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Abstract— The requirements anaysis, modeling, and
simulation have consistently been one of the main chalenges
during the development of complex systems. The scenarios and the
state machines are two successful models to describe the behavior
of an interactive system. The scenarios represent examples of
system execution in the form of sequences of messages exchanged
between objects and are a partia view of the system. In contrast,
state machines can represent the overall system behavior. The
automation of processing scenarios in the state machines provide
some answers to various problems such as system behavior
validation and scenarios consistency checking. In this paper, we
propose a method for trandating scenarios in state machines
represented by Discreet EVent Specification and procedure to
detect implied scenarios. Each induced DEV S model represents the
behavior of an object of the system. The globa system behavior is
described by coupling the atomic DEVS models and validated
through simulation. We improve the validation process with
integrating forma methods to eliminate logical inconsistencies in
the global model. For that end, we use the Z notation.

Keywords— Scenarios, DEVS, Synthesis, Validation and
Verification, Simulation, Formal Verification, Z Notation.

I. INTRODUCTION

A typica development of an interactive system begins
with writing scenarios which describe the most important
behaviors. They are gradually enriched, specified and
composed until describing all the behaviors of the system. A
scenario visually describes by means of a sequence diagram,
the interaction protocol between objects and the
environment. In contrast, a state machine has the vocation to
represent the entire behavior of a system and it is hard to be
conceived. Moreover, designing the system behavior directly
with state-based models is not an intuitive process, since the
concept of state is not obvious in the first stages of the
development process. The partia character of scenarios
makes them easier to be conceptualized. Which why,
working in paralel with the requirements of a system
expressed in the form of scenarios, and its specification
provided by the state machines improves the level and
quality of specification. A lot of software engineering
approaches synthesize state-based models from scenario-
based models with the intent to make the task of describing
the dynamic behavior of interactive systems easier [7]. This
transformation from scenarios to state machines consists in
checking the consistency of the various scenarios and
inducing a globa behavior for the system from the partia
behaviors given in the scenarios. Many problems can arise
during synthesis as deadlock or the paralelism which is
caused by competition between the events, appearance of the
implicit scenarios and other problems of composition which
make difficult to apprehend the globa behavior of the
system.

This article proposes to induce from a set of scenarios
expressed in the form of Message Sequence Charts [1], a
DEVS [6] model representing the overall behavior of the
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system. We propose procedures for such transformation.
Normally, the obtained simulation models must produce the
same sequence of events for the input sequences in the
scenarios. Therefore, we use simulation techniques and
formal verification (absence of conflicts and incoherencies in
system properties) with Z language [15] to ensure the
consistency of scenarios. In fact, once the system is modeled
with scenarios, our approach automatically generates an
equivalent DEVS model. The latter is also automatically
transformed to a Z specification.

We present in the following sections, the scenario
notation, the Discrete Event Specification (DEVYS)
formalism, the Z language, the synthesis procedure and an
exampleto illustrate our case study.

Il.RECALLS

A. Scenarios

The scenarios are effective means to obtain and to validate
the requirements. They became the most popular ways to
describe systems behaviors. They describe how the
components of a system, the environment and the users,
work simultaneously and act between them to provide the
level of functionality of the system. In particular, they are
used at the first phase of the software development that we
call requirements engineering, but can appear too in later
phases like the validation or maintenance. They can be
composed by using flow control operators (alternative,
sequence, parallel composition and repetition) in order to
form more complex scenarios.

A great number of notations are commonly used for the
description of scenarios, like: Message Sequence Charts
(MSC) defined within an international standard [1], Live
Sequence Charts (LSC) proposed by [2], the UML SD [3],
which are a simplified version of basic MSC [4]... All of
them are based on a textual and graphical representation. We
have chosen Message Sequence Chart to illustrate our
approach and represent the requirements of our systems
because it is a formal language of which graphical notation is
easily understood, and it can be hierarchically composed by
using hMSC (hierarchical Message Sequence Chart) in order
to form more complex scenarios.

The Message Sequence Charts are composed by
hierarchical MSC's (hMSC) and basic MSC's (bMSC). A
basic MSC has astructure: (E, A, L, O,0, <, trg) where:

e E:isafinite set of events divided into a set of sent events
SE, and a set of received events RE;

A: isfinite set of actions;
L: isafinite set of labels;

O: isafinite set of objects;
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e <:isapartia order relation (antisymmetric, reflexive@yino:syggms. One is an Atomlc Model (AM) and the other is a

transitive) called causal order on events,
- V(el) e E= el < el (reflexive);

- V(el,e2) e E®, (el< e2) A (€2< el) = el = €2
(antisymmetric);

- V(el, e2) e E3, (el< e2) A (€2< €3) > el < €3
(transitive);

0O: E — O associates an event to an object. Moreover,
events belonging to the same object are totally ordered;

V(ele2) e B, g(el) = §(e2) = (el < e2) v (e2< &)

e trg: S — Risafunction which represents the trgectory
of the events. This function associates the sending of an
event with its reception.

