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Abstract— The requirements analysis, modeling, and 
simulation have consistently been one of the main challenges 
during the development of complex systems. The scenarios and the 
state machines are two successful models to describe the behavior 
of an interactive system.  The scenarios represent examples of 
system execution in the form of sequences of messages exchanged 
between objects and are a partial view of the system. In contrast, 
state machines can represent the overall system behavior. The 
automation of processing scenarios in the state machines provide 
some answers to various problems such as system behavior 
validation and scenarios consistency checking. In this paper, we 
propose a method for translating scenarios in state machines 
represented by Discreet EVent Specification and procedure to 
detect implied scenarios. Each induced DEVS model represents the 
behavior of an object of the system. The global system behavior is 
described by coupling the atomic DEVS models and validated 
through simulation. We improve the validation process with 
integrating formal methods to eliminate logical inconsistencies in 
the global model. For that end, we use the Z notation. 

Keywords— Scenarios, DEVS, Synthesis, Validation and 
Verification, Simulation, Formal Verification, Z Notation. 

I. INTRODUCTION

A typical development of an interactive system begins 
with writing scenarios which describe the most important 
behaviors. They are gradually enriched, specified and 
composed until describing all the behaviors of the system. A 
scenario visually describes by means of a sequence diagram, 
the interaction protocol between objects and the 
environment. In contrast, a state machine has the vocation to 
represent the entire behavior of a system and it is hard to be 
conceived. Moreover, designing the system behavior directly 
with state-based models is not an intuitive process, since the 
concept of state is not obvious in the first stages of the 
development process. The partial character of scenarios 
makes them easier to be conceptualized. Which why, 
working in parallel with the requirements of a system 
expressed in the form of scenarios, and its specification 
provided by the state machines improves the level and 
quality of specification. A lot of software engineering 
approaches synthesize state-based models from scenario-
based models with the intent to make the task of describing 
the dynamic behavior of interactive systems easier [7]. This 
transformation from scenarios to state machines consists in 
checking the consistency of the various scenarios and 
inducing a global behavior for the system from the partial 
behaviors given in the scenarios. Many problems can arise 
during synthesis as deadlock or the parallelism which is 
caused by competition between the events, appearance of the 
implicit scenarios and other problems of composition which 
make difficult to apprehend the global behavior of the 
system. 

This article proposes to induce from a set of scenarios 
expressed in the form of Message Sequence Charts [1], a 
DEVS [6] model representing the overall behavior of the 

system. We propose procedures for such transformation. 
Normally, the obtained simulation models must produce the 
same sequence of events for the input sequences in the 
scenarios. Therefore, we use simulation techniques and 
formal verification (absence of conflicts and incoherencies in 
system properties) with Z language [15] to ensure the 
consistency of scenarios. In fact, once the system is modeled 
with scenarios, our approach automatically generates an 
equivalent DEVS model. The latter is also automatically 
transformed to a Z specification. 

We present in the following sections, the scenario 
notation, the Discrete Event Specification (DEVS) 
formalism, the Z language, the synthesis procedure and an 
example to illustrate our case study. 

II. RECALLS

A. Scenarios 

The scenarios are effective means to obtain and to validate 
the requirements. They became the most popular ways to 
describe systems behaviors. They describe how the 
components of a system, the environment and the users, 
work simultaneously and act between them to provide the 
level of functionality of the system. In particular, they are 
used at the first phase of the software development that we 
call requirements engineering, but can appear too in later 
phases like the validation or maintenance. They can be 
composed by using flow control operators (alternative, 
sequence, parallel composition and repetition) in order to 
form more complex scenarios. 

A great number of notations are commonly used for the 
description of scenarios, like: Message Sequence Charts 
(MSC) defined within an international standard [1], Live 
Sequence Charts (LSC) proposed by [2], the UML SD [3], 
which are a simplified version of basic MSC [4]… All of 
them are based on a textual and graphical representation. We 
have chosen Message Sequence Chart to illustrate our 
approach and represent the requirements of our systems 
because it is a formal language of which graphical notation is 
easily understood, and it can be hierarchically composed by 
using hMSC (hierarchical Message Sequence Chart) in order 
to form more complex scenarios. 

The Message Sequence Charts are composed by 
hierarchical MSC’s (hMSC) and basic MSC’s (bMSC). A 
basic MSC has a structure: (E, A, L, O,φ, ≤, traj) where: 

• E: is a finite set of events divided into a set of sent events 
SE, and a set of received events RE;  

• A:  is finite set of actions; 

• L:  is a finite set of labels; 

• O:  is a finite set of objects; 
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• ≤ : is a partial order relation (antisymmetric, reflexive and 
transitive) called causal order on events;  
- ∀(e1) ∈ E ⇒ e1 ≤  e1 (reflexive); 

- ∀(e1, e2) ∈ E 2 , (e1 ≤  e2) ∧ (e2 ≤  e1) ⇒ e1 = e2 
(antisymmetric); 

- ∀(e1, e2) ∈ E 3 , (e1 ≤  e2) ∧ (e2 ≤  e3) ⇒ e1 ≤  e3
(transitive); 

• φ: E → O associates an event to an object. Moreover, 
events belonging to the same object are totally ordered; 

)12()21()2()1(,)2,1( 2 eeeeeeEee ≤∨≤⇒=∈∀ φφ

• traj: S → R is a function which represents the trajectory 
of the events. This function associates the sending of an 
event with its reception.

