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Abstract—The shredding of waste materials is a key step in the
recycling process towards circular economy. Industrial shredders for
waste processing operate in very harsh operating conditions, leading
to the need of frequent maintenance of critical components. The
maintenance optimization is particularly important also to increase
the machine’s efficiency, thereby reducing the operational costs. In
this work, a monitoring system has been developed and deployed on
an industrial shredder located at a waste recycling plant in Austria.
The machine has been monitored for several months and methods for
predictive maintenance have been developed for two key components:
the cutting knives and the drive belt. The large amount of collected
data is leveraged by statistical machine learning techniques, thereby
not requiring a very detailed knowledge of the machine or its live
operating conditions. The results show that, despite the wide range
of operating conditions, a reliable estimate of the optimal time for
maintenance can be derived. Moreover, the trade-off between the
cost of maintenance and the increase in power consumption due
to the wear state of the monitored components of the machine is
investigated. This work proves the benefits of real-time monitoring
system for efficient operation of industrial shredders.

Keywords—Predictive maintenance, circular economy, industrial
shredder, cost optimization, statistical machine learning.

I. INTRODUCTION

PREDICTIVE maintenance is a set of techniques aimed at

deriving reliable predictions for the failure of machines

and components. These techniques are becoming increasingly

promising for fulfilling the emerging necessity of a well

scheduled and prompt maintenance, with the aim of oper-

ating industrial machines efficiently and reliably [1], [2]. In

particular, in the field of recycling, the shredding of waste

materials is accomplished using industrial shredders, which

need to operate in very harsh conditions, thereby requiring

frequent maintenance of critical components. This work then

focuses on deriving models for predictive maintenance of two

key components of a commercial industrial shredder produced

by Lindner-Recyclingtech GmbH: the cutting knives and the

transmission belt.

Several methods for fault detection and predictive mainte-

nance have been presented in the literature, mostly making

use of statistical machine learning algorithms [3], [2]. Each

of the presented approaches is, however, usually tailored to a

specific application, and it is therefore difficult to generalize

them to a similar yet different scenario. For example, in [3]

F. Pittino, D. Holzmann, K. Sayar-Chand and T. Arnold are with Sil-
icon Austria Labs GmbH, Europastr.12, 9524 Villach, Austria (e-mail:
federico.pittino@silicon-austria.com).
S. Moser and S. Pliessnig are with Lindner-Recyclingtech GmbH, Villacher
Straße 48, A-9800 Spittal an der Drau, Austria.

the transmission belt of a rotating machinery is monitored,

a scenario similar to ours, however this approach requires

a sophisticated control of all phases of the motor current,

rendering it inapplicable in our case.

On the other hand, the emergence of IoT devices has

enabled the collection of large amounts of data, commonly

referred to as Big Data, which allow the derivation of models

that do not require deep technical knowledge of the ma-

chine or advanced sensing techniques [4]. The availability of

Big Data allows also for the usage of very powerful Deep

Learning techniques, [5], [6], [7], [8], [9], which benefit from

very complex measurements with multiple input sources to

create accurate representations of the underlying phenomena

without requiring any particular knowledge of the machine.

The models resulting from these techniques are, however, so

complex that they have to be treated usually as black-boxes,

therefore negating the possibility of providing insights about

the status of the machine. As mentioned, they also require

a large amount of inputs to be meaningful. In our case we

then decided to focus on more traditional techniques which

ensure that our results are interpretable by the end-users. This

is possible since our measurement scenario, while involving

a very long measurement campaign, does not feature the

large input dimensions required to benefit from Deep Learning

techniques.

This paper is structured as follows. Sec. II presents our use-

case, the system for data acquisition and the models that have

been derived for performing predictive maintenance on the two

considered components of an industrial shredder. Sec. III then

presents the results of the application of these models to our

scenario. Finally, Sec. IV draws the conclusions.

II. METHODS

The industrial shredder studied in this work is sketched in

Fig. 1, where the monitored components are highlighted: the

cutting knives and the transmission belt. These two compo-

nents are the most important ones in terms of wear during the

normal operation of the shredder. More in detail:

• Cutting knives: this part needs replacement every few

months, and its state is crucial for an efficient operation

of the machine.

