Search results for: Global Optimization Heuristics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2995

Search results for: Global Optimization Heuristics

1825 Seismic Behavior of Three-Dimensional Steel Buildings with Post-Tensioned Connections

Authors: M. E. Soto-López, I. Gaxiola-Avendaño, A. Reyes-Salazar, E. Bojórquez, S. E. Ruiz

Abstract:

The seismic responses of steel buildings with semirigid post-tensioned connections (PC) are estimated and compared with those of steel buildings with typical rigid (welded) connections (RC). The comparison is made in terms of global and local response parameters. The results indicate that the seismic responses in terms of interstory shears, roof displacements, axial load and bending moments are smaller for the buildings with PC connection. The difference is larger for global than for local parameters, which in turn varies from one column location to another. The reason for this improved behavior is that the buildings with PC dissipate more hysteretic energy than those with RC. In addition, unlike the case of buildings with WC, for the PC structures the hysteretic energy is mostly dissipated at the connections, which implies that structural damage in beams and columns is not significant. According to these results, steel buildings with PC are a viable option in high seismicity areas because of their smaller response and self-centering connection capacity as well as the fact that brittle failure is avoided.

Keywords: Inter-story drift, Nonlinear time-history analysis, Post-tensioned connections, Steel buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2166
1824 Optimizing and Evaluating Performance Quality Control of the Production Process of Disposable Essentials Using Approach Vague Goal Programming

Authors: Hadi Gholizadeh, Ali Tajdin

Abstract:

To have effective production planning, it is necessary to control the quality of processes. This paper aims at improving the performance of the disposable essentials process using statistical quality control and goal programming in a vague environment. That is expressed uncertainty because there is always a measurement error in the real world. Therefore, in this study, the conditions are examined in a vague environment that is a distance-based environment. The disposable essentials process in Kach Company was studied. Statistical control tools were used to characterize the existing process for four factor responses including the average of disposable glasses’ weights, heights, crater diameters, and volumes. Goal programming was then utilized to find the combination of optimal factors setting in a vague environment which is measured to apply uncertainty of the initial information when some of the parameters of the models are vague; also, the fuzzy regression model is used to predict the responses of the four described factors. Optimization results show that the process capability index values for disposable glasses’ average of weights, heights, crater diameters and volumes were improved. Such increasing the quality of the products and reducing the waste, which will reduce the cost of the finished product, and ultimately will bring customer satisfaction, and this satisfaction, will mean increased sales.

Keywords: Goal programming, quality control, vague environment, disposable glasses’ optimization, fuzzy regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1040
1823 Weld Defect Detection in Industrial Radiography Based Digital Image Processing

Authors: N. Nacereddine, M. Zelmat, S. S. Belaïfa, M. Tridi

Abstract:

Industrial radiography is a famous technique for the identification and evaluation of discontinuities, or defects, such as cracks, porosity and foreign inclusions found in welded joints. Although this technique has been well developed, improving both the inspection process and operating time, it does suffer from several drawbacks. The poor quality of radiographic images is due to the physical nature of radiography as well as small size of the defects and their poor orientation relatively to the size and thickness of the evaluated parts. Digital image processing techniques allow the interpretation of the image to be automated, avoiding the presence of human operators making the inspection system more reliable, reproducible and faster. This paper describes our attempt to develop and implement digital image processing algorithms for the purpose of automatic defect detection in radiographic images. Because of the complex nature of the considered images, and in order that the detected defect region represents the most accurately possible the real defect, the choice of global and local preprocessing and segmentation methods must be appropriated.

Keywords: Digital image processing, global and localapproaches, radiographic film, weld defect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4072
1822 Predictive Maintenance of Industrial Shredders: Efficient Operation through Real-Time Monitoring Using Statistical Machine Learning

Authors: Federico Pittino, Dominik Holzmann, Krithika Sayar-Chand, Stefan Moser, Sebastian Pliessnig, Thomas Arnold

Abstract:

The shredding of waste materials is a key step in the recycling process towards circular economy. Industrial shredders for waste processing operate in very harsh operating conditions, leading to the need of frequent maintenance of critical components. The maintenance optimization is particularly important also to increase the machine’s efficiency, thereby reducing the operational costs. In this work, a monitoring system has been developed and deployed on an industrial shredder located at a waste recycling plant in Austria. The machine has been monitored for several months and methods for predictive maintenance have been developed for two key components: the cutting knives and the drive belt. The large amount of collected data is leveraged by statistical machine learning techniques, thereby not requiring a very detailed knowledge of the machine or its live operating conditions. The results show that, despite the wide range of operating conditions, a reliable estimate of the optimal time for maintenance can be derived. Moreover, the trade-off between the cost of maintenance and the increase in power consumption due to the wear state of the monitored components of the machine is investigated. This work proves the benefits of real-time monitoring system for efficient operation of industrial shredders.