The behavior represented by the bMSC is a set of sequences 
of events determined by the causal priority. This causal 
relationship determines a partial order, noted ≤, on the 
events between all objects. The partial order can be derived 
from the bMSC in respect with two principal rules: 
• An event e drawn higher than another event e' on the 

same lifeline of an object precedes necessarily e';  
• The event associated with a message sending precedes 

necessarily the event associated with the reception of this 
message (in the case of an asynchronous 
communication). For a synchronous communication, the 
events sending and reception for each message are used 
to be considered instantaneous. 

We will denote by em(e) the sending event corresponding to 
the receiving event e and rec(e) the reception event 
corresponding to the sending event e. we use label send(i, j, 
m) to denote the event “ object i sends the message m  to 
object j” and similarly, receive(i, j, m) to denote the event “ 
object i receives the message m  from object j”. We will 
often note !m the sending event, and ?m the receiving event 
for a message m.

The hierarchical MSC’s were conceived to allow the 
creation of more complex scenarios [1]. A high-level MSC 
(hMSC) provides the means for composing bMSCs: it is a 
digraph where nodes are bMSC’s and arcs indicate their 
possible continuations. It has a special initial and final node 
that corresponds to the initial and final system states. An 
execution of an hMSC is obtained by traversing the way 
starting from initial node to the final one.  
An hMSC has a structure: (N, A, S0) where:  
• N is a finite set of bMSCs with disjoint sets of events;  
• A ⊆  (N× N) is a set of arcs;  
• S0 ∈ N is the initial node. 

B. The DEVS formalism 

The DEVS formalism introduced by [5] provides a means 
for modeling discrete event system in a hierarchical and 
modular way. DEVS is a general formalism for discrete 
event system modeling based on set theory [6]. It allows 
representing any system by three sets and four functions: 
Input Set, Output Set, State Set, External Transition 
Function, Internal Transition Function, Output Function, and 
Time Advanced Function. DEVS formalism provides the 
framework for information modeling which gives several 
advantages to analyze and design complex systems: 
Completeness, Verifiability, Extensibility, and 
Maintainability. DEVS has two kinds of models to represent 

systems. One is an Atomic Model (AM) and the other is a 
Coupled Model (CM) which can specify complex systems in 
a hierarchical way [6]. DEVS model processes an input 
event based on its state and condition, and it generates an 
output event and changes its state. Finally, it sets the time 
during which the model can stay in that state.  

1) Atomic model 

An atomic DEVS model describes the behavior of a 
component, which is indivisible, in a timed state transition 
level. It is represented by one box comprising inputs and 
outputs; it allows a system to be described like a set of 
deterministic transitions between sequential states (Fig. 1). 
Each transition is labeled by a sending or reception event. 

Fig.1 Representation of an atomic DEVS model 

Formally, an atomic model is defined by a 7-tuple <X, Y, S, 
δint, δext, λ, ta> where:  

• X is the set of  input values; 

• Y is the set of output values; 

• S is the set of sequential states; 

• δint : S → S is the internal transition function that 
defines the state changes caused by internal events; 

• δext : Q  × X → S is the external transition function, 
where Q = {(s,e)|s∈S, 0≤e≤ta(s)} is the set of total state; 
this function specifies the state changes due to external 
events, with the ability to define a future state according 
to the elapsed time in the current state; 

• λ: S → Y is the output function that generates output 
events; 

• ta: S �R+
0,∞ gives the lifetime of the states,  where R+

0,∞
is the set of positive real numbers between 0 and ∞. 

The behaviors of the atomic model are as follows: An atomic 
model can stay only in one state at any time. The maximum 
time to stay in one state without external event is determined 
by ta(s) function, it changes its state by δext if it gets an 
external event. If possible remaining time in one state is 
elapsed, it generates output by λ and changes the state by 
δint. In general, while the internal transition function δint 
expresses the autonomous evolution of the model, the 
external transition function δext defines its evolution when 
occurring external events.  

2) Coupled model 
The coupled DEVS model is constructed by coupling 

atomic and/or coupled models. Output events of one model 
are connected with input events of another. The resulting 
coupled model can itself be employed as a component in a 
larger coupled model, by giving rise to the construction of 
complex models with hierarchical structures (Fig. 2).  

Fig. 2 Representation of a coupled DEVS model 
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A coupled model is formally defined by a 7-tuple < X, Y, 
M, EIC, EOC, IC, SELECT > where: 

• X is the set of input events; 

• Y is the set of output events; 

• M is the set of all the DEVS component models; 

• EIC ⊆ X  × UiXi is the external input coupling relation; 

• EOC ⊆ UiYi  × Y is the external output coupling 
relation; 

• IC ⊆  UiXi  × UiYi is the internal coupling relation; 

• SELECT: 2M - φ,  M is a function which chooses one 
model when more than 2 models are scheduled 
simultaneously. 

EIC, EOC and IC specify the connections between the 
input and output ports of the various DEVS models. 