The behavior represented by the bMSC is a set of sequences
of events determined by the causal priority. This causa
relationship determines a partial order, noted <, on the
events between al objects. The partial order can be derived
from the bM SC in respect with two principal rules:

e An event e drawn higher than another event € on the
same lifeline of an object precedes necessarily €';

e The event associated with a message sending precedes
necessarily the event associated with the reception of this
message (in the <case of an asynchronous
communication). For a synchronous communication, the
events sending and reception for each message are used
to be considered instantaneous.

We will denote by em(e) the sending event corresponding to

the receiving event e and rec(e) the reception event

corresponding to the sending event e. we use label send(i, j,

m) to denote the event “ object i sends the message m to

object j” and similarly, receive(i, j, m) to denote the event “

object i receives the message m from object j”. We will
often note !m the sending event, and ?m the receiving event

for a message m.

The hierarchical MSC’'s were conceived to alow the
creation of more complex scenarios [1]. A high-level MSC
(hMSC) provides the means for composing bMSCs: it is a
digraph where nodes are bMSC's and arcs indicate their
possible continuations. It has a specia initial and final node
that corresponds to the initial and final system states. An
execution of an hMSC is obtained by traversing the way
starting from initial hode to the final one.

An hMSC has astructure: (N, A, SO) where:

e Nisafinite set of bMSCs with digjoint sets of events;

e Ac (NxN)isasetof arcs,

e SO0e Nistheinitia node.

B. The DEVSformalism

The DEVS formalism introduced by [5] provides a means
for modeling discrete event system in a hierarchical and
modular way. DEVS is a general formalism for discrete
event system modeling based on set theory [6]. It alows
representing any system by three sets and four functions:
Input Set, Output Set, State Set, Externa Transition
Function, Internal Transition Function, Output Function, and
Time Advanced Function. DEVS formalism provides the
framework for information modeling which gives several
advantages to analyze and design complex systems:
Compl eteness, Verifiability, Extensibility, and
Maintainability. DEV'S has two kinds of models to represent
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Coupled Model (CM) which can specify complex systemsin
a hierarchical way [6]. DEVS model processes an input
event based on its state and condition, and it generates an
output event and changes its state. Finaly, it sets the time
during which the model can stay in that state.

1) Atomic model

An atomic DEVS model describes the behavior of a
component, which is indivisble, in a timed state transition
level. It is represented by one box comprising inputs and
outputs; it allows a system to be described like a set of
deterministic transitions between sequential states (Fig. 1).
Each transition is|abeled by a sending or reception event.

Xo...1p Yo...up
. —
Xn.. 4}; -

P— Y. .. .,

Fig.1 Representation of an atomic DEV S model

Formally, an atomic model is defined by a 7-tuple <X, Y, S,
dint, dext, A, ta> where:

e Xisthesetof inputvaues,
e Y istheset of output values;
e Sisthe set of sequentia states,

e Jdint : S — S is the interna transition function that
defines the state changes caused by internal events;

o Jdext: Q xX — Sisthe externa transition function,
where Q = {(s,€)|sc S, 0<Le<ta(s)} isthe set of total Hate;
this function specifies the state changes due to externa
events, with the ability to define a future state according
to the elapsed time in the current state;

e A:S — Y isthe output function that generates output
events,

e ta SR, givesthelifetime of the states, where R",.,
isthe set of positive real numbers between 0 and <.

The behaviors of the atomic model are as follows: An atomic
model can stay only in one state at any time. The maximum
time to stay in one state without external event is determined
by ta(s) function, it changes its state by dext if it gets an
external event. If possible remaining time in one state is
elapsed, it generates output by A and changes the state by
Jint. In general, while the interna transition function Jint
expresses the autonomous evolution of the model, the
externa transition function dext defines its evolution when
occurring external events.

2) Coupled model

The coupled DEVS model is constructed by coupling
atomic and/or coupled models. Output events of one model
are connected with input events of another. The resulting
coupled model can itself be employed as a component in a
larger coupled model, by giving rise to the construction of
complex modelswith hierarchical structures (Fig. 2).

EIC

Atomic or -
Atomic or
F—' Coupled |10 , Coupled - EoC
DEVS

put port F c DEVS Output |port

Fig. 2 Representation of a coupled DEV S model

5
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A coupled model is formally defined by a 7-tuple < X8, No:sHgo0output variable)
|

M, EIC, EOC, IC, SELECT > where:

e X istheset of input events;

e Y isthe set of output events;

e M istheset of al the DEVS component models;

e EICc X x UiXi istheexternal input coupling relation;

e EOC c Uivi
relation;

xY is the external output coupling

e ICc UiXi xUiYiistheinterna coupling relation;

e SELECT: 2M - ¢, M is a function which chooses one
model when more than 2 models are scheduled
simultaneously.

EIC, EOC and IC specify the connections between the
input and output ports of the various DEV'S models.

