Search results for: control problem
6762 Gain Tuning Fuzzy Controller for an Optical Disk Drive
Authors: Shiuh-Jer Huang, Ming-Tien Su
Abstract:
Since the driving speed and control accuracy of commercial optical disk are increasing significantly, it needs an efficient controller to monitor the track seeking and following operations of the servo system for achieving the desired data extracting response. The nonlinear behaviors of the actuator and servo system of the optical disk drive will influence the laser spot positioning. Here, the model-free fuzzy control scheme is employed to design the track seeking servo controller for a d.c. motor driving optical disk drive system. In addition, the sliding model control strategy is introduced into the fuzzy control structure to construct a 1-D adaptive fuzzy rule intelligent controller for simplifying the implementation problem and improving the control performance. The experimental results show that the steady state error of the track seeking by using this fuzzy controller can maintain within the track width (1.6 μm ). It can be used in the track seeking and track following servo control operations.Keywords: Fuzzy control, gain tuning and optical disk drive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15876761 Lyapunov-Based Tracking Control for Nonholonomic Wheeled Mobile Robot
Authors: Raouf Fareh, Maarouf Saad, Sofiane Khadraoui, Tamer Rabie
Abstract:
This paper presents a tracking control strategy based on Lyapunov approach for nonholonomic wheeled mobile robot. This control strategy consists of two levels. First, a kinematic controller is developed to adjust the right and left wheel velocities. Using this velocity control law, the stability of the tracking error is guaranteed using Lyapunov approach. This kinematic controller cannot be generated directly by the motors. To overcome this problem, the second level of the controllers, dynamic control, is designed. This dynamic control law is developed based on Lyapunov theory in order to track the desired trajectories of the mobile robot. The stability of the tracking error is proved using Lupunov and Barbalat approaches. Simulation results on a nonholonomic wheeled mobile robot are given to demonstrate the feasibility and effectiveness of the presented approach.Keywords: Mobile robot, trajectory tracking, Lyapunov, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23886760 Genetic Algorithm Based Approach for Actuator Saturation Effect on Nonlinear Controllers
Authors: M. Mohebbi, K. Shakeri
Abstract:
In the real application of active control systems to mitigate the response of structures subjected to sever external excitations such as earthquake and wind induced vibrations, since the capacity of actuators is limited then the actuators saturate. Hence, in designing controllers for linear and nonlinear structures under sever earthquakes, the actuator saturation should be considered as a constraint. In this paper optimal design of active controllers for nonlinear structures by considering the actuator saturation has been studied. To this end a method has been proposed based on defining an optimization problem which considers the minimizing of the maximum displacement of the structure as objective when a limited capacity for actuator has been used as a constraint in optimization problem. To evaluate the effectiveness of the proposed method, a single degree of freedom (SDF) structure with a bilinear hysteretic behavior has been simulated under a white noise ground acceleration of different amplitudes. Active tendon control mechanism, comprised of pre-stressed tendons and an actuator, and extended nonlinear Newmark method based instantaneous optimal control algorithm have been used as active control mechanism and algorithm. To enhance the efficiency of the controllers, the weights corresponding to displacement, velocity, acceleration and control force in the performance index have been found by using the Distributed Genetic Algorithm (DGA). According to the results it has been concluded that the proposed method has been effective in considering the actuator saturation in designing optimal controllers for nonlinear frames. Also it has been shown that the actuator capacity and the average value of required control force are two important factors in designing nonlinear controllers for considering the actuator saturation.Keywords: Active control, Actuator Saturation, Nonlinear, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14546759 Optimal Bayesian Control of the Proportion of Defectives in a Manufacturing Process
Authors: Viliam Makis, Farnoosh Naderkhani, Leila Jafari
Abstract:
In this paper, we present a model and an algorithm for the calculation of the optimal control limit, average cost, sample size, and the sampling interval for an optimal Bayesian chart to control the proportion of defective items produced using a semi-Markov decision process approach. Traditional p-chart has been widely used for controlling the proportion of defectives in various kinds of production processes for many years. It is well known that traditional non-Bayesian charts are not optimal, but very few optimal Bayesian control charts have been developed in the literature, mostly considering finite horizon. The objective of this paper is to develop a fast computational algorithm to obtain the optimal parameters of a Bayesian p-chart. The decision problem is formulated in the partially observable framework and the developed algorithm is illustrated by a numerical example.Keywords: Bayesian control chart, semi-Markov decision process, quality control, partially observable process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11696758 A Study of the Change of Damping Coefficient Regarding Minimum Displacement
Authors: Tawiwat V., Narongkorn D., Auttapoom L.