C. The Z Specification Language 

Z is a formal state-based specification [14] [15]. It is based 
on predicates logic and set theory. A main ingredient in Z is 
the way of decomposing a specification into small pieces 
called schemas. Schemas are used to describe both static and 
dynamic aspects of a system. The notation of the schema is 
the following: 

»_Schema Name____________ 
Ædeclarations (state space)  
«_______________ 
Æpredicates  
–___________________ 

1-Declaration of types used into the specification (free type 
definition). 

2- A schema describing the global abstract state of the 
system:   
»_Abstract_State_Name____________ 
Ædeclarations of the variables describing the state of the 
system  
«_______________ 
Æpredicates (State invariants) 
–___________________

3- A schema describing the initial state of the system: 
»_Initializing_System__________ 
ÆAbstract_State_ Name 
«_______________ 
Æinitialization of states variables 
–___________________ 

4- List of operations schemas and each one describes the 
state before and after the operation execution: 
»_  Operation Name __________ 
ÆΔsystem name(Δ : to say that the state of the system is 

changed) OR   Ξ system name (Ξ : to say that the state of 
the system is the same) 
Æeventual declaration of input variables (? has to be placed 
after input variable) 
Æeventual declaration of output variables(! has to be placed 

after output variable)  
«_______________ 
Æpre-operation (values of the state variables just before the 
operation) 
Æpost-operation(values of the state variables just after the 
operation) 
Æeventual values of  input variables  
Æeventual values of  output variables 
–___________________ 
 
5- Treatment of errors that can appear when executing 
operations.  
»_OperationError___________ 
Æ Δsystem name OR   Ξ system name 
Æeventual declaration of input variables  
Æeventual declaration of output variables 
«_______________ 
Æ pre-operation (may be that the operation hasn't to be 
executed after this pre operation)   
Æpost-operation ( may be after execution of the operation , 
the post operation  is not available) 
Æeventual value of the input (may be  it doesn't satisfy a 
constraint)  
Æeventual value of the output ( can inform that there is an 
error) 
–___________________ 
 

1) Proof Obligation in Z 
In traditional Z-based specification methodologies, 

designers must conduct a set of formal proofs to verify 
incrementally the consistency of the system being modeled 
[16] [17]. In state/transition approaches like Z-based model 
this mostly consists in (1) initialization theorems to ensure 
that initializations preserve state invariants and (2) pre-
condition calculations to enforce the consistency of the 
operations modifying the state space. Establishing the list of 
all preconditions ensures that either the state invariant is 
completely preserved by operation effects or that some other 
condition must be fulfilled. 

III. THE EXISTING WORKS

The automatic synthesis of conceptions starting from 
scenarios was a very active field of research during the last 
years. Many approaches address the scenario synthesis 
problem and makes possible to induce a total behavior model 
expressed in a state machine format starting from a set of 
scenarios [7]. There are two kinds of synthesis:  the 
construction of a global state machine which represents the 
total behavior of a system directly starting from a set of 
scenarios, with or without composition mechanism. And the 
construction of a state machine by object for all the scenarios 
whose behavior of the system is defined like the parallel 
composition of all the obtained states machines and which 
synchronizes on the shared messages. Harel [8] proposed a 
synthesis approach using the scenario-based language of 
Live Sequence Charts (LSC) as requirements, and 
synthesizing a state-based object system composed by a 
collection of finite state machines. Letier [9] presents a 
technique to generate Labeled Transition System (LTS) from 
High Level Message Sequence Chart (hMSC), in this 
approach; complex system behavior can be modeled by 
parallel composition of the component LTS models. The 
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LTS obtained are executed asynchronously but synchronize 
on shared events; also they present a technique to detect 
implicit scenarios. Ziadi [10] propose an idea to synthesize 
statecharts starting from scenarios expressed by UML2.0 
Sequence Diagrams, and give an algorithm for synthesizing a 
composition of statecharts between them. Also, Damas [11] 
has presented an approach to generate Labeled Transition 
System from a collection of basics MSC’s, and use a 
technique to merge the identical states. The synthesis 
approaches differ depending on:  

• The choice of the scenarios language; 

• Their semantic interpretation;  

• The type of target state machines; 

• The complexity of the synthesis algorithm implemented; 

• If they use or not the techniques of reunification of the 
identical states.  

IV. SYNTHESISING DEVS MODELS FROM SCENARIOS

In this section we discuss a general procedure for deriving 
DEVS component descriptions from a set of MSC’s 
scenarios. To that end, we give an overview of our 
translation schema in section A, and present an example of 
application in section B. 

A. Roadmap for the translation procedure 

The systems we are interested in consist of a set of 
components and they are described by a set of scenarios 
expressed in the form of messages sequences charts. We 
assume given a set of MSC’s that describe all the interaction 
sequences among a set of components named objects. We 
assume further that we try to obtain an atomic DEVS for 
exactly one of the objects, say O, occurring in the MSC’s 
diagrams.  

The procedure for obtaining that automaton consists of 
seven successive phases: verification, projection, 
normalization, transformation into atomic DEVS models, 
merging all atomic models obtained for each object in one 
global atomic model, optimization and obtain a global 
coupled DEVS. 