• Transmission belt: this part needs periodic re-tensioning

and replacement every 1-2 years, and it also has a high

impact on the machine’s power consumption, and thus

operating costs.
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Fig. 1. Scheme of the industrial shredder considered in this work. Highlighted
with red circles are the two components that have been monitored: the cutting
knives and the transmission belt.

Fig. 2. Arduino datalogger for accelerations and motor parameters recording.

In this work we focused on monitoring over an extensive

period of almost a year on an in-production machine, located

at a recycling plant in Austria. The workload on the machine

is not known, and the monitoring system has been operated

continuously to cover the whole working time. The machine,

on the other hand, does not operate continuously, but rather

switches between periods of heavy workload to inactive peri-

ods, which can last up to a few days.

A. Data acquisition

In order to monitor both components from Fig. 1, various

devices were installed at the recycling plant to record data:

• A custom datalogger, based on an Arduino platform, to

measure accelerations and some parameters of the motor

control, i.e., motor current and rotation speed;

• A Logic analyzer to record the signals of the incremental

encoders.

A mobile hotspot is used to connect the devices, through a

laptop, to a central database. Due to the harsh environment

(dust, dirt, water, cold, heat, ...) at the shredder site, care was

taken to adapt the equipment for such special needs, employing

for the datalogger sealed housings and robust cables.

Fig. 3. Scheme of the Arduino datalogger.

Fig. 4. Incremental encoder sensors on the shredder, mounted on the motor
and rotor.

An overview of the Arduino datalogger is shown in Fig.

2, while its logical scheme is in Fig. 3. To measure the

machine’s vibrations, two three-axis acceleration sensors were

mounted on separated positions on the shredder and their

analog outputs recorded by means of the datalogger. This

datalogger also records two analog outputs from the motor

control unit, representing the motor current in [A] and motor

speed in [rpm]. A memory card is used to record the data

within the datalogger, which is then remotely accessed and

transferred through a LAN interface.

On the other hand, the signals of the incremental encoders

(motor, rotor) representing the rotational speeds, were directly

recorded through a Saleae Logic Analyzer (Fig. 4). This Logic

Analyzer is able to record digital signals over a long period of

time and store them in a compressed format. These files can

then be remotely accessed and transferred.

B. Models for knives condition

As mentioned above, the shredder is not operated contin-

uously, and therefore every acquisition day consists both of

operational and idle times, with days with no operational time

at all. An algorithm has then been devised to identify the

time intervals pertaining to the operational time. The algorithm

works by identifying the time instants in which the motor

speed rises above a set threshold (1000 rpm in our case) and

by retaining only the intervals in which such speed remains

above the threshold for at least 1 minute.

The data is then processed on a daily basis, calculating the

50% and 95% percentiles of motor current and accelerations
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per each day. The average daily current consumption is then

calculated as the average of the daily current up to the 95%

percentile. This method has been used to discard the large

outliers in the current, that are usually caused by tough

material falling in the shredder and are not representative of

the normal operation.

During our data acquisition, the knives were changed twice

on the machine. For the derivation of the knives condition

predictive models, therefore, following standard practices in

statistical machine learning [10], the data has been divided

into a training set, containing all days between the two knives

changes, and a test set, containing all days after the second

knives changes. The model has been derived to predict the

increase in daily current average, calculated up to the 95%

percentile as discussed above. To this purpose, the value

of the average current Iavg0 on the day of knives change

has been set as a reference, and the subsequent values are

standardized by dividing by Iavg0 . The chosen model is a

simple linear regression algorithm, that uses as input the

cumulative operational time of the machine since the last

knives change. The reason for choosing a simple model relies

on the high interpretability and ease of implementation in an

industrial environment. The model’s training and test have

been performed in Python using the library Scikit-learn [11].

The usage of a simple linear model allows also the deriva-

tion of a closed formula for minimizing the cost of operation

by optimally selecting the time for the next maintenance. It

can be derived assuming that the average current consumption

for a day, indexed by n, exactly follows the linear model:

Iavgn =

(
al

n∑
i=0

Hi + 1

)
Iavg0 (1)

where Iavg0 is again the average current consumption on day

0 (the one right after the knives change, assumed as reference

by the model), al is the slope coefficient of the linear model

and Hi the total operational time of day i.