Abstract:
This research proposes the change of damping coefficient regarding minimum displacement. From the mass with external forced and damper problem, when is the constant external forced transmitted to the understructure in the difference angle between 30 and 60 degrees. This force generates the vibration as general known; however, the objective of this problem is to have minimum displacement. As the angle is changed and the goal is the same; therefore, the damper of the system must be varied while keeping constant spring stiffness. The problem is solved by using nonlinear programming and the suitable changing of the damping coefficient is provided.
Keywords: Damping coefficient, Optimal control, Minimum Displacement and Vibration
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13426757 Speed Control of Permanent Magnet Synchronous Motor Using Evolutionary Fuzzy PID Controller
Authors: M. Umabharathi, S. Vijayabaskar
Abstract:
Evolutionary Fuzzy PID Speed Controller for Permanent Magnet Synchronous Motor (PMSM) is developed to achieve the Speed control of PMSM in Closed Loop operation and to deal with the existence of transients. Consider a Fuzzy PID control design problem, based on common control Engineering Knowledge. If the transient error is big, that Good transient performance can be obtained by increasing the P and I gains and decreasing the D gains. To autotune the control parameters of the Fuzzy PID controller, the Evolutionary Algorithms (EA) are developed. EA based Fuzzy PID controller provides better speed control and guarantees the closed loop stability. The Evolutionary Fuzzy PID controller can be implemented in real time Applications without any concern about instabilities that leads to system failure or damage.
Keywords: Evolutionary Algorithm (EA), Fuzzy system, Genetic Algorithm (GA), Membership, Permanent Magnet Synchronous Motor (PMSM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29596756 Research of Ring MEMS Rate Integrating Gyroscopes
Authors: Hui Liu, Haiyang Quan
Abstract:
This paper To get the angle value with a MEMS rate gyroscope in some specific field, the usual method is to make an integral operation to the rate output, which will lead the error cumulating effect. So the rate gyro is not suitable. MEMS rate integrating gyroscope (MRIG) will solve this problem. A DSP system has been developed to implement the control arithmetic. The system can measure the angle of rotation directly by the control loops that make the sensor work in whole-angle mode. Modeling the system with MATLAB, desirable results of angle outputs are got, which prove the feasibility of the control arithmetic.Keywords: Rate gyroscope, Rate integrating gyroscope, Whole angle mode, MATLAB modeling, DSP control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32566755 PID Control Design Based on Genetic Algorithm with Integrator Anti-Windup for Automatic Voltage Regulator and Speed Governor of Brushless Synchronous Generator
Authors: O. S. Ebrahim, M. A. Badr, Kh. H. Gharib, H. K. Temraz
Abstract:
This paper presents a methodology based on genetic algorithm (GA) to tune the parameters of proportional-integral-differential (PID) controllers utilized in the automatic voltage regulator (AVR) and speed governor of a brushless synchronous generator driven by three-stage steam turbine. The parameter tuning is represented as a nonlinear optimization problem solved by GA to minimize the integral of absolute error (IAE). The problem of integral windup due to physical system limitations is solved using simple anti-windup scheme. The obtained controllers are compared to those designed using classical Ziegler-Nichols technique and constrained optimization. Results show distinct superiority of the proposed method.
Keywords: Brushless synchronous generator, Genetic Algorithm, GA, Proportional-Integral-Differential control, PID control, automatic voltage regulator, AVR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2956754 Phase Control Array Synthesis Using Constrained Accelerated Particle Swarm Optimization
Authors: Mohammad Taha, Dia abu al Nadi
Abstract:
In this paper, the phase control antenna array synthesis is presented. The problem is formulated as a constrained optimization problem that imposes nulls with prescribed level while maintaining the sidelobe at a prescribed level. For efficient use of the algorithm memory, compared to the well known Particle Swarm Optimization (PSO), the Accelerated Particle Swarm Optimization (APSO) is used to estimate the phase parameters of the synthesized array. The objective function is formed using a main objective and set of constraints with penalty factors that measure the violation of each feasible solution in the search space to each constraint. In this case the obtained feasible solution is guaranteed to satisfy all the constraints. Simulation results have shown significant performance increases and a decreased randomness in the parameter search space compared to a single objective conventional particle swarm optimization.Keywords: Array synthesis, Sidelobe level control, Constrainedoptimization, Accelerated Particle Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19276753 Robust Disturbance Rejection for Left Invertible Singular Systems with Nonlinear Uncertain Structure
Authors: Fotis N. Koumboulis, Michael G. Skarpetis, Maria P. Tzamtzi
Abstract:
The problem of robust disturbance rejection (RDR) using a proportional state feedback controller is studied for the case of Left Invertible MIMO generalized state space linear systems with nonlinear uncertain structure. Sufficient conditions for the problem to have a solution are established. The set of all proportional feedback controllers solving the problem subject to these conditions is analytically determined.