• Verification: This phase consists in checking that the set 
of the behaviors described by each MSC is a sequence set 
of events respecting the causal priority. The events 
associated with one object are totally ordered. 

• Projection:  During the second phase, we project each of 
the given MSC’s onto the object “O”, i.e. we remove all 
other instance axes, as well as message arrows that 
neither start, nor end at O. If we use hierarchical MSC, 
we project each basic MSC onto object “O” by traversing 
the way starting from initial node to the final node with 
respecting sequence between basic components. 

• Normalization: We identify the events which will make 
possible to determine the initial and final states of the 
atomic DEVS models corresponding to “O”. 

• Transformation into an atomic DEVS model: This phase 
consists in translating reception events of the object into 
external transitions in DEVS models and sent events into 
internal transitions. In the definition of the external 
transition function, p?v notes the value v of the input 
event occurring on the input port p of the atomic model 
(Fig. 3). In the definition of the output function, p!v notes 

the value v of the output event to be generated on the 
output port p. If there are actions, we use states variables 
in DEVS model, and if there are conditions, we add 
conditions in the equivalents states transitions.  

Fig. 3 Projection of starting bMSC onto object O2 

In this phase of synthesis, the number of the atomic 
DEVS models for each object must be equal to the 
number of the bMSCs. 

• Merging all atomic models obtained in one global atomic 
model: for each object, we merge all resulting atomic 
models associated to each bMSC, in one global atomic 
model that represents the global behavior of the object in 
the system. To that end, we traverse the way of the hMSC 
starting from the initial bMSC towards the final one with 
using the following steps. We use scenario semantics 
restricted to event sequences with the notion of (iteration, 
alternative and sequence): 

o Seq: Specify a sequence between the behaviors of 
two operand bMSC (strong sequential composition). 

Let Da1 = <X1, Y1, S1, δint1, δext1, λ1, ta1> and Da2=< 
X1, Y1, S1, δint1, δext1, λ1, ta1> 

Da1 seq Da2 = <X, Y, S, δint, δext, λ, ta> where: 

� S =(S1 ∪ S2) - {s02} if (Da2 ≠ Da∅) 
- S2 if (Da1= Da∅) 
- S1 otherwise 
- s0 = s01 if (Da1≠ Da∅) 

                      = s02 otherwise 
� X = X1 ∪ X2  
� Y = Y1 ∪ Y2 
� δint = δint1 ∪ δint1 
� δext = δext1 ∪ δext2 
� ta= ta1 ∪ ta2 

o Loop : Specify an iteration of an interaction 

 Let Da1 = <X1, Y1, S1, δint1, δext1, λ1, ta1> 

loop (Da1) = <X, Y, S, δint, δext, λ, ta> where : 

� S = - (S1-sn1) ∪ {s01} 
        - s0=s01 
� X=X1 
� Y=Y1 
� δint = δint1  
� δext = δext1 
� λ=λ1 
� ta=ta1 
� Loop (Da∅) = Da∅

o Alt: Define a choice between a set of interaction 
operands: 

Let Da1 = <X1, Y1, S1, δint1, δext1, λ1, ta1> and 
Da2=< X1, Y1, S1, δint1, δext1, λ1, ta1> 
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 Da1 alt Da2 = <X, Y, S, δint, δext,λ, ta> where 

� S =- S1 if (Da1 ≠ Da∅ ∧ Da2 = Da∅) 
             - S2 if (Da1 = Da∅ ∧ Da2 ≠ Da∅) 
             - {s0} if (Da1 = ∅ ∧ Da2 = ∅) 

       - S1 ∪ S2 - {s02} if (Da1 ≠ Da∅ ∧ Da2 ≠ Da∅) 
� s0 =A new state if (Da1 = Da∅ ∧ Da2 = Da∅) 

             - s01 if (Da1≠Da∅∧Da2=Da∅) 
                       - s02 otherwise 

� X = X1 ∪ X2  
� Y = Y1 ∪ Y2 
� δint = δint1∪ δint1 
� δext = δext1∪ δext2 
� ta=ta1 ∪ ta2 

• Optimization: To optimize the resulting global atomic 
DEVS we use standard algorithms of optimization from 
automata theory in order to make our models 
deterministic and have the minimum number of states and 
transitions. To that end, we merge states that receive, 
send the same events and have the same variables number 
and values: 

� Case external transition + internal transition: if 
δint(Si)=Sj / λ(Si)=pi!vi and δint(S’i)=S’j / 
λ(S’i)=pi!vi and δext(Sk,e,pk?vk)=Si and 
δext(S’k,e,pk?vk)=S’i then Si=S’i; 

� Case external transition + external transition: if 
δext(Si, e, pi?vi)=Sj and δext(S’i, e, pi?vi) =S’j and 
δext (Sk, e, pk?vk)=Si and δext(S’k, e, pk?vk)=S’i 
then Si=S’i; 

� Case internal transition + external transition: if 
δext(Si, e, pi?vi)=Sj and δext(S’i,e,pi?vi)=S’j and 
δint(Sk)= Si / λ (Sk)=pk!vk and δint(S’k)=S’i / 
λ(S’k)=pk!vk then Si=S’i; 

� Case internal transition + internal transition: if 
δint(Si)=Sj / λ(Si)=pi!vi and δint(S’i)=S’j / 
λ(S’i)=pi!vi and δint(Sk)=Si / λ(Sk)=pk!vk and 
δint(S'k)=S'i / λ(S'k)=pk!vk then Si=S'i. 

