimal polynomial. Then, for m ∈
N, we have
i) lm(β) = 1 if m < deg(β),

ii) lm(β) ≥ |β|−(m−deg(β)+1)(d−1) if m ≥ deg(β).

Theorem 4. Let β be a Pisot formal power series such that
|β| > 1 and satisfying the algebraic equation

βd +Ad−1β
d−1 + · · ·+A0 = 0,

with deg(Ad−1) = 1 and Ai ∈ F, i �= d − 1. Then β is a
Pisot formal power series and d is the degree of its minimal
polynomial. Moreover

lm(β) = |β|−m(d−1).

It is noted that the theorems give an analogue result of

Bugeaud [3] in the real numbers case.

II. PROOF OF THEOREM 3

The proof of Theorem 3 is based on the following lemmas:

Lemma 1. Let P (Y ) = AdY
d + · · · + A0, with Ai ∈ F[X],

Ad �= 0 and |Ad−1| > |Ai|, for all i �= d − 1. Then P has
a unique root β over F((X−1)) with absolute value > 1.
Moreover, [β] = −[Ad−1

Ad
].

Proof: b Suppose that P (Y ) = AdY
d + · · ·+A0, where

for all i = 0, · · · , d we have Ai ∈ F[X]. by substitution in P
the variable Y = λZ, where λ = −Ad−1

Ad
, we obtain

−1

Ad−1λd−1P (λZ)
= Zd−1(Z − 1) + L(Z),

where L(Z) is a polynomial where every coefficient is of

absolute value < 1. It leds to Hensel’s Lemma [7] for the

polynomial P (Y ) has a unique root in F((X−1)) of the form

β = λz, with |z − 1| < 1. And, for such z, we have |z| = 1
and since the coefficients of L are with absolute value < 1

λ ,

we have |z−1| = |L(z)| < 1
λ . Then P is a unique root β = λz

such that |β − λ| < 1, and [β] = [λ].

Lemma 2. Let β be a Pisot formal power series and d be
the degree of its minimal polynomial. Then if m ≥ deg(β),
we have

Λm ⊂ 1

βd−1
Λm−1.

Proof: Let β a Pisot formal power series, then β satisfies

an algebraic equation of the form

βd +Ad−1β
d−1 + . . .+A0 = 0 (2)

with

deg(Ad−1) > max
j �=d−1

deg(Aj). (3)

Let v ∈ Λm, then v = εnβ
n+ · · ·+ε0, with deg(εi) ≤ m, for

0 ≤ i ≤ n. The Euclidean divisions of εi by Ad−1, we obtain

εi = Ad−1ε
′
i + ε′′i

with

deg(ε′i) = deg(εi)− deg(Ad−1) ≤ m− deg(Ad−1)

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:18, No:3, 2024 

11International Scholarly and Scientific Research & Innovation 18(3) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:1
8,

 N
o:

3,
 2

02
4 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

54
4.

pd
f



and

deg(ε′′i ) < deg(Ad−1).

We get

v =
n∑

i=0

(Ad−1ε
′
i + ε′′i )β

i = Ad−1v
′ + v′′, (4)

where

v′ =
n∑

i=0

ε′iβ
i ∈ Λm−deg(Ad−1)

and v′′ =
n∑

i=0

ε′′i β
i ∈ Λdeg(Ad−1)−1.

(5)

Using (4) and (2), it comes

v =
βd−1Ad−1v

′ + βd−1v′′

βd−1

=
−(βd +Ad−2β

d−2 + · · ·+A1β +A0)v
′ + βd−1v′′

βd−1
.

By (3), (5), Remark 2 and the Lemma 1 we obtain

deg(Ad−1) = deg(β), and

v ∈ 1

βd−1
Λm−1.

Lemma 3. Let β be a Salem formal power series and d be
the degree of its minimal polynomial. Let m ≥ deg(β), then

Λm ⊂ Λm−1

B
,

where B ∈ Λ0 et | B |=| β |d−1.

Proof: Let β be a Salem formal power series, then β
satisfy the equation

βd +Ad−1β
d−1 + . . .+A0 = 0, (6)

such that

deg(Ad−1) = max
i �=d−1

deg(Ai). (7)

Let Ap1 , . . . , Apk
, be the coefficients of (6) satisfying

deg(Apj ) < deg(Ad−1) with 0 ≤ pj ≤ d and j ∈ {1, . . . , k}
and we denote by Ad1 , . . . , Ads the other coefficients satisfying

deg(Adt ) = deg(Ad−1) with 0 ≤ dt ≤ d−1 and t ∈ {1, . . . , s}.

Then for every t ∈ {1, . . . , s}, there exists λt ∈ F \ {0} and

μt ∈ F[X] with deg(μt) < deg(Ad−1), such that

Adt
= λtAd−1 + μt. (8)

It is clear that (6) is equivalent to

Ad1β
d1 + · · ·+Adsβ

ds = −(Ap1β
p1 + · · ·+Apk

βpk). (9)

We replace in (9) the Adt
by their expressions which appears

in (8), we obtain
BAd−1 = C, (10)

where⎧⎨
⎩

B = λ1βd1 + · · ·+ λsβds ,

C = −(Ap1β
p1 + · · ·+Apkβ

pk )− (μ1βd1 + · · ·+ μsβds ),

it is clear that

B ∈ Λ0, |B| = |β|d−1 (d− 1 ∈ {d1, . . . , ds}) and

C∈ Λdeg(Ad−1)−1.(11) Let now v ∈ Λm, then v = εnβ
n +

· · ·+ ε0, with deg(εi) ≤ m for 0 ≤ i ≤ n. From the first part

of the proof of Lemma 2 represented by the relation (4), we

can write v in the form v = v′Ad−1+v′′ where v′, v′′ are the

expressions giving by (5), what gives with (10),

v =
v′C + v′′B

B
.