Keywords: System theory, uncertain systems, robust control, singular systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14806752 Neural Adaptive Switching Control of Robotic Systems
Authors: A. Denker, U. Akıncıoğlu
Abstract:
In this paper a neural adaptive control method has been developed and applied to robot control. Simulation results are presented to verify the effectiveness of the controller. These results show that the performance by using this controller is better than those which just use either direct inverse control or predictive control. In addition, they show that the resulting is a useful method which combines the advantages of both direct inverse control and predictive control.Keywords: Neural networks, robotics, direct inverse control, predictive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21846751 Proposed Alternative System to Existing Traffic Signal System
Authors: Alluri Swaroopa, Lakkakula Venkata Narasimha Prasad
Abstract:
Alone with fast urbanization in world, traffic control became a big issue in urban construction. Having an efficient and reliable traffic control system is crucial to macro-traffic control. Traffic signal is used to manage conflicting requirement by allocating different sets of mutually compatible traffic movement during distinct time interval. Many approaches have been made proposed to solve this discrete stochastic problem. Recognizing the need to minimize right-of-way impacts while efficiently handling the anticipated high traffic volumes, the proposed alternative system gives effective design. This model allows for increased traffic capacity and reduces delays by eliminating a step in maneuvering through the freeway interchange. The concept proposed in this paper involves construction of bridges and ramps at intersection of four roads to control the vehicular congestion and to prevent traffic breakdown.
Keywords: Bridges, junctions, ramps, urban traffic control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31826750 Advantages of Fuzzy Control Application in Fast and Sensitive Technological Processes
Authors: Radim Farana, Bogdan Walek, Michal Janosek, Jaroslav Zacek
Abstract:
This paper presents the advantages of fuzzy control use in technological processes control. The paper presents a real application of the Linguistic Fuzzy-Logic Control, developed at the University of Ostrava for the control of physical models in the Intelligent Systems Laboratory. The paper presents an example of a sensitive non-linear model, such as a magnetic levitation model and obtained results which show how modern information technologies can help to solve actual technical problems. A special method based on the LFLC controller with partial components is presented in this paper followed by the method of automatic context change, which is very helpful to achieve more accurate control results. The main advantage of the used system is its robustness in changing conditions demonstrated by comparing with conventional PID controller. This technology and real models are also used as a background for problem-oriented teaching, realized at the department for master students and their collaborative as well as individual final projects.Keywords: Control, fuzzy logic, sensitive system, technological proves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17976749 Motion Control of a 2-link Revolute Manipulator in an Obstacle-Ridden Workspace
Authors: Avinesh Prasad, Bibhya Sharma, Jito Vanualailai
Abstract:
In this paper, we propose a solution to the motion control problem of a 2-link revolute manipulator arm. We require the end-effector of the arm to move safely to its designated target in a priori known workspace cluttered with fixed circular obstacles of arbitrary position and sizes. Firstly a unique velocity algorithm is used to move the end-effector to its target. Secondly, for obstacle avoidance a turning angle is designed, which when incorporated into the control laws ensures that the entire robot arm avoids any number of fixed obstacles along its path enroute the target. The control laws proposed in this paper also ensure that the equilibrium point of the system is asymptotically stable. Computer simulations of the proposed technique are presented.Keywords: 2-link revolute manipulator, motion control, obstacle avoidance, asymptotic stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28516748 Trajectory Tracking Using Artificial Potential Fields
Authors: Krishna S. Raghuwaiya, Shonal Singh, Jito Vanualailai
Abstract:
In this paper, the trajectory tracking problem for carlike mobile robots have been studied. The system comprises of a leader and a follower robot. The purpose is to control the follower so that the leader-s trajectory is tracked with arbitrary desired clearance to avoid inter-robot collision while navigating in a terrain with obstacles. A set of artificial potential field functions is proposed using the Direct Method of Lyapunov for the avoidance of obstacles and attraction to their designated targets. Simulation results prove the efficiency of our control technique.