• Generating the global coupled DEVS: in this final phase, 
the final coupled DEVS model can be obtained by 
coupling the various global atomic models for each 
object. In that end, if an object O1 sends an event to 
another object O2, we connect the output port of O1 with 
the input port of O2, and vice versa. The final coupled 
DEVS obtained describes the overall behavior of the 
system. 

To illustrate our approach we have used scenario 
semantics restricted to event sequences with the notion of 
(repetition, alternative and sequence). The advantage of the 
use of coupled DEVS and not of the total state machines is 
on the first hand, to make possible to simulate and to validate 
the behavior of each object of the system. And in addition 
this type of transformation gives flexibility to the process of 
the synthesis. Indeed, any modification, addition or removal 
of an object in the system do not influence on the process of 
the synthesis. We have just to modify, add or remove the 
corresponding atomic DEVS model. The next section 
provides an example application of the procedure we have 
outlined here. An algorithm which translates a basic SD 
(Sequence Diagram) into an atomic DEVS model by object 
was presented in [12]. Also, the principle of the construction 
of an atomic DEVS model by object starting from several 

composed SD, and the construction of coupled DEVS model 
is described in [13]. 

B. Case Study  

In the previous section, we proposed a method for 
translating a set of scenarios into state machines represented 
in the formal DEVS specification. To illustrate our 
approach, we use a hybrid car interactive based system.  

A hybrid car has an engine that runs with fuel and a 
rechargeable battery. Hybrids are preferred because all-
electric cars rarely get above speeds of 50-60 miles per hour 
(mph). They also need to be recharged between 50 and 100 
miles. The battery system in hybrid cars is recharged from 
the car itself. Electrical hybrid engine can take the kinetic 
energy that comes from applying the brakes and charge the 
battery. The originality of this car is the presence of two 
engines, one run with fuel (thermal engine) and the other is 
electric. The assumptions linked to the hybrid car are the 
following: 

• When the driver starts the car or the speed is lower than 
50mph: Only the electrical engine is moving with 
rechargeable battery (Fig. 4). As long as the car runs, the 
battery loses energy. This system is necessary for low 
speeds. In this case, the thermal engine is completely 
inactive, no dioxide carbon is emitted. A great advantage 
for planet, and the pocket of the driver. 

Fig. 4 When the driver starts the car or the speed is lower than 
50mph 

• When the speed is higher than 50mph: The electrical 
engine is in stand by. Only the thermal engine works. 
When speed exceeds the 100 mph, part of the driving 
energy provided by the fuel is used to reload the battery, 
via a generator (the electrical engine) (fig. 5). All is 
recycled, contrary to a traditional car.  

Fig. 5 When the speed is higher than 50mph 

• The deceleration phases: When the driver brakes, 
thekinetic energy resulting from the movement of the 
vehicle, is directly sent towards the battery of the 
electrical engine (Fig. 6). 

Fig. 6 Sending kinetic energy to the batteries 
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The behavior of this hybrid system is represented in the 
hMSC of Fig.7. This hMSC is composed by three objects: 
the Driver which is considered as a control device, the 

Electric and the Thermal engines that represent the operative 
system.

Fig. 7.A hybrid car MSC 

Details and constraints:
• In starting, it is the electrical motor which provides the 

traction power.  activE=1, energy = 100 and speedE = 0; 

• The driver either he accelerates or he brakes. If the 
driver accelerates, he is considered that it is always in 
the acceleration phase (speedE++ or speedT++) until he 

brakes. And vice versa. It is supposed that an 
acceleration phase lasts 1 u.t. idem for a braking phase. 

• If speed ∈[0 mph – 50 mph[ => activeE=1, activeT = 
0  and  energie -- . 

• If speed ∈[50 mph – 180 mph[ => activeE=0 and 
activeT =1. 
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• If the driver brakes: speed-- and energy++. 

• The passage from speed <100 to speed>=100: energy++. 

• We suppose that speed increases by 10 mph while 
accelerating, and decreases by 10 mph while braking. 

By using the previous steps of transformation into DEVS 
models, we obtain the DEVS atomic models represented in
the Fig. 8 for the electrical engine, and Fig. 9 for the thermal 
engine. After the global atomic models for all objects of the 
system have been built, we construct the coupled model 
given in the Fig. 10 who describes the overall behavior of the 
hybrid car system, by connecting the outputs of the electrical 
engine model with the input of the model representing the 
thermal engine and vice versa, because the objects 
communicate between them and also to allow the system to 
work automatically. 

Fig. 8 The global atomic DEVS model for the electrical engine 

Fig. 9 The global atomic DEVS model for the thermal engine 

Fig. 10 The final coupled DEVS model for a hybrid car  

To validate the specification of the behavior of the system 
obtained with the final coupled DEVS model, we simulate 
the model results. For that we use the LSIS-DME tool [21]. 
This simulator was developed by team members of our 
laboratory; it’s composed of two parts: a model editor, and 
simulator. Then, from the final model and a set of data, the 
simulator provides the simulation results (Fig. 12). The 
dataset is defined by the driver who enters all external events 
supposed to occur during the simulation (Fig. 11). During the 
simulation, we have to check that all events that should be 
treated were treated, and all events that should not be treated 
were not treated.  

