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Geometrically Non-Linear Axisymmetric Free Vibration

Analysis of Functionally Graded Annular Plates

Boutahar Lhoucine, El Bikri Khalid, Benamar Rhali

Abstract—In this paper, the non-linear free axisymmetric
vibration of a thin annular plate made of functionally graded material
(FGM) has been studied by using the energy method and a
multimode approach. FGM properties vary continuously as well as
non-homogeneity through the thickness direction of the plate. The
theoretical model is based on the classical plate theory and the Von
Kéarman geometrical non-linearity assumptions. An approximation
has been adopted in the present work consisting of neglecting the in-
plane deformation in the formulation. Hamilton’s principle is used to
derive the governing equation of motion. The problem is solved by a
numerical iterative procedure in order to obtain more accurate results
for vibration amplitudes up to 1.5 times the plate thickness. The
numerical results are given for the first axisymmetric non-linear
mode shape for a wide range of vibration amplitudes and they are
presented either in tabular form or in graphical form to show the
effect that the vibration amplitude and the variation in material
properties have significant effects on the frequencies and the bending
stresses in large amplitude vibration of the functionally graded
annular plate.
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I. INTRODUCTION

UNCTIONALLY graded materials (FGMs) are the new
microscopic inhomogeneous composite materials. These
Materials are usually made of a combination of ceramic and
metal such that the material properties vary smoothly and
continuously in appropriate direction(s). The continuity in the
material properties of these new materials provides better
mechanical behavior in comparison with the fiber-reinforced
composites. A combination of the properties of the metal and
ceramic can be achieved by the composition of them. These
properties that consist of high-temperature resistance due to
low thermal conductivity, wear and oxidation resistance for
ceramics and the high toughness, high strength, mach inability
and bonding capability for metals, cause that FGMs can resist
high-temperature conditions while their toughness maintains.
Because of these good characteristics, FGMs have
extensively used in various industries such as space structures,
turbo machinery, nuclear and chemical industries, defense
mechanisms, energy conversion systems.
Due to this widespread applicability, FGMs have been
extensively studied by researchers in recent years, particularly
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the vibration analyses of functionally graded structures like as
plates are carried out by many researchers.

For example, Reddy and Cheng [5] studied the harmonic
vibration problem of functionally graded plates by means of a
three-dimensional asymptotic theory formulated in terms of
transfer matrix. Allahverdizadeh and Naei [3] studied
nonlinear free and forced vibration analysis of thin circular
functionally graded plates and investigated the amplitude and
thermal effects on the nonlinear behavior of those plates. They
also studied the effects of large vibration amplitudes on the
stresses of thin circular functionally graded plates. Chen [4]
analyzed the nonlinear vibration of a shear deformable
functionally graded plate by using the equations that include
the effects of transverse shear deformable and rotary inertia.
Amini et al. [1] studied stress analysis for thick annular
functionally graded plate. They used first order shear
deformation plate and von Karmén type equation.

Their results revealed that vibration amplitude and volume
fraction have significant effect on resultant stresses in large
amplitude vibration of functionally graded thick plate.

The aim of this paper is to study nonlinear free vibration of
thin annular functionally graded plates. Material properties are
assumed to be graded in the thickness direction according to a
simple power law distribution in terms of the volume fractions
of the constituents. The formulations are based on Classic
Plate Theory and von Karman-type equation.

In the present work, axisymmetric free large vibration
amplitudes of thin functionally graded annular plates are
investigated by using and adapting the model applied
successfully to geometrically non-linear free and forced
vibrations of various structures such as simply supported and
clamped—clamped beams, homogeneous and composite
rectangular plates, and shells [6], [7], [9], [12]. By supposing
harmonic motion and expanding the transverse displacement
in the form of finite series of basic functions, the linear free
vibration modes of an annular plate have both edges clamped,
obtained in terms of Bessel’s functions, the discretized
expressions for the total strain energy and kinetic energy have
been derived. Hamilton’s principle is used to reduce the large
amplitude free vibration problem to a set of non-linear
algebraic equations, which have been solved by a numerical
iterative procedure.