Keywords: predictive maintenance, circular economy, industrial shredder, cost optimization, statistical machine learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 640
1821 Conventional and PSO Based Approaches for Model Reduction of SISO Discrete Systems

Authors: S. K. Tomar, R. Prasad, S. Panda, C. Ardil

Abstract:

Reduction of Single Input Single Output (SISO) discrete systems into lower order model, using a conventional and an evolutionary technique is presented in this paper. In the conventional technique, the mixed advantages of Modified Cauer Form (MCF) and differentiation are used. In this method the original discrete system is, first, converted into equivalent continuous system by applying bilinear transformation. The denominator of the equivalent continuous system and its reciprocal are differentiated successively, the reduced denominator of the desired order is obtained by combining the differentiated polynomials. The numerator is obtained by matching the quotients of MCF. The reduced continuous system is converted back into discrete system using inverse bilinear transformation. In the evolutionary technique method, Particle Swarm Optimization (PSO) is employed to reduce the higher order model. PSO method is based on the minimization of the Integral Squared Error (ISE) between the transient responses of original higher order model and the reduced order model pertaining to a unit step input. Both the methods are illustrated through numerical example.

Keywords: Discrete System, Single Input Single Output (SISO), Bilinear Transformation, Reduced Order Model, Modified CauerForm, Polynomial Differentiation, Particle Swarm Optimization, Integral Squared Error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943
1820 Debts and Debt-Based Sukuk Related to Risk Shifting Behavior

Authors: Siti Raihana Hamzah

Abstract:

This paper elaborates risk shifting in debt financing system as the ultimate cause of the global financial crisis. In contrast, risk sharing in equity financing like sukuk helps the economic system to be better sustained. Nevertheless, some types of sukuk are haunted by the issue of imitation with bonds. The critics on the imitation issue not only have raised doubt on the ability of sukuk to diminish risk shifting behavior but also the ability of this Islamic financial instrument to ensure better future financial stability. Through that, this paper provides discussion on the possibility of sukuk to induce risk shifting and how equity financing may help sukuk to be free from risk shifting. This paper is important in the sense that sukuk receives a significant demand from investors throughout the world. For this instrument to be supportive in the future economic stability, the issue of imitation needs to be identified and addressed. Furthermore, critics cannot be focused on debts and its ability to gauge the financial flux but also to sukuk due to their structures similarity.

Keywords: Global financial crisis, debt, risk-shifting, risk sharing, equity, sukuk, bonds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2556
1819 Appraisal of Relativistic Effects on GNSS Receiver Positioning

Authors: I. Yakubu, Y. Y. Ziggah, E. A. Gyamera

Abstract:

The Global Navigation Satellite System (GNSS) started with the launch of the United State Department of Defense Global Positioning System (GPS). GNSS systems has grown over the years to include: GLONASS (Russia); Galileo (European Union); BeiDou (China). Any GNSS architecture consists of three major segments: Space, Control and User Segments. Errors such as; multipath, ionospheric and tropospheric effects, satellite clocks, receiver noise and orbit errors (relativity effect) have significant effects on GNSS positioning. To obtain centimeter level accuracy, the impacts of the relative motion of the satellites and earth need to be taken into account. This paper discusses the relevance of the theory of relativity as a source of error for GNSS receivers for position fix based on available relevant literature. Review of relevant literature reveals that due to relativity; Time dilation, Gravitational frequency shift and Sagnac effect cause significant influence on the use of GNSS receivers for positioning by an error range of ± 2.5 m based on pseudo-range computation.

Keywords: GNSS, relativistic effects, pseudo-range, accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 388
1818 Multi-models Approach for Describing and Verifying Constraints Based Interactive Systems

Authors: Mamoun Sqali, Mohamed Wassim Trojet

Abstract:

The requirements analysis, modeling, and simulation have consistently been one of the main challenges during the development of complex systems. The scenarios and the state machines are two successful models to describe the behavior of an interactive system. The scenarios represent examples of system execution in the form of sequences of messages exchanged between objects and are a partial view of the system. In contrast, state machines can represent the overall system behavior. The automation of processing scenarios in the state machines provide some answers to various problems such as system behavior validation and scenarios consistency checking. In this paper, we propose a method for translating scenarios in state machines represented by Discreet EVent Specification and procedure to detect implied scenarios. Each induced DEVS model represents the behavior of an object of the system. The global system behavior is described by coupling the atomic DEVS models and validated through simulation. We improve the validation process with integrating formal methods to eliminate logical inconsistencies in the global model. For that end, we use the Z notation.