We suppose that the driver do the following scenario: 

Fig. 11 Example of filling input schedules 

In this scenario, the driver start the car at 0 u.t, accelerate 
at 5u.t, brake at 7 u.t, accelerate at 8 u.t, barke at 18, u.t and 
stop the car at 30 u.t. Normally in simulation , when driver 
stat, only electric engine must run (activeE=1) and  the 
termal engine must be inactive (activeT=0); when the driver 
accelerate in 5 u.t, the speedE must increase by 10 
unity(speedE+10) and the energy must decrease (energy--) 
until ta =7u.t. When the driver brake in 7 u.t the speedE must 
decrease by 10 unity (speedE-10) and the energy must 
increase (energy++). At 8 u.t, when the driver accelerate 
again, speedE increase until 50 mph, after this, the thermal 
engine must be inactive (activeE=o), and the thermal engine 
begin active (activeT=1).  SpeedT must increase until ta=18 
u.t. when the speedT exceed 100mph, the thermal engine sent 
enrgy to electric engine. When the driver brake at 18 u.t, the 
energy must increase and the speed must decrease until 
speedE=0. And finally the driver stops the car.  

The following figure show the simulation results of the 
hybrid car. 
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Fig. 12 The simulation results 

The description of the system behavior can be established 
on a set of scenarios. Since each scenario is usually written 
in isolation, bringing many scenarios together will result in 
inconsistencies which have to be detected and resolved. A 
final coupled DEVS model inferred from a set of scenarios 
and representing the overall behavior of the system should 
be established by atomic models representing the behavior 
of each component appearing in the scenarios. In addition, 
each atomic model should exhibit as sequences of events at 
least all scenarios projected to the time line of its 
component. This consistency constraint between a MSC and 
an inferred atomic DEVS model is defined as follows [9]: 

Definition1 (Scenarios-DEVS consistency):  

Let SC a scenario represented in the form of a MSC model 
with components 1, …,n. An atomic DEVS model D = (D1 
||… || Dn) is consistent with SC if, and only if, for each 

component i, )()( )(/ DiBhSCBh ievents ⊆ where events(i) 

is the set of events involving components i in the scenarios. 
And for the coupled final DEVS model CD = (D1 coupling 
… coupling  Dn), )()( CDBhSCBh = .  

Since, scenarios-based models describe only examples of 
system behaviors; it is possible that the atomic DEVS 
models consistent with those scenarios produce more 
behaviors than those explicitly captured in the scenarios. 

However, some of these additional behaviors may be 
present in every atomic DEVS model that is consistent with 
the specified scenarios. Such scenarios are called implied 
scenarios. 

- What is an implied scenario? An implied scenario is a 
behavioral path that can be extracted from the DEVS model 
but does not exist in the MSC specification. 

 Some state transition paths which are not explicit in MSC 
can occur by merging similar state in optimization phase of 
synthesis process. Such state transitions are called 
unexpected state transition. 
The implied scenarios can be constructed from the 
unexpected state transitions and can help to complete the 
requirements specification with unforeseen situations or 
indicate that the specification must be refined to prevent 
unwanted executions. 
Henry Muccini [19] and Felipe [20] had presented an 
approach to detect implied scenarios in state machines 
extracted from hierarchical Message Sequence charts, and 
has proved that there is a strict correlation between implied 
scenarios and non-local branching choices in hMSC “An 
implied scenario may be found in the MSC specification 
when a nonlocal choice occurs that lets processes keep extra 
information that is lately used for a communication”. 
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V.FORMAL VERIFICATION WITH Z LANGUAGE

In this section we show how to prove formally static 
system properties with Z language. We will use the approach 
given in [18], which consists in translating DEVS model to 
Z specification. The equivalent Z specification of the DEVS 
model of the hybrid car system is divided into three parts:  
Electric Engine Z specification (equivalent to Electric engine 
DEVS model), Thermal Engine Z specification (equivalent 
to Thermal Engine DEVS model) and Z Hybrid Car 
specification (equivalent to the coupled DEVS model). 

A. Z specification of  the Electric Engine 

The following free type definitions represent finite sets of 
state values, input and output variables:  

*E_PHASE        ::=Init | E_Start | E_Move | Break 
| Increase_Energy | E_Braking 

*CAR_INPUTS::=start | stop | accelerate | brake 
*SET_IN_OUT ::=add_energy |move_elect |  move_therm  

    The global state schema containing the state variables 
describing the electric engine is:  

»_Elect_Engine____________________ 
ÆphaseE: E_PHASE; speedE, energy, activeE: N
«_______________ 
Æ0 ¯ speedE < 50  ∧ 0 < energy < 100 
–___________________________ 
 
    The initial state schema containing initial values of the 
state variables is: 
»_Init_Elect_Engine__________________ 
ÆElect_Engine 
«_______________ 
ÆphaseE = Init ∧ speedE = 0 ∧energy =10 0 ∧activeE = 0 
–___________________________ 