C. TheZ Secification Language

Z isaformal state-based specification [14] [15]. It is based
on predicates logic and set theory. A main ingredient in Z is
the way of decomposing a gspecification into small pieces
called schemas. Schemas are used to describe both static and
dynamic aspects of a system. The notation of the schema is
the following:

____Schema Name
declarations (state space)

predicates

1-Declaration of types used into the specification (free type
definition).

2- A schema describing the global abstract state of the
system:

bstract State Name
declarations of the variables describing the state of the
system

predicates (Sate invariants)

3- A schema describing the initial state of the system:
____Initializing_System
Abstract State Name

initialization of states variables

4- List of operations schemas and each one describes the
state before and after the operation execution:
—— Operation Name

| Asystem name(A : to say that the state of the systemis

changed) OR = system name (Z : to say that the state of
the systemis the same)

| eventual declaration of input variables (? has to be placed
after input variable)

‘ eventual declaration of output variables(! has to be placed
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' pre-operation (values of the state variables just before the
operation)
] post-operation(values of the state variables just after the
operation)

eventual values of input variables

eventual values of output variables

5- Treatment of errors that can appear when executing

operations.

___OperationError
Asystemname OR E system name
eventual declaration of input variables
eventual declaration of output variables

pre-operation (may be that the operation hasn't to be
executed after this pre operation)
| post-operation ( may be after execution of the operation,
the post operation is not available)
| eventual value of the input (may be it doesn't satisfy a
constraint)
] eventual value of the output ( can informthat thereisan
error)

1) Proof Obligationin Z

In traditional Z-based specification methodologies,
designers must conduct a set of forma proofs to verify
incrementally the consistency of the system being modeled
[16] [17]. In state/transition approaches like Z-based model
this mostly consists in (1) initialization theorems to ensure
that initializations preserve state invariants and (2) pre-
condition calculations to enforce the consistency of the
operations modifying the state space. Establishing the list of
al preconditions ensures that either the state invariant is
completely preserved by operation effects or that some other
condition must be fulfilled.

II. THE EXISTING WORKS

The automatic synthesis of conceptions starting from
scenarios was a very active field of research during the last
years. Many approaches address the scenario synthesis
problem and makes possible to induce atotal behavior model
expressed in a state machine format starting from a set of
scenarios [7]. There are two kinds of synthesis: the
construction of a globa state machine which represents the
total behavior of a system directly starting from a set of
scenarios, with or without composition mechanism. And the
construction of a state machine by object for all the scenarios
whose behavior of the system is defined like the parallel
composition of all the obtained states machines and which
synchronizes on the shared messages. Harel [8] proposed a
synthesis approach using the scenario-based language of
Live Sequence Charts (LSC) as requirements, and
synthesizing a state-based object system composed by a
collection of finite state machines. Letier [9] presents a
technique to generate Labeled Transition System (LTS) from
High Level Message Sequence Chart (hMSC), in this
approach; complex system behavior can be modeled by
paralel composition of the component LTS models. The
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LTS obtained are executed asynchronously but synchr@gizeno:s, 2089

on shared events; also they present a technique to detect
implicit scenarios. Ziadi [10] propose an idea to synthesize
statecharts starting from scenarios expressed by UML2.0
Sequence Diagrams, and give an algorithm for synthesizing a
composition of statecharts between them. Also, Damas [11]
has presented an approach to generate Labeled Transition
System from a collection of basics MSC's, and use a
techniqgue to merge the identical states. The synthesis
approaches differ depending on:

e  The choice of the scenarios language;

e  Their semantic interpretation;

e Thetype of target state machines;

e  The complexity of the synthesis algorithm implemented;

o If they use or not the techniques of reunification of the
identical states.

V. SYNTHESISING DEV SMODELS FROM SCENARIOS

In this section we discuss a general procedure for deriving
DEVS component descriptions from a set of MSC's
scenarios. To that end, we give an overview of our
trandation schema in section A, and present an example of
application in section B.

A. Roadmap for the trandation procedure

The systems we are interested in consist of a set of
components and they are described by a set of scenarios
expressed in the form of messages sequences charts. We
assume given a set of MSC's that describe all the interaction
sequences among a set of components named objects. We
assume further that we try to obtain an atomic DEVS for
exactly one of the objects, say O, occurring in the MSC's
diagrams.