Keywords: Scenarios, DEVS, synthesis, validation and verification, simulation, formal verification, z notation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1385
1817 Bee Parameter Determination via Weighted Centriod Modified Simplex and Constrained Response Surface Optimisation Methods

Authors: P. Luangpaiboon

Abstract:

Various intelligences and inspirations have been adopted into the iterative searching process called as meta-heuristics. They intelligently perform the exploration and exploitation in the solution domain space aiming to efficiently seek near optimal solutions. In this work, the bee algorithm, inspired by the natural foraging behaviour of honey bees, was adapted to find the near optimal solutions of the transportation management system, dynamic multi-zone dispatching. This problem prepares for an uncertainty and changing customers- demand. In striving to remain competitive, transportation system should therefore be flexible in order to cope with the changes of customers- demand in terms of in-bound and outbound goods and technological innovations. To remain higher service level but lower cost management via the minimal imbalance scenario, the rearrangement penalty of the area, in each zone, including time periods are also included. However, the performance of the algorithm depends on the appropriate parameters- setting and need to be determined and analysed before its implementation. BEE parameters are determined through the linear constrained response surface optimisation or LCRSOM and weighted centroid modified simplex methods or WCMSM. Experimental results were analysed in terms of best solutions found so far, mean and standard deviation on the imbalance values including the convergence of the solutions obtained. It was found that the results obtained from the LCRSOM were better than those using the WCMSM. However, the average execution time of experimental run using the LCRSOM was longer than those using the WCMSM. Finally a recommendation of proper level settings of BEE parameters for some selected problem sizes is given as a guideline for future applications.

Keywords: Meta-heuristic, Bee Algorithm, Dynamic Multi-Zone Dispatching, Linear Constrained Response SurfaceOptimisation Method, Weighted Centroid Modified Simplex Method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1373
1816 Simultaneous Saccharification and Fermentation(SSF) of Sugarcane Bagasse - Kinetics and Modeling

Authors: E.Sasikumar, T.Viruthagiri

Abstract:

Simultaneous Saccharification and Fermentation (SSF) of sugarcane bagasse by cellulase and Pachysolen tannophilus MTCC *1077 were investigated in the present study. Important process variables for ethanol production form pretreated bagasse were optimized using Response Surface Methodology (RSM) based on central composite design (CCD) experiments. A 23 five level CCD experiments with central and axial points was used to develop a statistical model for the optimization of process variables such as incubation temperature (25–45°) X1, pH (5.0–7.0) X2 and fermentation time (24–120 h) X3. Data obtained from RSM on ethanol production were subjected to the analysis of variance (ANOVA) and analyzed using a second order polynomial equation and contour plots were used to study the interactions among three relevant variables of the fermentation process. The fermentation experiments were carried out using an online monitored modular fermenter 2L capacity. The processing parameters setup for reaching a maximum response for ethanol production was obtained when applying the optimum values for temperature (32°C), pH (5.6) and fermentation time (110 h). Maximum ethanol concentration (3.36 g/l) was obtained from 50 g/l pretreated sugarcane bagasse at the optimized process conditions in aerobic batch fermentation. Kinetic models such as Monod, Modified Logistic model, Modified Logistic incorporated Leudeking – Piret model and Modified Logistic incorporated Modified Leudeking – Piret model have been evaluated and the constants were predicted.

Keywords: Sugarcane bagasse, ethanol, optimization, Pachysolen tannophilus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2302
1815 Adaptive Pulse Coupled Neural Network Parameters for Image Segmentation

Authors: Thejaswi H. Raya, Vineetha Bettaiah, Heggere S. Ranganath

Abstract:

For over a decade, the Pulse Coupled Neural Network (PCNN) based algorithms have been successfully used in image interpretation applications including image segmentation. There are several versions of the PCNN based image segmentation methods, and the segmentation accuracy of all of them is very sensitive to the values of the network parameters. Most methods treat PCNN parameters like linking coefficient and primary firing threshold as global parameters, and determine them by trial-and-error. The automatic determination of appropriate values for linking coefficient, and primary firing threshold is a challenging problem and deserves further research. This paper presents a method for obtaining global as well as local values for the linking coefficient and the primary firing threshold for neurons directly from the image statistics. Extensive simulation results show that the proposed approach achieves excellent segmentation accuracy comparable to the best accuracy obtainable by trial-and-error for a variety of images.

Keywords: Automatic Selection of PCNN Parameters, Image Segmentation, Neural Networks, Pulse Coupled Neural Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2287
1814 Structural Damage Detection via Incomplete Modal Data Using Output Data Only

Authors: Ahmed Noor Al-Qayyim, Barlas Ozden Caglayan

Abstract:

Structural failure is caused mainly by damage that often occurs on structures. Many researchers focus on to obtain very efficient tools to detect the damage in structures in the early state. In the past decades, a subject that has received considerable attention in literature is the damage detection as determined by variations in the dynamic characteristics or response of structures. The study presents a new damage identification technique. The technique detects the damage location for the incomplete structure system using output data only. The method indicates the damage based on the free vibration test data by using ‘Two Points Condensation (TPC) technique’. This method creates a set of matrices by reducing the structural system to two degrees of freedom systems. The current stiffness matrices obtain from optimization the equation of motion using the measured test data. The current stiffness matrices compare with original (undamaged) stiffness matrices. The large percentage changes in matrices’ coefficients lead to the location of the damage. TPC technique is applied to the experimental data of a simply supported steel beam model structure after inducing thickness change in one element, where two cases consider. The method detects the damage and determines its location accurately in both cases. In addition, the results illustrate these changes in stiffness matrix can be a useful tool for continuous monitoring of structural safety using ambient vibration data. Furthermore, its efficiency proves that this technique can be used also for big structures.