There are two major operations schemas deducted from 
the DEVS model of the Electric Engine: (i) 
Internal_Transit_Elect schema which contains all the 
internal transitions of the DEVS model and eventual outputs 
generated with some of theses transitions, and (ii) 
External_Transit_Elect schema which contains all the 
external transitions of the DEVS model. Each transition is 
presented by (values of state variables before transition and 
eventual inputs fi values of states variables after transition 
and eventual outputs)  

»_Internal_Transit_Elect________________ 
ÆΔElect_Engine; to_therm_engine!: SET_IN_OUT 
«_______________ 
ÆphaseE = E_Move ¶ activeE = 1 ¶ speedE < 50 
Æfi phaseE' = E_Move ¶ energy' = energy - 1 
Æ  ¶ speedE' = speedE + 10 ¶ activeE' = activeE 
ÆphaseE = E_Move ¶ activeE = 1 ¶ speedE ˘ 50 
Æfi phaseE' = Break ¶ speedE' = 50 ¶ activeE' = 0 
Æ  ¶ to_therm_engine! = move_therm 
ÆphaseE = Increase_Energy ¶ activeE = 0 
Æfi phaseE' = Break ¶ speedE' = 50 ¶ activeE' = activeE 
ÆphaseE = E_Braking ¶ speedE = 0 ¶ activeE = 1 
Æfi phaseE' = E_Start ¶ speedE' = 0 ¶ activeE' = activeE 

ÆphaseE = E_Braking ¶ activeE = 1 ¶ speedE > 0 
Æfi phaseE' = E_Braking ¶ speedE' = speedE - 10 
Æ ¶ energy' = energy + 1 ¶ activeE' = activeE 
–___________________________ 

»_External_Transit_Elect_______________ 
ÆΔElect_Engine; driver?: CAR_INPUTS 
Æfrom_therm_engine?: SET_IN_OUT 
«_______________ 
ÆphaseE = Init ¶ speedE = 0 ¶ energy = 100  
   ¶ activeE = 0 ¶ driver? = start 
Æfi phaseE' = E_Start ¶ speedE' = 0 ¶ activeE' = 1 
ÆphaseE = E_Start ¶ speedE = 0 ¶ activeE = 1  
 ¶ driver? = stop 
Æfi phaseE' = Init ¶ speedE' = 0 ¶ activeE' = 0  
   ¶ energy' = 100 
ÆphaseE = E_Start ¶ speedE = 0 ¶ activeE = 1   
 ¶ driver? = accelerate 
Æfi phaseE' = E_Move ¶ speedE' = speedE + 10 
Æ   ¶ energy' = energy – 1 ¶ activeE' = activeE 
ÆphaseE = E_Move ¶ activeE = 1 ¶ driver? = brake 
Æfi phaseE' = E_Braking ¶ speedE' = speedE - 10          
         ¶ activeE' = activeE 
ÆphaseE = E_Braking ¶ activeE = 1  
    ¶ driver? = accelerate 
Æfi phaseE' = E_Move  ¶ speedE' = speedE + 10 
Æ  ¶ energy' = energy – 1 ¶ activeE' = activeE 
ÆphaseE = Break ¶ speedE = 50 ¶ activeE = 0      
                   ¶ from_therm_engine? = add_energy 
Æfi phaseE' = Increase_Energy ¶ energy' = energy + 1  
        ¶ activeE' = activeE 
ÆphaseE = Break ¶ speedE = 50 ¶ activeE = 0  
  ¶ from_therm_engine? = move_elect 
Æfi phaseE' = E_Braking ¶ speedE' = speedE - 10 
–___________________________ 

B. Z specification of the Thermal Engine 

The same rules are applied to the thermal engine, thus: 
*T_PHASE        ::=T_Start | T_Move | T_Braking 

| High_Speed 
*CAR_INPUTS ::=accelerate | brake 
*SET_IN_OUT ::=move_elect | add_energy | move_therm 
 
»_Therm_Engine___________________ 
ÆphaseT: T_PHASE ; speedT, activeT: N
«_______________ 
Æ50 ¯ speedT ¯ 220 
–___________________________ 
»_Init_Therm_Engine_________________ 
ÆTherm_Engine 
«_______________ 
ÆphaseT = T_Start∧ speedT = 0 ∧ activeT = 0 
–___________________________ 
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»_Internal_Transit_Therm_______________ 
ÆΔTherm_Engine ; to_elect_engine!: SET_IN_OUT 
«_______________ 
ÆphaseT = T_Move ¶ activeT = 1 ¶ speedT ˘ 100 
Æfi phaseT' = High_Speed  ¶ speedT' = speedT + 10 
Æ  ¶ activeT' = activeT  ¶ to_elect_engine! = add_energy 
ÆphaseT = T_Braking ¶ activeT = 1 ¶ speedT ¯ 50 
Æfi phaseT' = T_Start ¶ speedT' = 50 ¶ activeT = 0  
Æ  ¶ to_elect_engine! = move_elect 
ÆphaseT = T_Move ¶ activeT = 1 
Æfi phaseT' = T_Move ¶ activeT' = activeT  
      ¶  speedT' = speedT + 10 
ÆphaseT = High_Speed ¶ activeT = 1 
Æfi phaseT' = phaseT ¶ activeT' = activeT  
     ¶  speedT' = speedT + 1 
ÆphaseT = T_Braking ¶ activeT = 1 ¶ speedT > 50 
Æfi phaseT' = phaseT   ¶ activeT' = activeT 
¶ speedT' = speedT – 1 ¶ to_elect_engine! = add_energy 
–___________________________ 
 