The procedure for obtaining that automaton consists of
seven  successve phases:  verification,  projection,
normalization, transformation into atomic DEVS models,
merging all atomic models obtained for each object in one
global atomic model, optimization and obtain a global
coupled DEVS.

o Veification: This phase consists in checking that the set
of the behaviors described by each MSC is a sequence set
of events respecting the causal priority. The events
associated with one object are totally ordered.

e Projection: During the second phase, we project each of
the given MSC's onto the object “O”, i.e. we remove all
other instance axes, as well as message arrows that
neither start, nor end at O. If we use hierarchical MSC,
we project each basic MSC onto object “O” by traversing
the way starting from initial node to the final node with
respecting segquence between basic components.

o Normalization: We identify the events which will make
possible to determine the initia and final states of the
atomic DEV'S moddls corresponding to “O”.

e Transformation into an atomic DEV'S model: This phase
consists in tranglating reception events of the object into
external transitions in DEV'S models and sent events into
internal transitions. In the definition of the externa
transition function, p?v notes the value v of the input
event occurring on the input port p of the atomic model
(Fig. 3). In the definition of the output function, p!v notes
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e value v of thé output event to be generated on the
output port p. If there are actions, we use states variables
in DEVS model, and if there are conditions, we add
conditionsin the equivalents states transitions.

bMSC starting
[ o1 | [ o2 |

From_O17?start

Fig. 3 Projection of starting bM SC onto object O2

In this phase of synthesis, the number of the atomic
DEVS models for each object must be equa to the
number of the bM SCs.

Merging all atomic models obtained in one global atomic
model: for each object, we merge al resulting atomic
models associated to each bMSC, in one globa atomic
model that represents the global behavior of the object in
the system. To that end, we traverse the way of the hMSC
starting from the initiadd bM SC towards the final one with
using the following steps. We use scenario semantics
restricted to event sequences with the notion of (iteration,
alternative and sequence):

o Seq: Specify a sequence between the behaviors of
two operand bM SC (strong sequential composition).

Let Dal = <X1, Y1, S1, dintl, dextl, A1, tal> and Da2=<
X1,Y1, S1, dintl, dextl, AL, tal>

Dal seqDa2 =<X, Y, S, dint, dext, A, ta> where;
= S=(S1u S2)- {02} if (Da2 = Dad)

- S2if (Dal= DaY)
- Sl otherwise
- D=9D1if (Dal# Dad)
= 902 otherwise
= X =X1uX2
= Y=Y1uY2

= dint =dintl U dintl
= Jext = dextl U dext2
» tastal uta2

o Loop: Specify an iteration of an interaction
Let Dal =<X1, Y1, S1, dintl, dextl, A1, tal>
loop (Dal) =<X, Y, S, dint, dext, A, ta> where:

= S=-(Sl-snl) U {01}
- 0=s01

= X=X1

= Y=Y1

= dint =dintl

= dext = dextl

= A=AL

= tastal

= Loop (Dad) = Dad

o Alt: Define a choice between a set of interaction
operands:

Let Dal = <X1, Y1, Si, dintl, dextl, A1, tal> and
Da2=< X1, Y1, S1, dint1, dextl, A1, tal>
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Dal dt Da2 =<X, Y, S, dint, dext,A, ta> where

= S=-Slif (Dal # Dad A Da2 = Dad)

- S2if (Dal = Dad A Da2 # Dal)

-{s0} if (Dal = A Da2 = &)

-S1u S2-{s02}if (Dal # Dad A Da2 # Da)
= S0 =A new state if (Dal = Dad A Da2 = Dad)

- 01 if (DalxDadADa2=Day)

- S02 otherwise
= X=X1uX2
= Y=Y1luY2

= dint = dintlu dintl
= dext = dextlu oext2
«  ta=tal uta?

e Optimization: To optimize the resulting globa atomic
DEVS we use standard algorithms of optimization from
automata theory in order to make our models
deterministic and have the minimum number of states and
transitions. To that end, we merge states that receive,
send the same events and have the same variables number
and values:

= Case external transition + interna transition: if
dint(S)=§ [/ MS)=pilvi and dint(Si)=Sj /
MSi)=pilvi and dext(Sk,e,pkvk)=Si and
dext(S k,e,pkvk)=S'i then Si=S'i;

= Case external transition + externa transtion: if
oext(Si, e, pivi)=§ and éext(S'i, e, pivi) =S| and
dext (Sk, e, pkvk)=S and dext(Sk, e, pkvk)=S'i
then Si=S'i;

= Case interna transition + external transition: if
dext(Sl, e pivi)=§ and dext(S'i,epivi)=Sj and
dint(Sk)= S / A (Sk)=pklvk and Sint(Sk)=Si /
MS k)=pk!vk then Si=S'i;

= Case internd transition + interna transition: if
dint(Si)=§ [/ MS)=pilvi and Sint(Si)=Sj /
MSi)=pilvi and dint(Sk)=S / A(Sk)=pk!vk and
dint(Sk)=Si / A(Sk)=pk!vk then Si=Si.

e Generating the global coupled DEVS: in this fina phase,
the final coupled DEVS model can be obtained by
coupling the various global atomic models for each
object. In that end, if an object O1 sends an event to
another object 02, we connect the output port of O1 with
the input port of O2, and vice versa. The final coupled
DEVS obtained describes the overall behavior of the
system.