Keywords: Damage detection, two points–condensation, structural health monitoring, signals processing, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2697
1813 Real Time Lidar and Radar High-Level Fusion for Obstacle Detection and Tracking with Evaluation on a Ground Truth

Authors: Hatem Hajri, Mohamed-Cherif Rahal

Abstract:

Both Lidars and Radars are sensors for obstacle detection. While Lidars are very accurate on obstacles positions and less accurate on their velocities, Radars are more precise on obstacles velocities and less precise on their positions. Sensor fusion between Lidar and Radar aims at improving obstacle detection using advantages of the two sensors. The present paper proposes a real-time Lidar/Radar data fusion algorithm for obstacle detection and tracking based on the global nearest neighbour standard filter (GNN). This algorithm is implemented and embedded in an automative vehicle as a component generated by a real-time multisensor software. The benefits of data fusion comparing with the use of a single sensor are illustrated through several tracking scenarios (on a highway and on a bend) and using real-time kinematic sensors mounted on the ego and tracked vehicles as a ground truth.

Keywords: Ground truth, Hungarian algorithm, lidar Radar data fusion, global nearest neighbor filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961
1812 Extraction and Characterisation of Protein Fraction from Date Palm Fruit Seeds

Authors: Ibrahim A. Akasha, Lydia Campbell, Stephen R. Euston

Abstract:

Date palm (Phoenix dactylifera L.) seeds are waste streams which are considered a major problem to the food industry. They contain potentially useful protein (10-15% of the whole date-s weight). Global production, industrialisation and utilisation of dates are increasing steadily. The worldwide production of date palm fruit has increased from 1.8 million tons in 1961 to 6.9 million tons in 2005, thus from the global production of dates are almost 800.000 tonnes of date palm seeds are not currently used [1]. The current study was carried out to convert the date palm seeds into useful protein powder. Compositional analysis showed that the seeds were rich in protein and fat 5.64 and 8.14% respectively. We used several laboratory scale methods to extract proteins from seed to produce a high protein powder. These methods included simple acid or alkali extraction, with or without ultrafiltration and phenol trichloroacetic acid with acetone precipitation (Ph/TCA method). The highest protein content powder (68%) was obtained by Ph/TCA method with yield of material (44%) whereas; the use of just alkali extraction gave the lowest protein content of 8%, and a yield of 32%.

Keywords: Date palm seed, Phoenix dactylifera L., extraction of date palm seed protein

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4615
1811 Topographic Mapping of Farmland by Integration of Multiple Sensors on Board Low-Altitude Unmanned Aerial System

Authors: Mengmeng Du, Noboru Noguchi, Hiroshi Okamoto, Noriko Kobayashi

Abstract:

This paper introduced a topographic mapping system with time-saving and simplicity advantages based on integration of Light Detection and Ranging (LiDAR) data and Post Processing Kinematic Global Positioning System (PPK GPS) data. This topographic mapping system used a low-altitude Unmanned Aerial Vehicle (UAV) as a platform to conduct land survey in a low-cost, efficient, and totally autonomous manner. An experiment in a small-scale sugarcane farmland was conducted in Queensland, Australia. Subsequently, we synchronized LiDAR distance measurements that were corrected by using attitude information from gyroscope with PPK GPS coordinates for generation of precision topographic maps, which could be further utilized for such applications like precise land leveling and drainage management. The results indicated that LiDAR distance measurements and PPK GPS altitude reached good accuracy of less than 0.015 m.

Keywords: Land survey, light detection and ranging, post processing kinematic global positioning system, precision agriculture, topographic map, unmanned aerial vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1054
1810 Multi Response Optimization in Drilling Al6063/SiC/15% Metal Matrix Composite

Authors: Hari Singh, Abhishek Kamboj, Sudhir Kumar

Abstract:

This investigation proposes a grey-based Taguchi method to solve the multi-response problems. The grey-based Taguchi method is based on the Taguchi’s design of experimental method, and adopts grey relational analysis (GRA) to transfer multi-response problems into single-response problems. In this investigation, an attempt has been made to optimize the drilling process parameters considering weighted output response characteristics using grey relational analysis. The output response characteristics considered are surface roughness, burr height and hole diameter error under the experimental conditions of cutting speed, feed rate, step angle, and cutting environment. The drilling experiments were conducted using L27 orthogonal array. A combination of orthogonal array, design of experiments and grey relational analysis was used to ascertain best possible drilling process parameters that give minimum surface roughness, burr height and hole diameter error. The results reveal that combination of Taguchi design of experiment and grey relational analysis improves surface quality of drilled hole. 