»_External_Transit_Therm______________ 
ÆΔTherm_Engine; driver?: CAR_INPUTS 
Æfrom_elect_engine?: SET_IN_OUT 
«_______________ 
ÆphaseT = T_Start ¶ speedT = 50 ¶ activeT = 0  
 ¶ from_elect_engine? = move_therm 
Æfi phaseT' = T_Move ¶ speedT' = speedT + 10  
       ¶ activeT' = 1 
ÆphaseT = T_Move ¶ activeT = 1 ¶ driver? = brake 
Æfi phaseT' = T_Braking ¶ speedT' = speedT - 10  
       ¶ activeT' = 0 
ÆphaseT = T_Braking ¶ activeT = 1¶ driver? = accelerate 
Æ¶ speedT > 50 ¶ speedT < 100 
Æfi phaseT' = T_Move ¶ speedT' = speedT + 10  
      ¶ activeT' = 1 
ÆphaseT = High_Speed ¶ activeT = 1 ¶ driver? = brake 
Æfi phaseT' = T_Braking ¶ speedT' = speedT - 10  
        ¶ activeT' = 1 
ÆphaseT = T_Braking ¶ activeT = 1  
  ¶  driver? = accelerate ¶ speedT ˘ 100 
Æfi phaseT' = High_Speed ¶ speedT' = speedT + 10  
       ¶  activeT' = 1 
–___________________________ 

C. Z specification of the Hybrid_Car 

First the free type definition of the inputs of the coupled 
model is presented.   

*CAR_INPUTS::= start | stop | accelerate | brake 

Z schemas of the Electric Engine and the Thermal Engine 
(stated below) are used. 

The global state schema of the hybrid car is presented by 
the following conjunction of schemas:  

Hybrid_Car Í Elect_Engine ¶ Therm_Engine 

The initial state of the Hybrid_Car state is given by the 
conjunction of both electric and thermal engines initial 
states schemas:
Init_Hybrid_Car ÍInit_Elect_Engine ¶ Init_Therm_Engine 

The couplings between DEVS model components are 
represented as following:  

Coupling1 ÍInternal_Transit_Elect           
º External_Transit_Therm

Coupling2 ÍInternal_Transit_Therm 
º External_Transit_Elect 

In fact, the outputs of the Internal_Transit_Elect schema are 
the inputs of the External_Transit_Therm and inversely. 

D. Proof Obligation of the Hybrid_Car  

We have used Z/EVES – a Z editor used for writing Z 
specification and making proofs, to prove that the initial 
state and operations of the Hybrid_Car preserve state 
invariants: 

• Proving Initial state:

theorem Can_Init_Hybrid 
EHybrid_Car' • Init_Hybrid_Car 
Prove by reduce - Z/EVES command checking   
theorems- � TRUE 

• Proving operations (Precondition calculus): 

theorem Precondition_Coupling1 
AHybrid_Car • pre Coupling1 
theorem Precondition_Coupling2 
AHybrid_Car • pre Coupling2 

These two theorems permit to determine the 
preconditions of the operations schemas (the conditions 
which allow the operations to be performed). Therefore, 
coupling1 and coupling2 operations are performed if the 
returned preconditions are equal to the preconditions 
contained in the equivalent schemas. For example: if 
Elect_Engine is on the phase “ E_Move” and the 
Therm_Engine is on the phase “T_Start”, do them transit 
respectively  to the phases  “Break” and “T_Move”
satisfying the state invariants?  This question is represented 
by the following theorem:  

AHybrid_Car |  phaseE = E_Move ¶ activeE = 1 ¶ speedE 
˘ 50 ¶ phaseT = T_Start ¶ speedT = 50 ¶ activeT = 0  
                                 pre Coupling1 
If the answer is true, it means that these transitions respect 
properties of the system. Therefore their simulation is done 
in a coherent context.  

VI. CONCLUSION

We have provided a multi-specification framework for 
modeling, verifying and validating constraints based 
interactive systems. In fact, the interactions can be described 
by the MSC, the system behavior can be captured with 
DEVS formalism and the functional part is well formalized 
with Z notation. This framework permits to improve 
verification and validation process by using simulation and 
formal verification techniques. We have presented the MSC 
synthesis into a DEVS model in order to validate the global 
behavior of the system by simulation. We have chosen 
scenario semantics restricted to event sequences with the 
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notion of (iteration, alternative and sequence). Also, formal 
verification was used to prove formally the consistency of 
the system (absence of conflicts and incoherencies in system 
properties). Our approach permits a great automation in 
system analysis. In fact, once the system is modeled with 
MSC, our approach automatically generates equivalent 
DEVS model. The latter is also automatically transformed to 
a Z specification. In addition, our approach bridges the gap 
between “modeling and simulation” and “formal methods” 
by integrating simulation and formal proof techniques in the 
same framework.  
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