To illustrate our approach we have used scenario
semantics restricted to event sequences with the notion of
(repetition, aternative and sequence). The advantage of the
use of coupled DEVS and not of the total state machines is
on the first hand, to make possible to simulate and to validate
the behavior of each object of the system. And in addition
this type of transformation gives flexibility to the process of
the synthesis. Indeed, any modification, addition or removal
of an object in the system do not influence on the process of
the synthesis. We have just to modify, add or remove the
corresponding atomic DEVS model. The next section
provides an example application of the procedure we have
outlined here. An algorithm which trandates a basic SD
(Sequence Diagram) into an atomic DEVS model by object
was presented in [12]. Also, the principle of the construction
of an atomic DEVS model by object starting from several
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SD, and thg construction of coupled DEV'S model
isdescribed in[13].

B. Case Study

In the previous section, we proposed a method for
trangating a set of scenarios into state machines represented
in the forma DEVS specification. To illustrate our
approach, we use a hybrid car interactive based system.

A hybrid car has an engine that runs with fuel and a
rechargeable battery. Hybrids are preferred because all-
electric carsrarely get above speeds of 50-60 miles per hour
(mph). They aso need to be recharged between 50 and 100
miles. The battery system in hybrid cars is recharged from
the car itself. Electrical hybrid engine can take the kinetic
energy that comes from applying the brakes and charge the
battery. The originality of this car is the presence of two
engines, one run with fuel (thermal engine) and the other is
electric. The assumptions linked to the hybrid car are the
following:

e When the driver starts the car or the speed is lower than
50mph: Only the electrical engine is moving with
rechargeable battery (Fig. 4). Aslong asthe car runs, the
battery loses energy. This system is necessary for low
speeds. In this case, the thermal engine is completely
inactive, no dioxide carbon is emitted. A great advantage
for planet, and the pocket of the driver.

|_ Ther_mal
engine Wheel
I I N
@ Elec_tric
engine

Fig. 4 When the driver starts the car or the speed is lower than
50mph

e When the speed is higher than 50mph: The electrical
engine is in stand by. Only the thermal engine works.
When speed exceeds the 100 mph, part of the driving
energy provided by the fuel is used to reload the battery,
via a generator (the electrica engine) (fig. 5). All is
recycled, contrary to atraditional car.

@ Thermal
engine Wheel
_k_)—

Electric
engine

Fig. 5 When the speed is higher than 50mph

e The deceleration phases: When the driver brakes,
thekinetic energy resulting from the movement of the
vehicle, is directly sent towards the battery of the
electrical engine (Fig. 6).

I Thermal

engine Wheel
Elec_trlc
. engine

Fig. 6 Sending kinetic energy to the batteries
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The behavior of this hybrid system is represented iothenodbeetric and the Thermal engines that represent the operative
hMSC of Fig.7. This hMSC is composed by three objects.  system.
the Driver which is considered as a control device, the

Driver | [Electric_E| [Thermal_E

activeE=0
speedE=0
energy=100
Start

speedE=0
activeE=1

accelerate

activeE=1
speedE=1
energy -

O—

[speedEl<50] |
[speedE/>= 50] [speedT < 50]
D E T|[p E T D E = J.
brake E
1E+10 speedE=
zl::::;y,, speedE-10 activeE=0 D E T
activeE=1 energy++

Move_therm
‘ speedT=50
speedT=50 activeT=0
4 I L Move_elect
= speedE=49
T activeE=1
speedE-10
energy++
D E T speedT+10
activeT=1

speedE+10

energy-—
activeE=1

[speedE==0]

|
[speedT>=50] && [speedT < 180]

[speedT ==100] A l
; ——
D E T

D E T DE T _—

éAdd_ener speedT-10
activeT=1

Add_ensrgy
\
]
[speedT<50] [
¥
D E T
D E T
evert
dd_energ
| —
Fig. 7.A hybrid car MSC
Details and constraints: brakes. And vice versa It is supposed that an
e In sarting, it is the electrical motor which provides the acceleration phase lasts 1 u.t. idem for a braking phase.
traction power. activE=1, energy = 100 and speedE=0; If speed € [0 mph — 50 mph[ => activeE=1, activeT =

e The driver either he accelerates or he brakes. If the 0 and energie--.

driver accelerates, he is considered that it is always in B _ oo
the acceleration phase (speedE++ or speedT++) until he Ia];:tis\?:'?d:le [50 mph — 180 mph{ => activeE=0 and
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o If thedriver brakes: speed-- and energy++.
e  The passage from speed <100 to speed>=100: energy++.

e We suppose that speed increases by 10 mph while
accelerating, and decreases by 10 mph while braking.

By using the previous steps of transformation into DEVS
models, we obtain the DEV'S atomic models represented in
the Fig. 8 for the electrical engine, and Fig. 9 for the thermal
engine. After the global atomic models for all objects of the
system have been built, we construct the coupled model
given in the Fig. 10 who describes the overall behavior of the
hybrid car system, by connecting the outputs of the electrical
engine model with the input of the model representing the
thermal engine and vice versa, because the objects
communicate between them and also to alow the system to
work automatically.