Keywords: Metal matrix composite, Drilling, Optimization, step drill, Surface roughness, burr height, hole diameter error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3255
1809 Neural Network Supervisory Proportional-Integral-Derivative Control of the Pressurized Water Reactor Core Power Load Following Operation

Authors: Derjew Ayele Ejigu, Houde Song, Xiaojing Liu

Abstract:

This work presents the particle swarm optimization trained neural network (PSO-NN) supervisory proportional integral derivative (PID) control method to monitor the pressurized water reactor (PWR) core power for safe operation. The proposed control approach is implemented on the transfer function of the PWR core, which is computed from the state-space model. The PWR core state-space model is designed from the neutronics, thermal-hydraulics, and reactivity models using perturbation around the equilibrium value. The proposed control approach computes the control rod speed to maneuver the core power to track the reference in a closed-loop scheme. The particle swarm optimization (PSO) algorithm is used to train the neural network (NN) and to tune the PID simultaneously. The controller performance is examined using integral absolute error, integral time absolute error, integral square error, and integral time square error functions, and the stability of the system is analyzed by using the Bode diagram. The simulation results indicated that the controller shows satisfactory performance to control and track the load power effectively and smoothly as compared to the PSO-PID control technique. This study will give benefit to design a supervisory controller for nuclear engineering research fields for control application.

Keywords: machine learning, neural network, pressurized water reactor, supervisory controller

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 515
1808 Mean-Variance Optimization of Portfolios with Return of Premium Clauses in a DC Pension Plan with Multiple Contributors under Constant Elasticity of Variance Model

Authors: Bright O. Osu, Edikan E. Akpanibah, Chidinma Olunkwa

Abstract:

In this paper, mean-variance optimization of portfolios with the return of premium clauses in a defined contribution (DC) pension plan with multiple contributors under constant elasticity of variance (CEV) model is studied. The return clauses which permit death members to claim their accumulated wealth are considered, the remaining wealth is not equally distributed by the remaining members as in literature. We assume that before investment, the surplus which includes funds of members who died after retirement adds to the total wealth. Next, we consider investments in a risk-free asset and a risky asset to meet up the expected returns of the remaining members and obtain an optimized problem with the help of extended Hamilton Jacobi Bellman equation. We obtained the optimal investment strategies for the two assets and the efficient frontier of the members by using a stochastic optimal control technique. Furthermore, we studied the effect of the various parameters of the optimal investment strategies and the effect of the risk-averse level on the efficient frontier. We observed that the optimal investment strategy is the same as in literature, secondly, we observed that the surplus decreases the proportion of the wealth invested in the risky asset.

Keywords: DC pension fund, Hamilton Jacobi Bellman equation, optimal investment strategies, stochastic optimal control technique, return of premiums clauses, mean-variance utility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 775
1807 Optimization of Some Process Parameters to Produce Raisin Concentrate in Khorasan Region of Iran

Authors: Peiman Ariaii, Hamid Tavakolipour, Mohsen Pirdashti, Rabehe Izadi Amoli

Abstract:

Raisin Concentrate (RC) are the most important products obtained in the raisin processing industries. These RC products are now used to make the syrups, drinks and confectionery productions and introduced as natural substitute for sugar in food applications. Iran is a one of the biggest raisin exporter in the world but unfortunately despite a good raw material, no serious effort to extract the RC has been taken in Iran. Therefore, in this paper, we determined and analyzed affected parameters on extracting RC process and then optimizing these parameters for design the extracting RC process in two types of raisin (round and long) produced in Khorasan region. Two levels of solvent (1:1 and 2:1), three levels of extraction temperature (60°C, 70°C and 80°C), and three levels of concentration temperature (50°C, 60°C and 70°C) were the treatments. Finally physicochemical characteristics of the obtained concentrate such as color, viscosity, percentage of reduction sugar, acidity and the microbial tests (mould and yeast) were counted. The analysis was performed on the basis of factorial in the form of completely randomized design (CRD) and Duncan's multiple range test (DMRT) was used for the comparison of the means. Statistical analysis of results showed that optimal conditions for production of concentrate is round raisins when the solvent ratio was 2:1 with extraction temperature of 60°C and then concentration temperature of 50°C. Round raisin is cheaper than the long one, and it is more economical to concentrate production. Furthermore, round raisin has more aromas and the less color degree with increasing the temperature of concentration and extraction. Finally, according to mentioned factors the concentrate of round raisin is recommended.

Keywords: Raisin concentrate, optimization, process parameters, round raisin, Iran.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
1806 On the Exact Solution of Non-Uniform Torsion for Beams with Axial Symmetric Cross-Section

Authors: A.Campanile, M. Mandarino, V. Piscopo, A. Pranzitelli

Abstract:

In the traditional theory of non-uniform torsion the axial displacement field is expressed as the product of the unit twist angle and the warping function. The first one, variable along the beam axis, is obtained by a global congruence condition; the second one, instead, defined over the cross-section, is determined by solving a Neumann problem associated to the Laplace equation, as well as for the uniform torsion problem. So, as in the classical theory the warping function doesn-t punctually satisfy the first indefinite equilibrium equation, the principal aim of this work is to develop a new theory for non-uniform torsion of beams with axial symmetric cross-section, fully restrained on both ends and loaded by a constant torque, that permits to punctually satisfy the previous equation, by means of a trigonometric expansion of the axial displacement and unit twist angle functions. Furthermore, as the classical theory is generally applied with good results to the global and local analysis of ship structures, two beams having the first one an open profile, the second one a closed section, have been analyzed, in order to compare the two theories.