Numerical results are presented in both dimensionless
tabular and graphical forms, and highlight the influence of
material composition on induced bending stress in large
amplitude vibration of thin annular functionally graded plates.
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II. GENERAL FORMULATION

A. Problem Definition

Consider a functionally annular plate of thin uniform
thickness h = 0.01 with outer radius a = 0.5, inner radius b =
0.05, as depicted in Fig. 1. The annular plate geometry and
dimensions are defined in the cylindrical coordinates (7, 8, z).
The FGM plate material is made of a combination of ceramic
and metal. The top surface (z= h/2) of the plate is ceramic-
rich whereas the bottom surface (z = —h/2) is metal-rich.

Fig. 1 Annular plate geometry, dimensions and notation

In the case of large amplitude axisymmetric vibrations of
the annular plate, the radial displacement u,. and the transverse
displacement u, show the displacement of the point with
M(r,z) coordinate. By using the Kirchhoff plate theory,
u, and u, are expressed as:

u,(r,z,t) = u(r,t) —zow(r,t)/(0r) €))
u,(r,t) = w(r,t) 2

where u(r,t) and w(r,t) are the radial and transverse
displacements of the point on the middle surface of the plate
respectively, and ¢ is the time variable.

On the basis of geometric non-linear theory of thin plates in
von Karman's sense, one obtains the strain-displacement
relations:

g = (0u/or) + (1/2)(0w/0r)? — z (0%w/dr?) (3)
eg = (u/r) — (%) (aw/or) “

where ¢, and &g are the radial and tangential strains,
respectively.

B. Total Strain and Kinetic Energies Expressions

By using Hooke’s law, the radial and circumferential
stresses are given by:
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E(2)

Oy = (1-v2) (Er + USQ) (5)
E(2)
0p = ﬁ (o +ver) (6)

The total strain energy is expressed as:
V= %fff oy &;dv ,dv = rdrd6 dz 7
which can be written as:

2 h/2
V=il L over + ooeayrdrdodz @)

or like the sum of the strain energy due to bending V,, and the
membrane strain energy induced by large deflections V,

V=V,+V, )]

The bending strain energy is given by:
V, = —mBy, f[(aw/ar)z(azw/arz)]rdr
b
— 7By, f[(l/r) (0w/ar)(ow/or)?]rdr
b
+ 7Dy f[(azw/arz)z + (1/r%) (dw/ar)?) rdr
b

+ 2nDlzf[(l/r)(aw/ar)(azw/arz)] rdr
b
(10)

By neglecting the axial motion, the membrane strain energy
induced by large deflections of the annular plate can be
written as:

Vi = (1A11/4) f; (9w /0r)*rdr (11)
where A,4, B, and D, are the extension-extension, bending-

extension, bending-bending coupling coefficients respectively,
and can be evaluated as follows,

h/2  E(2)

2 o9z (L2 z?) dz

(A11' 311’D11) =

(12)
By, =UB11,D1; = uDyy

(13)

By neglecting the rotary inertia, the kinetic energy of the
annular plate can be written as:

w2

T=1f (a_“:) dm,dm = p(z)rd0drdz (14)
_ 1 h/2 21 a (w2

T= Ef_h/zp(z)dz N (E) rdr (15)
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2
T=mnl f; (%) rar (16)

where
h/2
=1 o) ds

C. Discretization of the Total and Kinetic Energies
Expressions

(17)

The transverse displacement function is expanded as a
series of space functions and the time function. These
functions are supposed to be separable, and the transverse
displacement can be written as:

w(r,t) = w(r).q() (18)

The space function w(r) is expanded in the form of finite
series of n basic functions w; (1) as:

w(r).= a;w;(r)

(19)

If harmonic motion is assumed the time function can be
written as:
q(t) = sin(wt) (20)

By using the summation convention for repeated indices
over the range ([1,..,n], the expression for transverse
displacement is then given by:

w(r,t) = a;w;(r)sin(wt)