—Car Electric engine

I
speedE<S N
10_therm_engingimove_therm;

L : sp&g&:[]

/
AW} /
driver? agcelerate;

N A \

from_therm_engjne?add_energy,

driver?|brake;

|
| driver?4ceelerate;

“from_therm_engin... k

“{o_therm_engin...

car

— Car Electric engine 0

> "driver”

"to_therm_engine | >——
>>"from_therm_engine"

"driver™

= Car Thermal engine 0 =

> driver”

"to_elect_engine"[>———
>"from_elect_engine™

Fig. 10 Thefina coupled DEVS model for ahybrid car

To validate the specification of the behavior of the system
obtained with the final coupled DEVS model, we simulate
the model results. For that we use the LSIS-DME tool [21].
This simulator was developed by team members of our
laboratory; it's composed of two parts: a model editor, and
simulator. Then, from the final model and a set of data, the
simulator provides the simulation results (Fig. 12). The
dataset is defined by the driver who enters all external events
supposed to occur during the smulation (Fig. 11). During the
simulation, we have to check that al events that should be
treated were treated, and all events that should not be treated
were not treated.

We suppose that the driver do the following scenario:

VoL
- \ Iincrease energy .
e \ ,J EEriel Begin Simulation Date
\ ,l \ / Type Input Port..| Eventalue(s) Date 0o
N\ ~ e " -
-~ = kS driver start 0
¥ Stiver accelerate ]
. . . . i End Simulation Date
Fig. 8 The global atomic DEV'S model for the electrical engine x driver _ orake !
¥ driver accelerate g a0
o ® driver hrake 18
r—Car Thermal endine " driver StDp 30
I Trace
speedT<l )1&
P
\ &4 Quit| |[Run Simulation
AN
/ AY

_ from_elect_engjp?move_therm; Iu_elE:I_Enane‘add_energy‘

speedT»<100
AY

|
\ speedT=180

VA

<
H\gh_fpeeu

“to_elect_engin...

ver?gccelerats,
(speeﬂT mm&(speeﬂ'r =50)

driver?|hrake;

ﬂrlver'7 ce\erate

N
“from_elect_engin...
N

~
to_elect_enginelmove_elect

driver2brake;

T_Braking
1

to_elect_engineladd_energy;
speedT==50

Fig. 9 The global atomic DEV'S model for the thermal engine
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Fig. 11 Example of filling input schedules

In this scenario, the driver start the car at O u.t, accelerate
at 5u.t, brake at 7 u.t, accelerate at 8 u.t, barke at 18, u.t and
stop the car at 30 u.t. Normally in simulation , when driver
stat, only electric engine must run (activeE=1) and the
termal engine must be inactive (activeT=0); when the driver
accelerate in 5 ut, the speedE must increase by 10
unity(speede+10) and the energy must decrease (energy--)
until ta=7u.t. When the driver brakein 7 u.t the speedE must
decrease by 10 unity (speedE-10) and the energy must
increase (energy++). At 8 ut, when the driver accelerate
again, speedE increase until 50 mph, after this, the thermal
engine must be inactive (activeE=0), and the thermal engine
begin active (activeT=1). SpeedT must increase until ta=18
u.t. when the speedT exceed 100mph, the thermal engine sent
enrgy to electric engine. When the driver brake at 18 u.t, the
energy must increase and the speed must decrease until
speedE=0. And finally the driver stops the car.

The following figure show the simulation results of the
hybrid car.
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Fig. 12 The smulation results

The description of the system behavior can be established
on a set of scenarios. Since each scenario is usualy written
in isolation, bringing many scenarios together will result in
inconsistencies which have to be detected and resolved. A
final coupled DEVS model inferred from a set of scenarios
and representing the overall behavior of the system should
be established by atomic models representing the behavior
of each component appearing in the scenarios. In addition,
each atomic model should exhibit as sequences of events at
least all scenarios projected to the time line of its
component. This consistency constraint between aMSC and
an inferred atomic DEV S model is defined as follows [9]:

Definitionl (Scenarios-DEVS consistency):

Let SC a scenario represented in the form of a MSC model
with components 1, ...,n. An atomic DEVS model D = (D1
|l... || Dn) is consistent with SC if, and only if, for each

component i, BN(SC), gensi) < Bh(Di) where events(i)
is the set of events involving componentsi in the scenarios.
And for the coupled final DEVS model CD = (D1 coupling
...coupling Dn), Bh(SC) = Bh(CD).

Since, scenarios-based models describe only examples of
system behaviors; it is possible that the atomic DEVS

models consistent with those scenarios produce more
behaviors than those explicitly captured in the scenarios.
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However, some of these additional behaviors may be
present in every atomic DEVS model that is consistent with
the specified scenarios. Such scenarios are called implied
scenarios.

- What is an implied scenario? An implied scenario is a
behavioral path that can be extracted from the DEV S model
but does not exist in the MSC specification.

Some state transition paths which are not explicit in MSC
can occur by merging similar state in optimization phase of
synthesis process. Such state transitions are called
unexpected state transition.