Using (5), (II) and Remark 2, we obtain

v ∈ Λm−1

B
.

We are now ready to give the proof of Theorem 3:

i) Let β be a formal power series such that |β| > 1 and

ω ∈ Λm, then there exists n ∈ N such that ω = εnβ
n +

· · · + ε1β + ε0, with deg(εi) ≤ m < deg(β). If n ≥ 1
and εn �= 0, we have |εiβi| < |εnβn| for all i < n. Then

|ω| = |εnβn| ≥ |β| > 1.

By consequence, lm(β) = inf{|ε0| : ε0 ∈
F[X], deg(ε0) ≤ m} = |1| = 1.

ii) If m ≥ deg(β), by Lemma 2 and Lemma 3, we obtain

lm(β) ≥ 1

|β|d−1
lm−1(β).

After (m− deg(β)) iterations, it comes with i)

lm(β) ≥ 1

|β|(m−deg(β)+1)(d−1)
ldeg(β)−1(β)

=
1

|β|(m−deg(β)+1)(d−1)
.

III. PROOF OF THEOREM 4

For the proof of Theorem 4, we need irreducibility criteria:

Lemma 4. Let P (Y ) = Y d + Ad−1Y
d−1 + · · · + A0, with

deg(Ad−1) > deg(Ai) for i �= d− 1 and A0 �= 0. Then P is
irreducible over F[X] and it is the minimal polynomial of a
Pisot formal power series.

Proof: By Lemma 1, P has a unique root β such that

|β| > 1 and [β] = Ad−1. Let β1 = β, β2, · · · , βd, the roots of

P in the algebraic closure of F((X−1)).

Since P is a monic polynomial, then

d∑
i=1

βk
i ∈ F[X], for all

k ∈ N, then

lim
n→+∞{βn} = 0,

with Theorem B, β is a Pisot. Let then H(Y ) = Y n +
Bn−1Y

n−1 + · · · + B0 be the minimal polynomial of β. It

is clear by Lemma 1 that [β] = Bn−1 and [Bn−1] = Ad−1.

Let now P (Y ) = H(Y )Q(Y ), with Q(Y ) = Y m +
Cm−1Y

m−1 + · · ·+ C0. We suppose that m ≥ 1, then

Cm−1 +Bn−1 = Ad−1 and C0B0 = A0 (12)
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∑
i+ j = s
0 ≤ i ≤ n
0 ≤ j ≤ m

BiCj = As; s ∈ {1, 2, · · · , d− 2} (13)

Since Bn−1 = Ad−1,then by (12), Cm−1 = 0. Let i0 ∈
{0, 1, · · · ,m} such that deg(Ci0) = max

0≤i≤m
deg(Ci).

If Ci0 �= 0, then deg(Bn−1Ci0) > deg(BiCj), (i, j) �=
(n− 1, i0). Then,

deg(
∑

i+ j = n+ i0 − 1
0 ≤ i ≤ n
0 ≤ j ≤ m

BiCj) = deg(Bn−1Ci0 ) ≥ deg(Ad−1).

which is a contradiction (13).

Finally, we obtain P (Y ) = Y mH(Y ), m ≥ 1, what

contradict the fact that A0 �= 0 then, P (Y ) = H(Y ).

Now we can prove Theorem 4. We show that lm(β) ≤
|β|−m(d−1) then it is Theorem 3 that gives the conclusion.

We just prove that

Λm ⊃ 1

βd−1
Λm−1.

It is clear that the last inclusion is totally assured if we

prove that β−(d−1) ∈ Λ1 and as a result, it is the Remark 2.

Let β be a Pisot such that deg(β) = 1 satisfying an

algebraic equation of the form (6), with deg(Ad−1) =
deg(β) = 1 (Lemma 1) and that Ai ∈ F, for i �= d − 1
and A0 �= 0. By (6), we have

β−1 = −A−1
0 (βd−1 +Ad−1β

d−2 + · · ·+A1) ∈ Λ1,

we can show that β−i ∈ Λ1 for 1 ≤ i < d− 1 and

β−i = −A−1
0 (βd−i+Ad−1β

d−i−1+ · · ·+Ai+1β+Ai) (14)

−A−1
0 (

A1

βi−1
+

A2

βi−2
+ · · ·+ Ai−1

β
).

It sufficient to use the recurrence on i dividing (14) each
time by β, that gives with Remark 2

β−(d−1) = −A−1
0 β−A−1

0 Ad−1−
Ad−2A

−1
0

β
−. . .−A2A

−1
0

βd−3
−A1A

−1
0

βd−2
∈ Λ1.

Finally, we obtain

lm(β) ≤ 1

|β|d−1
lm−1(β).

By Theorem 3

lm(β) =
1

|β|d−1
lm−1(β). (15)

After m iterations of (15)and using the result i) in Theorem

3 we have

lm(β) =
1

|β|m(d−1)
.
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