21

Substituting the expression given in (21) into (10), (11) and
(16), one obtains:

Vi = (1/2)(mA11/2)a;a;a5.a;5in* (wt)

J, @w;/ar)(8w;/dr) (8w, /dr)(dw,/dr)rdr (22)

Voo = (1/2)a;a;a,a,(mA11/2) byjiy sin* (wt) (23)
where by, is the non-linearity tensor, given by:
bijia = J,, @w;/0r)(8w;/dr)(@w,/0r)(dw,/dr)rdr (24)
Vi
1 a
= = 21D, a;a;5in* (wt) f(azwi/arz)(azwj/arz) rdr
b

2

1 a
+ EZnDnaiajsinz (wt) f(l/rz) (@w;/ar)(ow;/or)rdr
b

a

1

-3 21 By, 04505 sin* (wt) f (02w, /0r?)(0w;/dr)(dw;/dr) rdr
b

—% 21 By, a;a;a,sin*(wt) f (/r) (@w;/3r)(dw;/dr)(8w;/dr) rdr
b

(25)
v, = iaiajZHDllkl-jsinz (wt) + iaiajakZHBllcijksiﬁ(wt) (26)
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1 1
V= EaiajZHanijsinz(wt) + EaiajakZHBucijksin3(wt)

1
+ E a; a]- a,a, (ﬂAll/Z)bijlein4 ((A)t)
27)

where k;jand ¢y, are the rigidity tensor and the coupling
tensor, respectively, and given by:

kij = f:(@zwi/arz)(azwj/arz) rdr + fba 1/r2 (9w,/dr)(dw;/dr)rdr (28)

Cijk

= —f (02w, /0r?)(dw,/dr)(dw;/dr) rdr f(u/r) (8w, /ar)(aw;/or) (8w, /or) rdr
b b

(29)
T =2 2nl, w*aiq;cos?(wt) f; ww; rdr (30)
T = % w?a;a;2mlym;jcos?(wt) (31)
where m;; is the mass tensor, given by:
m;; = fba w;w; rdr (32)

D. Governing Equations

A Hamilton’s principle applied in the present work for
study the dynamic behavior of the plate, is symbolically
written as:

3 [ v —T)dt =0 (33)
In which 0 indicates the variation of the integral.

Introducing the (27) and (31) into the energy condition (33)
via reduces the problem to that of finding the minimum of the
function ¢ given by:

2n/w 2n/w

1
sin?(wt) dt + Eaiajaka,(n'An/Z)bijk, f sin*(wt) dt

0 0
2n/w

1
@ = EaiajZH'ani/-

1
+Eaia,ak2nBucijkf sin®(wt) dt

0
2n/w

1
—szaiajZT[Iomijf cos?(wt) dt
0

(34

With respect to the undetermined constant a;.Integrating the
trigonometric functions sin?(wt), sin®(wt) , sin*(wt) and
cos?(wt) over the range [0, 2n/®] leads to the following
expression:

Q= (T[ / 4a))aiajkij + (37'[ / 160)) { aiajakalbijkl
+ (2B / 3w)aa;aicij, — (my / 2w)a;a; my;
(35)

where,

¢ =(A11/4D11),B = (=B11/D11) ¥y = (Iy/Dy1)  (36)
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In this expression, ¢ appears as a function of only the
undetermined constant a;. i = 1,...,n
Equation (33) reduces to:
dp/da, =0, r=1,...,n (37)
Generally, the tensorsm;; andk;jare symmetric, the
tensors byjy, and c;j are such that:

bijki = byjij 5 bijri = bju (38)

Ciik = (1/3)(Cijk + Ciji + Cijk ) (39

Taking into account these properties of symmetry, it
appears that (37) are equivalent to the following set of
nonlinear algebraic equations:

S
ijr

3 4
aikir + Ezaiajakbijkr + ;ﬁaiajc - }/a)zaimir =0 (40)

r=1,.... ,n

Equation (40) represents a set of n non-linear algebraic
equations relating the n coefficients a; and the frequency w.

w? = ajajkij+(3/2)¢aiajararbjr+(4/m)Baja;cly 1)
yaiajmi;j

which has to be substituted in (40) to obtain a system of n
non-linear algebraic equations’ leading to the n contribution
coefficients a;;i =1, ...... ,N .