The implied scenarios can be constructed from the
unexpected state transitions and can help to complete the
requirements specification with unforeseen situations or
indicate that the specification must be refined to prevent
unwanted executions.

Henry Muccini [19] and Felipe [20] had presented an
approach to detect implied scenarios in state machines
extracted from hierarchical Message Sequence charts, and
has proved that there is a strict correlation between implied
scenarios and non-local branching choices in hMSC “An
implied scenario may be found in the MSC specification
when anonlocal choice occurs that lets processes keep extra
information that islately used for acommunication”.
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In this section we show how to prove formally static
system properties with Z language. We will use the approach
given in [18], which consists in trandating DEV'S model to
Z specification. The equivalent Z specification of the DEVS
model of the hybrid car system is divided into three parts:
Electric Engine Z specification (equivalent to Electric engine
DEVS model), Thermal Engine Z specification (equivalent
to Thermal Engine DEVS model) and Z Hybrid Car
specification (equivalent to the coupled DEV S moddl).

A. Z specification of the Electric Engine

The following free type definitions represent finite sets of
state values, input and output variables:

*E PHASE ::=Init / E_Sart / E_Move / Break
/ Increase_Energy / E_Braking

*CAR_INPUTS:: =start / stop / accelerate / brake
*SET_IN_OUT :: =add_energy /move_elect / move_therm

The global state schema containing the state variables
describing the electric engineis:
____Elect_ Engine
phaseE: E_ PHASE; speedE, energy, activeE: N

0 < speedE < 50 A 0 < energy < 100

Theinitial state schema containing initial values of the
state variablesis:
____Init_Elect Engine

Elect_Engine

phaseE = Init A speedE = 0 Anenergy =10 0 AactiveE = 0

There are two major operations schemas deducted from
the DEVS model of the Electric Engine: (i)
Internal_Transit_Elect schema which contains all the
internal transitions of the DEVS model and eventual outputs
generated with some of theses transitions, and (ii)
External_Transit Elect schema which contains al the
external transitions of the DEVS model. Each transition is
presented by (values of state variables before transition and
eventual inputs = vaues of states variables after transition

and eventual outputs)

____Internal_Transit_Elect
AElect_Engine; to_therm_enginel: SET_IN_OUT

phaseE = E_Move A activeE = 1 A speedE < 50
= phaseE' = E_Move A energy’ = energy - 1
A speedE' = speedE + 10 A activeE' = activeE
phaseE = E_Move A activeE = 1 A speedE > 50
= phaseE' = Break A speedE' = 50 A activeE' = 0
A~ to_therm_engine! = move_therm
phaseE = Increase Energy A activeE = 0
= phaseE' = Break A speedE' = 50 A activeE' = activeE
phaseE = E_Braking A speedE = 0 A activeE = 1
= phaseE' = E_Sart A speedE' = 0 A activeE' = activeE
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raking  activeE = 1 A speedE >0
= phaseE' = E_Braking A speedE' = speedE - 10
A energy’ = energy + 1 A activeE' = activeE

___External_Transit_Elect
AElect_Engine; driver?: CAR_INPUTS
from_therm_engine?: SET_IN OUT

phaseE = Init A speedE = 0 A energy = 100
A activeE = 0 A driver? = start
= phaseE' = E_Sart A speedE' = 0 A activeE' = 1
phaseE = E_Start A speedE = 0 A activeE= 1
A driver? = stop
| = phaseE' = Init A speedE' = 0 A activeE' = 0
A energy' = 100
| phaseE = E_Start A speedE = 0 A activeE = 1
A driver? = accelerate
= phaseE' = E_Move A speedE' = speedE + 10
A energy' = energy —1 A activeE' = activeE
phaseE = E_Move A activeE = 1 A driver? = brake
= phaseE' = E_Braking A speedE' = speedE - 10
A activeE' = activeE
phaseE = E_Braking A activeE = 1
A driver? = accelerate
= phaseE' = E_Move A speedE' = speedE + 10
A energy’ = energy —1 A activeE' = activeE
phaseE = Break A speedE = 50 A activeE =0
A from_therm engine? = add_energy
| = phaseE' = Increase Energy A energy’ = energy + 1
A activeE' = activeE
| phaseE = Break A speedE = 50 A activeE = 0
A from_therm_engine? = move_elect
‘ = phaseE' = E_Braking A speedE' = speedE - 10

B. Z specification of the Thermal Engine
The same rules are applied to the thermal engine, thus:
*T_PHASE =T _Sart / T_Move / T_Braking
/ High_Speed
*CAR_INPUTS :: =accelerate / brake
*SET_IN_OUT :: =move_elect / add_energy / move_therm