Keywords: Non-uniform torsion, Axial symmetric cross-section, Fourier series, Helmholtz equation, FE method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2363
1805 Optimization of Lead Bioremediation by Marine Halomonas sp. ES015 Using Statistical Experimental Methods

Authors: Aliaa M. El-Borai, Ehab A. Beltagy, Eman E. Gadallah, Samy A. ElAssar

Abstract:

Bioremediation technology is now used for treatment instead of traditional metal removal methods. A strain was isolated from Marsa Alam, Red sea, Egypt showed high resistance to high lead concentration and was identified by the 16S rRNA gene sequencing technique as Halomonas sp. ES015. Medium optimization was carried out using Plackett-Burman design, and the most significant factors were yeast extract, casamino acid and inoculums size. The optimized media obtained by the statistical design raised the removal efficiency from 84% to 99% from initial concentration 250 ppm of lead. Moreover, Box-Behnken experimental design was applied to study the relationship between yeast extract concentration, casamino acid concentration and inoculums size. The optimized medium increased removal efficiency to 97% from initial concentration 500 ppm of lead. Immobilized Halomonas sp. ES015 cells on sponge cubes, using optimized medium in loop bioremediation column, showed relatively constant lead removal efficiency when reused six successive cycles over the range of time interval. Also metal removal efficiency was not affected by flow rate changes. Finally, the results of this research refer to the possibility of lead bioremediation by free or immobilized cells of Halomonas sp. ES015. Also, bioremediation can be done in batch cultures and semicontinuous cultures using column technology.

Keywords: Bioremediation, lead, Box–Behnken, Halomonas sp. ES015, loop bioremediation, Plackett-Burman.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1018
1804 Generative Design of Acoustical Diffuser and Absorber Elements Using Large-Scale Additive Manufacturing

Authors: S. Aziz, B. Alexander, C. Gengnagel, S. Weinzierl

Abstract:

This paper explores a generative design, simulation, and optimization workflow for the integration of acoustical diffuser and/or absorber geometry with embedded coupled Helmholtz-resonators for full scale 3D printed building components. Large-scale additive manufacturing in conjunction with algorithmic CAD design tools enables a vast amount of control when creating geometry. This is advantageous regarding the increasing demands of comfort standards for indoor spaces and the use of more resourceful and sustainable construction methods and materials. The presented methodology highlights these new technological advancements and offers a multimodal and integrative design solution with the potential for an immediate application in the AEC-Industry. In principle, the methodology can be applied to a wide range of structural elements that can be manufactured by additive manufacturing processes. The current paper focuses on a case study of an application for a biaxial load-bearing beam grillage made of reinforced concrete, which allows for a variety of applications through the combination of additive prefabricated semi-finished parts and in-situ concrete supplementation. The semi-prefabricated parts or formwork bodies form the basic framework of the supporting structure and at the same time have acoustic absorption and diffusion properties that are precisely acoustically programmed for the space underneath the structure. To this end, a hybrid validation strategy is being explored using a digital and cross-platform simulation environment, verified with physical prototyping. The iterative workflow starts with the generation of a parametric design model for the acoustical geometry using the algorithmic visual scripting editor Grasshopper3D inside the Building Information Modeling (BIM) software Revit. Various geometric attributes (i.e., bottleneck and cavity dimensions) of the resonator are parameterized and fed to a numerical optimization algorithm which can modify the geometry with the goal of increasing absorption at resonance and increasing the bandwidth of the effective absorption range. Using Rhino.Inside and LiveLink for Revit the generative model was imported directly into the Multiphysics simulation environment COMSOL. The geometry was further modified and prepared for simulation in a semi-automated process. The incident and scattered pressure fields were simulated from which the surface normal absorption coefficients were calculated. This reciprocal process was repeated to further optimize the geometric parameters. Subsequently the numerical models were compared to a set of 3D concrete printed physical twin models which were tested in a .25 m x .25 m impedance tube. The empirical results served to improve the starting parameter settings of the initial numerical model. The geometry resulting from the numerical optimization was finally returned to grasshopper for further implementation in an interdisciplinary study.