Adopting the solution procedure used in [1]-[4], the
contribution coefficient a,, of the basic function
corresponding to the desired mode (the first mode is
considered in this paper) 1 is first fixed, and the other basic
function contribution coefficients are calculated via numerical
solution of the remaining (n — 1) non-linear algebraic
equations (40) forr # 1,

3 4
aikir + > {aiajarbijr + —Baa;clj, — yw?a;my; =0 (42)
The values obtained for a;, fori # 1y, are then substituted

into (41) to obtain the corresponding value of w?%,.

To obtain non-dimensional parameters, we put:

wi(r) =hw/(r*); a=b/a; r =ar”

my;/myt = a’h*; kij/k;" = h*/a® (43)
bijkl/bijkl* = h*/a?%; Cije/Ciji” = h3/a?
m;;*, k;i;" and c;j*and b;jy,"are non dimensional tensors
given by:
my;t = al W{W]-*r*dr* (44)
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ki = [2(@%w;/ar2) (02w /or?) ridr* + [1(1/r*2)(aw; /or") (0w} /or*) rdr*
(45)

i’ = —f (02w; /8r=2)( ow; /or™)(dwy/or™) rdr*

a —fl(u/r)(aw;/ar*)(aw;/ar*)(aw,:/ar*)r*dr*
“ (46)
biji” = fal (Ow; /0r™ dw; /Or™ dwy/0r™ dwy /Or™)rdr™ (47)
Substituting these equations into (40) and (41) leads to:
aki. + ;{aiajakbi*jkr + %ﬂaiajcisj*r —yw?aimj. =0 (48)

a;ajkii+(3/2)a;ajarabi+4/mBasajciy
(0*2 — ] J l: ] (49)

yaiaij

The set of non-linear algebraic equations (40) can be
written in a matrix form as:

[KI* + Knl*]{A} — w*2[M*]{A} = {0} (50)
where [M*]; [KI*] and [Knl*] are the non-dimensional mass
matrix, the non dimensional linear stiffness matrix and the
non-dimensional non-linear geometrical stiffness matrix,
respectively. Each term of the matrix [Knl*] is a quadratic
function of the column matrix of coefficient
{4} =[a;,a,,0a5 .....,a,]"; and is given by:

Knlj; = 3/2){aia;araibj, + (4/m)Ba;a;cjy (51)

It can be seen that when the non-linear term is neglected,

the nonlinear eigenvalue problem (50) reduces to the classical

eigenvalue problem which is the Rayleigh—Ritz formulation of

the linear vibration problem.

[KU'{A} — w?[M*]{A} = {0} (52)

In the linear case, the eigenvalue equation (52) leads to a
series of eigenvalues and corresponding eigenvectors.

In the non-linear case, the solution of (50) should lead to a

set of amplitude-dependent eigenvectors, with their amplitude

dependent associated eigenvalues. In the present work, the

iterative method of solution is used for to solve the non-linear
eigenvalue problem (50).

E. Stress Expressions

The bending strains &, and &4 are given by:
epr(2) = —z(d*w/dr?) ;ep(2) = —(z /1) (dw/dr) (53)
The in-plane membrane strains &,,,- and €,,9 are given by:

emr(2) = (du/dr) + (1/2)(dw/dr)? emg(2) = u/r (54)
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By using the classical thin plate assumption of plane stress
and Hooke’s law, the radial and circumferential bending
stresses are given by:

ZE(z)

Obr = — oy L(@Pw/dr®) + (/) (dw/dr)]  (55)
0v0 = — 22 [(1/r)(dw/dr) + v (d2w/dr®)]  (56)

and the radial and circumferential membrane stresses are
given by:

_ _E®@
mr — (1—1/2)

[(du/dr) + (1/2)(dw/dr)? + v(u/7r)] (57)

Omo = s [w/) + v((du/dr) + (1/2)(dw/dr)?)] (58)
By neglecting the in-plane displacement u, the membrane
stresses are negligible.
In terms of the non-dimensional parameters defined in the
previous section, the radial and circumferential bending
stresses 0y, and g, can be defined by:

ZE(z2)h [dzw* v dw*]
Opyr = — — 59
br (1-v2)a? Ldr*? r*dr* ( )
zE(z)h [1 dw* dzw*]
Opg = — = vV—z 60
b (1-v2)a? Lr* dr* dr*? (60)

F. Properties of Functionally Graded Material
The material properties P of the FG plate are assumed to
vary continuously through the thickness of the plate as a
function of the volume fraction V;and the properties of
constituent materials P;. These properties can be determined
by the simple rule of mixture as [2]-[11].
P =%, PV P=E,p,v,. (61)
where P; and V; are the material properties and volume

fraction respectively of the constituent material i and n is
number of the constituent material.

TABLEI
MATERIAL PROPERTIES OF METAL AND CERAMIC CONSTITUENTS OF AN
ANNULAR FGM PLATE [9]
Materials E(GPa) v
Ceramic (Zirconia) 110.25 0.288
Metal (Aluminum) 278.41 0.288

E: Young’s modulus
v: Poisson’s ratio
p: Mass density

It is clear that the sum of volume fractions of the constituent
materials should be:

= Vi=1 (62)
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A simple power law distribution [10] is used for the volume
fraction of the constituents’ material across the thickness of
the plate. This is defined as:

ue = (43’

! (63)

V;(z) denote the volume fraction of constituent material i ; z
is the thickness coordinate (—h/2 <z < h/2) and N is the
volume fraction index which takes values greater than or equal
tozero(0 < N < o).

Here, the FGM is combined of metal and ceramicn = 2
P = E,p. The variation of Poisson’s ratio v is generally
small and it is assumed to be a constant for convenience. The
detail of this FGM is presented in Table I.

From (61) to (63) one has:

P(z) = P,V,, +P.V. (64)
Vo +V. =1 (65)
@ =(+) h@=1-(G+)" @

V.(z) and V,,,(z) denote the volume fraction of ceramic and
metal, respectively.

The value of (N) equal to zero represents the fully metal,
and for (N) equal to infinity represents the fully ceramic .For
(N =1) there is a linear variation of the composition of
constituents.

E(z) =EV, + EnV , p(2) = pVe + pmVin  (67)

Introduction of (66) into (64) leads to the material
properties of the FGM plate as:

E@= (e~ En) G40 + En  (69)

p@= (= pm) C+) +om

1 T
N=0.01

(z/h)

Fig. 2 Variation of ceramic volume fraction through the
dimensionless thickness for different values of volume fraction index
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0
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0
(z/h)

Fig. 3 Variation of metal volume fraction through the dimensionless
thickness for different values of volume fraction index

E(z)(GPa)
g B B

160

100 I 1 1 1 1 1 1 1 1
05 04 03 02 0l 0
(z/h)

Fig. 4 Variation of Young’s modulus of FG plate through the
dimensionless thickness for different values of volume fraction index

G. Determination of the Non- Linear Mode Shapes of Thin
Isotropic Annular Plate Having Both Edges Clamped

In this work, the Rayleigh method is used to analyze the
free vibrations and determine the fundamental linear
frequencies. The method is taken from [8]-[13]. Numerical
results thus obtained are summarized in Table II with
comparing results with those in the literature.