In order to derive a closed formula, some more simplifying

assumptions can be made, although these are not necessary

in the general case. Assuming then that Iavg0 is always the

same after each a knives change, that Hi = H ∀ i (i.e., every

day has the same number of operational hours) and that the

total energy consumption in a day can be approximated as

En = V0I
avg
n Hn (where V0 is the effective voltage), the total

energy consumption between days n and n+m can be written

as:

En,n+m

V0I
avg
0

=
n+m∑
i=n

⎛
⎝al

i∑
j=0

Hj + 1

⎞
⎠Hi =

n+m∑
i=n

(alHi+ 1)H

(2)

It can then be estimated the difference in energy between the

scenario in which the considered m days start n days after

the knives change, and the one in which the m days start

right after the knives change. This gives an indication of the

excess energy spent on running the machine with an old set

of knives, that have already been used for n days, instead of

using a new set of knives. The equation, after some algebraic

simplifications, reads:

En,n+m − E0,m

V0I
avg
0

= alH
2n (m+ 1) (3)

If it is finally assumed a cost per unit of energy of cE and a

total cost of the knives change of CK , the maintenance should

then be scheduled for a day n and for a defined m days in

advance so that:

CK ≤ cEV0I
avg
0 alH

2n (m+ 1) (4)

C. Models for belt condition

To obtain a model for the belt condition, we employed

the data acquired by the encoder sensors. The assumption is

that the belt, as it wears out, is not capable of efficiently

transmitting the torque from the motor to the rotor due

to increased slipping, and that such slipping events can be

identified from the encoders data. The encoder sensor mounted

on the rotor features 12 teeth, while that on the motor 3 teeth.

Run-length encoded data is then obtained from both sensors,

providing a square signal with alternating high (1) and low (0)

periods. The time spent by a tooth on the sensor is considered

high period and the one on the gap between the teeth is

considered low period. The sampling rate of the sensors is

1 MHz.

For each day of operation, an encoder data file is generated,

while the days with no operation on the machine are automat-

ically discarded. However, outliers in the data are still present,

because the sensors sometimes fail to record the correct values,

resulting in data points having unusually small values. To

reject such outliers, a lower threshold has been defined for the

encoder measurements. The value of such a threshold depends

on the number of teeth on the sensor, being it at 4400 for a

sensor with 3 teeth and at 100 for a sensor with 12 teeth. The

calculation of the total speed per full rotation of the encoder

wheel ρ (in rpm) is then carried out as:

ρ =
60∑Nt

i=1 Ti

(5)

where Ti is the time spent on the sensors on tooth i and on the

gap next to it, in seconds, and Nt is the number of teeth on the

sensor. In addition, in order to compare the speeds calculated

on the two encoder sensors, the values for the rotor speed are

compensated with the gearing ratio between the two wheels.

To assess the status of the belt, the presence of slipping

events has to be detected. Such a detection has been performed

by comparing the synchronicity of the signals between the

two encoder wheels and calculating the delay between the

two of them. For this purpose, the negative peaks of the

signal have been detected, using only the times in which the

rotation speed is above 1000 rpm, and the data has been

divided in 30-minutes-long bins. Inside each bin, it is then

calculated the average delay between the peaks of the motor

and rotor signals. Finally, the rates of variation of delay ri,jV

are calculated between consecutive bins i and j with j > i,
defined as:

ri,jV =

∣∣∣∣ dj − di
TB(j − i)

∣∣∣∣ (6)
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Fig. 5. Percentiles of the recorded motor current. The two knives changes
are marked as dashed vertical lines.

Fig. 6. Percentiles of the variation in accelerations, with accelerometer 1 on
the top and 2 on the bottom. The two knives changes are marked as dashed
vertical lines.

where di and dj are the average delays in bin i and j,

respectively, and TB the total length of each bin in seconds,

in our case 1800. Finally, the 10%, 50% and 90% percentiles

of rV are calculated on a daily basis, and a linear model is

trained to predict the increase of these values over time. To

this purpose, the percentiles are normalized by the value of

the first day of measurement and the first 75% of the data

is used for training the linear model, again using the library

Scikit-learn.