—_Therm_Engine
phaseT: T_PHASE ; speedT, activeT: N

50 < speedT < 220

__Init_Therm_Engine
Therm_Engine

phaseT = T_Sarta speedT = 0 A activeT = 0
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____Internal_Transit_ Therm
ATherm_Engine; to_elect_engine!l: SET_IN_OUT

phaseT = T_Move A activeT = 1 A speedT > 100
= phaseT' = High_Speed A speedT' = speedT + 10
A activeT' = activeT A to_elect_engine! = add_energy
phaseT = T_Braking A activeT = 1 A speedT < 50
= phaseT' = T_Start A speedT' = 50 A activeT = 0
A to_elect_engine! = move elect
phaseT = T_Move A activeT = 1
= phaseT’' = T_Move A activeT' = activeT
A speedT' = speedT + 10
phaseT = High_Speed A activeT = 1
= phaseT" = phaseT A activeT' = activeT
A SpeedT' = speedT + 1
phaseT = T_Braking A activeT = 1 A speedT > 50
= phaseT' = phaseT A activeT' = activeT
A speedT' = speedT — 1 A to_elect_engine! = add_energy
|

____External_Transit_Therm
ATherm_Engine; driver?: CAR_INPUTS
from_elect_engine?: SET_IN_OUT

phaseT = T_Start A speedT = 50 A activeT = 0
A from_elect_engine? = move_therm
| = phaseT' = T_Move A speedT' = speedT + 10

A activeT' = 1
phaseT = T_Move A activeT = 1 A driver? = brake
= phaseT' = T_Braking A speedT' = speedT - 10

A activeT' = 0
phaseT = T_Braking A activeT = 1a driver? = accelerate
A speedT > 50 A speedT < 100
= phaseT' = T_Move A speedT' = speedT + 10

A activeT' = 1
phaseT = High Speed A activeT = 1 A driver? = brake
= phaseT' = T_Braking A speedT' = speedT - 10

A activeT' = 1

| phaseT = T_Braking A activeT = 1

A driver? = accelerate A speedT > 100
| = phaseT' = High_Speed A speedT' = speedT + 10
A activeT'= 1

C. Z specification of the Hybrid_Car

First the free type definition of the inputs of the coupled
model is presented.

*CAR_INPUTS:: = start / stop / accelerate / brake

Z schemas of the Electric Engine and the Thermal Engine
(stated below) are used.

The global state schema of the hybrid car is presented by
the following conjunction of schemas:

Hybrid_Car = Elect_Engine A Therm_Engine
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conjunction of both electric and thermal enginesinitial
states schemas:
Init_Hybrid_Car =Init_Elect Engine A Init_Therm_Engine

The couplings between DEVS model components are
represented as following:

Couplingl =Internal_Transit_Elect
> External_Transit_Therm

Coupling2 =Internal_Transit Therm
> External_Transit_Elect

In fact, the outputs of the Internal_Transit_Elect schema are
the inputs of the External_Transit Therm and inversely.

D. Proof Obligation of the Hybrid_Car

We have used Z/EVES — a Z editor used for writing Z
specification and making proofs, to prove that the initial
state and operations of the Hybrid Car preserve state
invariants:

e Proving Initial state:

theorem Can_Init_Hybrid
Hybrid_Car' - Init_Hybrid_Car
Prove by reduce - Z/EVES command checking
theorems- 2 TRUE
e Proving operations (Precondition calculus):

theorem Precondition_Couplingl
Hybrid_Car - pre Couplingl
theorem Precondition_Coupling2
YHybrid_Car - pre Coupling2

These two theorems permit to determine the
preconditions of the operations schemas (the conditions
which alow the operations to be performed). Therefore,
couplingl and coupling2 operations are performed if the
returned preconditions are equa to the preconditions
contained in the equivalent schemas. For example: if

Elect Engine is on the phase “ E Move” and the
Therm_Engine is on the phase “T_Start”, do them transit
respectively to the phases “Break” and “T_Move”

satisfying the state invariants? This question is represented
by the following theorem:

PHybrid_Car / phaseE = E_Move 1 activeE = 1 4 speedE
>50 A phaseT = T_Start 4 speedT = 50 4 activeT = 0

pre Couplingl
If the answer is true, it means that these transitions respect
properties of the system. Therefore their smulation is done
in a coherent context.

VI. CONCLUSION

We have provided a multi-specification framework for
modeling, verifying and validating constraints based
interactive systems. In fact, the interactions can be described
by the MSC, the system behavior can be captured with
DEVS formalism and the functional part is well formalized
with Z notation. This framework permits to improve
verification and validation process by using simulation and
formal verification techniques. We have presented the MSC
synthesis into a DEVS model in order to validate the global
behavior of the system by simulation. We have chosen
scenario semantics restricted to event sequences with the
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verification was used to prove formally the consistency of
the system (absence of conflicts and incoherencies in system
properties). Our approach permits a great automation in
system analysis. In fact, once the system is modeled with
MSC, our approach automatically generates equivaent
DEV S model. The latter is aso automatically transformed to
a Z specification. In addition, our approach bridges the gap
between “modeling and simulation” and “forma methods’
by integrating simulation and formal proof techniques in the
same framework.
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