TABLEII
DIMENSIONLESS FREQUENCY PARAMETERS FOR THE ANNULAR PLATE WITH CLAMPED OUTER AND INNER EDGE (C-C) (v = 0.3)
Mode b/a
Results

(m, n) 0.1 0.3 0.5 0.7
Leissa [13] 27.3000 45.2000 89.2000 248.0000
Vera and Febbo[8] 0, 1) 27.2800 45.3460 89.2500 248.4020
Present study 27.2805 45.3462 89.2508 248.4021
Leissa [13] 28.4000 46.6000 90.2000 249.0000
Vera and Febbo[8] (L, 1) 28.9150 46.6430 90.2300 249.1640
Present study 28.9158 46.6435 90.2303 249.1639
Leissa [13] 36.7000 51.0000 93.3000 251.0000
Vera and Febbo[8] 2, 1) 36.6170 51.1380 93.3210 251.4800
Present study 36.6173 51.1388 93.3212 251.4806
Leissa [13] G, 51.2000 60.0000 99.0000 256.0000
Present study 51.2188 60.0335 98.9280 255.4438

To obtain the fundamental non-linear mode shapes, the first
six axisymmetric linear mode shapes were used. The
corresponding non-dimensional linear frequencies (}),
i=1,..,6 are given in Table III and the corresponding curves
are plotted in Fig. 5.

TABLE IIT
NON-DIMENSIONAL LINEAR FREQUENCIES(€)]);; ASSOCIATED WITH THE
AXISYMMETRIC LINEAR MODES OF A THIN ANNULAR PLATE HAVING BOTH
EDGES CLAMPED (@ = 0.1) FORi =1,..,6

i 1 2 3 4 5 6

(Qp); 27.280  75.366 148.213 245.484 367.175 513.268
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Fig. 5 Non-dimensional axiymmetric linear modes shape w; () of
free vibration for an annular plate having both edges clamped
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(a=01) fori=1,..,6
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[II. NUMERICAL RESULTS AND DISCUSSIONS

In order to determine the results of the present study, the
non-linear vibration of an annular FGM plate having both
edges has been solved using the iterative method of solution

The first non-linear normalized axisymmetric mode shape
for various values of (N) is plotted in Fig. 6. It may be seen
that the effect of various values of (N) on this mode shape is
negligible.

1

o —N=0.01
03 —N=0.1 |
—N=0.2
08 ——N=0.3 |
0.7 Model 1 —N=0.5
— N=1
%06 T = 300°K —nN=2
*EE —N=3
~ 05 v =0.288 N=5
*E —N=10
— 04 Whae =15 —N=100 -
0.3| E
02 4
01 4
U L L L 1 L L
0.2 0.3 0.4 0s 0.6 0.7 0.8 09 1
-

Fig. 6 First non-linear normalized axiymmetric mode shape of free an
annular plate having both edges clamped for different values of (N)

The variation of non-dimensional frequency ratio with
dimensionless maximum vibration amplitude associated with
the first non-linear axisymmetric mode shape of an annular FG
plate having both edges clamped for different values of (N) is
plotted in Fig. 7.

At a given amplitude the frequencies increase legerment
relative to those of an annular isotropic plate (N = 0,N = )
for values of (N) varying from 0 to 0.5 and decreases
legerment for values of volume fraction index (N) varying
from 2 to 10.This variation increases with the amplitude but it
remains low.

5]

f=1
5
o
=
(=1
(=)
f=1
=2
[
—
iy
—
=
—
L=
—
=2}
=)

*
Wmax

Fig. 7 Variation of non-dimensional frequency ratio with
dimensionless maximum vibration amplitude associated with the first
non-linear axisymmetric mode shape of an annular FG plate having
both edges clamped for different values of (N)
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In Figs. 8 and 11 are plotted the variation of the radial and
circumferential stresses with dimensionless radius from a
surface to another for (N = 0.5) to see the variation of the
bending stresses with dimensionless radius from a rich-metal
surface to rich-ceramic surface.

In Figs. 9, 10, 12 and 13 are plotted the variation of radial
and circumferential stresses with dimensionless maximum
vibration amplitude on different surfaces for (N = 0.5) at the
inner and outre edges of annular FG plate, for defining the
most stressed surface.