III. RESULTS

A. Knives condition

As a preliminary investigation on the impact of wear on

the cutting knives, Fig. 5 shows the daily percentiles of the

motor current for the whole data acquisition as a function of

the operational time. It is clearly visible the sharp decrease

in motor current right after the change of knives, and the

gradual increase due to degradation. Moreover, both the 50%

and the 95% percentiles convey similar information, assuring

on the fact that outliers are not influencing the measurement.

On the other hand, Fig. 6 shows the same 50% and the 95%

Fig. 7. Relative variation of motor current after the knives changes, and its
prediction through a linear model. The model has been trained on the data on
the left of the vertical dashed line, that marks the second knives change.

percentiles for the two accelerometers measurements. In this

case the values of acceleration are calculated as variations with

respect to the value at the day of the first knives changes.

Also in this case there is an evident decrease in acceleration

after the knives change, due to the higher effectiveness of the

new knives, causing less vibrations on the machine. In this

case, though, on the 95% percentile the effect is much more

evident than on the 50% percentile. Moreover, the reading

from accelerometer 2 gives usually a clearer signal, indicating

that the positioning of the accelerometer is important for

an accurate measurement. However, since the degradation

effect is clear already on the motor current, and this is also

the parameter of interest to be optimized by the machine’s

operator, the remaining of the investigation will not consider

the accelerometers.

Concentrating then on the motor current, Fig. 7 shows the

change in average daily current consumption up to the 95%

percentile relative to the day when the knives were changed.

The reference day for the relative current calculation is always

the closest previous knives change, so that after each of these

events the value in the figure is 1 by construction. The figure

also shows, as dash-dotted lines, the predictions derived with

the linear model from Sec. II-B. The model has been trained on

the data before the second knives change, while it is only tested

on the data after this event. With this in mind, the performance

of the model is particularly good in predicting the degradation

of the knives on the test data, i.e., the data after the second

knives change, which was not part of the training.

B. Belt condition

In a typical day of operation, the machine can be active

for several hours. Fig. 8 shows an example of one day of

operation, where the rotation speed of the motor and the rotor

are shown (corrected by the gearing ratio). As explained in

Sec. II-C, to calculate the delays between the two signals, the

negative peaks are first detected. Fig. 9 show two zoom-ins

in different points at the beginning and the end of Fig. 8,

where it is clearly visible the loss of synchronicity between

the two signals. The negative peaks are also highlighted by

the triangles. Using these negative peaks, the average delays

between the signals in 30-minutes bins are calculated as in

Sec. II-C, and are shown in Fig. 8 in green with the scale on
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Fig. 8. Rotation speed on the encoder wheels and associated delays for one
day of operation.

Fig. 9. Zooming in two sections of Fig. 8. The negative peaks on the signals
are highlighted with the triangles.

the right y-axis. It is immediately evident that this calculated

delay is able to capture the loss of synchronicity between the

signals over time.

In order to derive a model for the progressive wear on

the belt, Fig. 10 shows the rates of variation in delay rV
calculated with Eq. 6 and aggregated on a daily basis. There

is a clear upwards trend, confirming our prediction that the

progressive wear of the belt results in more frequent slipping

events. Moreover, the figure shows a linear model of the daily

median of rV , which is only trained on the 75% of the data

until the dashed vertical line. Despite its simplicity, the model

is clearly capable of predicting the increase in slipping events

due to the belt’s degradation.

IV. CONCLUSION

In this work we have presented a system for data collec-

tion and processing on an industrial shredder during its in-

production operation, with the purpose of developing models

for predictive maintenance on two key components of the

machine. Provided that the machine is monitored for a long

enough time and with sufficient accuracy to observe all its

states of wear, we have proven that even simple linear models

can give very accurate predictions on the expected degrada-

tion. Such prediction models should be used in a predictive

and preventive maintenance strategy, to optimize the cost of

operation of the machine and to prevent any downtime.

Fig. 10. Delay variation rates calculated with Eq. 6 and aggregated on a daily
basis using three different percentiles. The dashed coloured line is instead the
linear model predicting the median of rV , which is trained only on the data
on the left of the vertical dashed line.
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