Keywords: Acoustical design, additive manufacturing, computational design, multimodal optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 603
1803 Service Flow in Multilayer Networks: A Method for Evaluating the Layout of Urban Medical Resources

Authors: Guanglin Song

Abstract:

Situated within the context of China's tiered medical treatment system, this study aims to analyze spatial causes of urban healthcare access difficulties from the perspective of the configuration of healthcare facilities. A social network analysis approach is employed to construct a healthcare demand and supply flow network between major residential clusters and various tiers of hospitals in the city. The findings reveal that: 1) There exists overall maldistribution and over-concentration of healthcare resources in the study area, characterized by structural imbalance. 2) The low rate of primary care utilization in the study area is a key factor contributing to congestion at higher-tier hospitals, as excessive reliance on these institutions by neighboring communities exacerbates the problem. 3) Gradual optimization of the healthcare facility layout in the study area, encompassing holistic, local, and individual institutional levels, can enhance systemic efficiency and resource balance. This research proposes a method for evaluating urban healthcare resource distribution structures based on service flows within hierarchical networks. It offers spatially targeted optimization suggestions for promoting the implementation of the tiered healthcare system and alleviating challenges related to accessibility and congestion in seeking medical care. In addition, the study provides some new ideas for researchers and healthcare managers in countries, cities, and healthcare management around the world with similar challenges.

Keywords: Flow of public services, healthcare facilities, spatial planning, urban networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 86
1802 Determining Optimum Time Multiplier Setting of Overcurrent Relays Using Mixed Integer Linear Programming

Authors: P. N. Korde, P. P. Bedekar

Abstract:

The time coordination of overcurrent relays (OCR) in a power distribution network is of great importance, as it reduces the power outages by avoiding the mal-operation of the backup relays. For this, the optimum value of the time multiplier setting (TMS) of OCRs should be chosen. The problem of determining the optimum value of TMS of OCRs in power distribution networks is formulated as a constrained optimization problem. The objective is to find the optimum value of TMS of OCRs to minimize the time of operation of relays under the constraint of maintaining the coordination of relays. A power distribution network can have a combination of numerical and electromechanical relays. The TMS of numerical relays can be set to any real value (which satisfies the constraints of the problem), whereas the TMS of electromechanical relays can be set in fixed step (0 to 1 in steps of 0.05). The main contribution of this paper is a formulation of the problem as a mixed-integer linear programming (MILP) problem and application of Gomory's cutting plane method to find the optimum value of TMS of OCRs. The TMS of electromechanical relays are taken as integers in the range 1 to 20 in the step of 1, and these values are mapped to 0.05 to 1 in the step of 0.05. The results obtained are compared with those obtained using a simplex method and its variants. It has been shown that the mixed-integer linear programming method outperforms the simplex method (and its variants) in the case of a system having a combination of numerical and electromechanical relays.

Keywords: Backup protection, constrained optimization, Gomory's cutting plane method, mixed-integer linear programming, overcurrent relay coordination, simplex method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 421
1801 A Unified Approach for Naval Telecommunication Architectures

Authors: Y. Lacroix, J.-F. Malbranque

Abstract:

We present a chronological evolution for naval telecommunication networks. We distinguish periods: with or without multiplexers, with switch systems, with federative systems, with medium switching, and with medium switching with wireless networks. This highlights the introduction of new layers and technology in the architecture. These architectures are presented using layer models of transmission, in a unified way, which enables us to integrate pre-existing models. A ship of a naval fleet has internal communications (i.e. applications' networks of the edge) and external communications (i.e. the use of the means of transmission between edges). We propose architectures, deduced from the layer model, which are the point of convergence between the networks on board and the HF, UHF radio, and satellite resources. This modelling allows to consider end-to-end naval communications, and in a more global way, that is from the user on board towards the user on shore, including transmission and networks on the shore side. The new architectures need take care of quality of services for end-to-end communications, the more remote control develops a lot and will do so in the future. Naval telecommunications will be more and more complex and will use more and more advanced technologies, it will thus be necessary to establish clear global communication schemes to grant consistency of the architectures. Our latest model has been implemented in a military naval situation, and serves as the basic architecture for the RIFAN2 network.

Keywords: Equilibrium beach profile, eastern tombolo of Giens, potential function, erosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 867
1800 Construct the Fur Input Mixed Model with Activity-Based Benefit Assessment Approach of Leather Industry

Authors: M. F. Wu, F. T. Cheng

Abstract:

Leather industry is the most important traditional industry to provide the leather products in the world for thousand years. The fierce global competitive environment and common awareness of global carbon reduction make livestock supply quantities falling, salt and wet blue leather material reduces and the price skyrockets significantly. Exchange rate fluctuation led sales revenue decreasing which due to the differences of export exchanges and compresses the overall profitability of leather industry. This paper applies activity-based benefit assessment approach to build up fitness fur input mixed model, fur is Wet Blue, which concerned with four key factors: the output rate of wet blue, unit cost of wet blue, yield rate and grade level of Wet Blue to achieve the low cost strategy under given unit price of leather product condition of the company. The research findings indicate that applying this model may improve the input cost structure, decrease numbers of leather product inventories and to raise the competitive advantages of the enterprise in the future.