From these figures, it is observed that the bending stresses
at the geometrical middle surface (z/h =0) remain
unchanged and the most stressed area is rich ceramic surface.

10

Model 1 —Z=h2
o —Z=3h4 |
T = 300°K s
ot —z-n2 |
v = 0.288
g* Wi =15
e
%
-]

[E)

Fig. 8 Variation of radial stress with dimensionless radius on
different surfaces for N = 0.5

103 + ; ;

ol Model1 | 1
re' T = 300"K /

I v =0288

N=05

Oy lGPa)

Fig. 9 Variation of radial stress with dimensionless maximum
vibration amplitude on different surfaces for N = 0.5
at the inner edge
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Fig. 10 Variation of radial stress with dimensionless maximum
vibration amplitude on different surfaces for N = 0.5
at the outre edge
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Fig. 12 Variation of circumferential stress with dimensionless
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inner edge
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Fig. 13 Variation of circumferential stress with dimensionless
maximum vibration amplitude on different surfaces for N = 0.5 at
the outre edge

Fig. 14 demonstrates the variation of the radial bending
stress at the inner edge of FG annular plate through the
dimensionless thickness for N = 0.5. It shows that the radial
stress is maximum on rich-ceramic surface (z/h = 0.5)and it
is zero on neutral surface (z/h = 0).

In Figs. 15 to 18 are plotted the variation of the bending
stresses at the inner and outre edge of FG annular plate
through the dimensionless thickness for different values of
volume fraction index N.

From these figures, it is observed that that in the case of an
isotropic material (plate made completely of metal and plate
made completely of ceramic) the bending stresses distribution
through the thickness of the plate at the clamped edges is
linear and symmetric, but in the case of FG materials this
distribution is non-linear, asymmetric and varies with (N)
between the two lines representing the two linear cases which
are confused with the two cases N = 0 (Ceramic) and N = oo
(Metal).
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Fig. 14 Variation of the radial stress at the inner edge of FG annular
plate through the dimensionless thickness for N = 0.5

1SN1:0000000091950263



Open Science Index, Aerospace and Mechanical Engineering Vol:7, No:11, 2013 publications.waset.org/9996643.pdf

World Academy of Science, Engineering and Technology
International Journal of Aerospace and Mechanical Engineering
Vol:7, No:11, 2013

05 ; ; . ‘ ‘ 05 ; ; ; ; . ‘
L L Model 1 J

0.4 Model 1 0.4

o3l 030 T = 300°K —

T = 300°K
02f 0.2r v=0288 ]
o1l v =0.288 ol
N . . ll e =15 e~ Isotropic plate made at Ceramic |
zZ waw=15 | F I e e z " e ———_—
h —N=0a1 h :gjg.lln
——N-01 0.
0.1r — N-02 B 0.1F —N=02 4
o3 S
—xt ] - 1
-0.3F :::i 1 0.3 —N=3 -
= —N=5
-0.4r —:;u el 04 —N=10 4
N=100 N0
0= 1 L 1 1 05 b 1 1 1 1
-10 2 4 6 8 10 o1 08 06 04 02 0 0.2 04 06 08 1
Oy, (GPa) Opg(6Pa)
Fig. 15 Variation of the radial stress at the inner edge of FG annular Fig. 18 Variation of the circumferential stress at the outre edge of FG
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0.5 ‘ ; ‘ ‘ VI. CONCLUSION

04 Model 1 In order to investigate the effect of the volume fraction on

03f T = 300°K the vibration behavior at large amplitude of a thin annular

02f 0288 functionally graded plate, the theoretical model based on the
v =>u . y z .

il I owtrapic plate made af Ceramic classical plate theory and the Von Kérman geometrical non-
z | Wimax = 1.5 # T picplate made at Metel linearity assumptions is used in this paper. For the low
h - o vibration amplitudes, the effect of volume fraction index on

o N-03 the frequencies is negligible, but he has considerable effect on

AL ——N-08 . . N . .

02 N1 the stresses in high vibration amplitudes.
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