Keywords: Activity-Based Benefit Assessment Approach, Input mixed, Output Rate, Wet Blue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663
1799 On the Accuracy of Basic Modal Displacement Method Considering Various Earthquakes

Authors: Seyed Sadegh Naseralavi, Sadegh Balaghi, Ehsan Khojastehfar

Abstract:

Time history seismic analysis is supposed to be the most accurate method to predict the seismic demand of structures. On the other hand, the required computational time of this method toward achieving the result is its main deficiency. While being applied in optimization process, in which the structure must be analyzed thousands of time, reducing the required computational time of seismic analysis of structures makes the optimization algorithms more practical. Apparently, the invented approximate methods produce some amount of errors in comparison with exact time history analysis but the recently proposed method namely, Complete Quadratic Combination (CQC) and Sum Root of the Sum of Squares (SRSS) drastically reduces the computational time by combination of peak responses in each mode. In the present research, the Basic Modal Displacement (BMD) method is introduced and applied towards estimation of seismic demand of main structure. Seismic demand of sampled structure is estimated by calculation of modal displacement of basic structure (in which the modal displacement has been calculated). Shear steel sampled structures are selected as case studies. The error applying the introduced method is calculated by comparison of the estimated seismic demands with exact time history dynamic analysis. The efficiency of the proposed method is demonstrated by application of three types of earthquakes (in view of time of peak ground acceleration).

Keywords: Time history dynamic analysis, basic modal displacement, earthquake induced demands, shear steel structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420
1798 A New Multi-Target, Multi-Agent Search-and-Rescue Path Planning Approach

Authors: Jean Berger, Nassirou Lo, Martin Noel

Abstract:

Perfectly suited for natural or man-made emergency and disaster management situations such as flood, earthquakes, tornadoes, or tsunami, multi-target search path planning for a team of rescue agents is known to be computationally hard, and most techniques developed so far come short to successfully estimate optimality gap. A novel mixed-integer linear programming (MIP) formulation is proposed to optimally solve the multi-target multi-agent discrete search and rescue (SAR) path planning problem. Aimed at maximizing cumulative probability of successful target detection, it captures anticipated feedback information associated with possible observation outcomes resulting from projected path execution, while modeling agent discrete actions over all possible moving directions. Problem modeling further takes advantage of network representation to encompass decision variables, expedite compact constraint specification, and lead to substantial problem-solving speed-up. The proposed MIP approach uses CPLEX optimization machinery, efficiently computing near-optimal solutions for practical size problems, while giving a robust upper bound obtained from Lagrangean integrality constraint relaxation. Should eventually a target be positively detected during plan execution, a new problem instance would simply be reformulated from the current state, and then solved over the next decision cycle. A computational experiment shows the feasibility and the value of the proposed approach.

Keywords: Search path planning, search and rescue, multi-agent, mixed-integer linear programming, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480
1797 Simulation Model for Optimizing Energy in Supply Chain Management

Authors: Nazli Akhlaghinia, Ali Rajabzadeh Ghatari

Abstract:

In today's world, with increasing environmental awareness, firms are facing severe pressure from various stakeholders, including the government and customers, to reduce their harmful effects on the environment. Over the past few decades, the increasing effects of global warming, climate change, waste, and air pollution have increased the global attention of experts to the issue of the green supply chain and led them to the optimal solution for greenery. Green supply chain management (GSCM) plays an important role in motivating the sustainability of the organization. With increasing environmental concerns, the main objective of the research is to use system thinking methodology and Vensim software for designing a dynamic system model for green supply chain and observing behaviors. Using this methodology, we look for the effects of a green supply chain structure on the behavioral dynamics of output variables. We try to simulate the complexity of GSCM in a period of 30 months and observe the complexity of behaviors of variables including sustainability, providing green products, and reducing energy consumption, and consequently reducing sample pollution.

Keywords: Supply chain management, green supply chain management, system dynamics, energy consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 909
1796 Enhancing Hand Efficiency of Smart Glass Cleaning Robot through Generative Design Module

Authors: Pankaj Gupta, Amit Kumar Srivastava, Nitesh Pandey

Abstract:

This article explores the domain of generative design in order to enhance the development of robot designs for innovative and efficient maintenance approaches for tall buildings. This study aims to optimize the design of robotic hands by focusing on minimizing mass and volume while ensuring they can withstand the specified pressure with equal strength. The research procedure is structured and systematic. The purpose of optimization is to enhance the efficiency of the robot and reduce the manufacturing expenses. The project seeks to investigate the application of generative design in order to optimize products. Autodesk Fusion 360 offers the capability to immediately apply the generative design functionality to the solid model. The effort involved creating a solid model of the Smart Glass Cleaning Robot and optimizing one of its components, the Hand, using generative techniques. The article has thoroughly examined the designs, outcomes, and procedure. These loads serve as a benchmark for creating designs that can endure the necessary level of pressure and preserve their structural integrity. The efficacy of the generative design process is contingent upon the selection of materials, as different materials possess distinct physical attributes. The study utilizes five different materials, namely Steel, Stainless Steel, Titanium, Aluminum, and CFRP (Carbon Fiber Reinforced Polymer), in order to investigate a range of design possibilities.

Keywords: Generative design, mass and volume optimization, material strength analysis, generative design, smart glass cleaning robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201