Keywords: Control, Trajectory Tracking, Lyapunov.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22576747 Development of Rotational Smart Lighting Control System for Plant Factory
Authors: Won-Sub Lee, Sung-Gaun Kim
Abstract:
Rotational Smart Lighting Control System can supply the quantity of lighting which is required to run plants by rotating few LED and Fluorescent instead of that are used in the existing plant factories.The initial installation of the existing plants factory is expensive, so in order to solve the problem with smart lighting control system was developed. The beam required intensity for the growth of crops, Photosynthetic Photon Flux Density(PPFD)is calculated; and the number of LED, are installed on the blades, set; using the Lighting Simulation Program.Relux, it is able to confirm that the difference of the beam intensity between the center and the outer of lighting system when the lighting device is rotating.Keywords: Plant Factory, Lighting Control System, Rotational Lighting System, Lighting Equipment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19806746 An Inverse Optimal Control Approach for the Nonlinear System Design Using ANN
Authors: M. P. Nanda Kumar, K. Dheeraj
Abstract:
The design of a feedback controller, so as to minimize a given performance criterion, for a general non-linear dynamical system is difficult; if not impossible. But for a large class of non-linear dynamical systems, the open loop control that minimizes a performance criterion can be obtained using calculus of variations and Pontryagin’s minimum principle. In this paper, the open loop optimal trajectories, that minimizes a given performance measure, is used to train the neural network whose inputs are state variables of non-linear dynamical systems and the open loop optimal control as the desired output. This trained neural network is used as the feedback controller. In other words, attempts are made here to solve the “inverse optimal control problem” by using the state and control trajectories that are optimal in an open loop sense.
Keywords: Inverse Optimal Control, Radial basis function neural network, Controller Design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22886745 Back Stepping Sliding Mode Control of Blood Glucose for Type I Diabetes
Authors: N. Tadrisi Parsa, A. R. Vali, R. Ghasemi
Abstract:
Diabetes is a growing health problem in worldwide. Especially, the patients with Type 1 diabetes need strict glycemic control because they have deficiency of insulin production. This paper attempts to control blood glucose based on body mathematical body model. The Bergman minimal mathematical model is used to develop the nonlinear controller. A novel back-stepping based sliding mode control (B-SMC) strategy is proposed as a solution that guarantees practical tracking of a desired glucose concentration. In order to show the performance of the proposed design, it is compared with conventional linear and fuzzy controllers which have been done in previous researches. The numerical simulation result shows the advantages of sliding mode back stepping controller design to linear and fuzzy controllers.
Keywords: Back stepping, Bergman Model, Nonlinear control, Sliding mode control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35366744 Motion Planning and Control of a Swarm of Boids in a 3-Dimensional Space
Authors: Bibhya Sharma, Jito Vanualailai, Jai Raj
Abstract:
In this paper, we propose a solution to the motion planning and control problem for a swarm of three-dimensional boids. The swarm exhibit collective emergent behaviors within the vicinity of the workspace. The capability of biological systems to autonomously maneuver, track and pursue evasive targets in a cluttered environment is vastly superior to any engineered system. It is considered an emergent behavior arising from simple rules that are followed by individuals and may not involve any central coordination. A generalized, yet scalable algorithm for attraction to the centroid and inter-individual swarm avoidance is proposed. We present a set of new continuous time-invariant velocity control laws, formulated via the Lyapunov-based control scheme for target attraction and collision avoidance. The controllers provide a collision-free trajectory. The control laws proposed in this paper also ensures practical stability of the system. The effectiveness of the control laws is demonstrated via computer simulations.
Keywords: Swarm, Practical stability, Motion planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19146743 Tracking Performance Evaluation of Robust Back-Stepping Control Design for a Nonlinear Electrohydraulic Servo System
Authors: M. Ahmadnezhad, M. Soltanpour
Abstract:
Electrohydraulic servo system have been used in industry in a wide number of applications. Its dynamics are highly nonlinear and also have large extent of model uncertainties and external disturbances. In this paper, a robust back-stepping control (RBSC) scheme is proposed to overcome the problem of disturbances and system uncertainties effectively and to improve the tracking performance of EHS systems. In order to implement the proposed control scheme, the system uncertainties in EHS systems are considered as total leakage coefficient and effective oil volume. In addition, in order to obtain the virtual controls for stabilizing system, the update rule for the system uncertainty term is induced by the Lyapunov control function (LCF). To verify the performance and robustness of the proposed control system, computer simulation of the proposed control system using Matlab/Simulink Software is executed. From the computer simulation, it was found that the RBSC system produces the desired tracking performance and has robustness to the disturbances and system uncertainties of EHS systems.
Keywords: Electro hydraulic servo system, back-stepping control, robust back-stepping control, Lyapunov redesign
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20246742 Tracking Performance Evaluation of Robust Back-Stepping Control Design for a Nonlinear Electrohydraulic Servo System
Authors: M. Ahmadnezhad, M. Soltanpour
Abstract:
Electrohydraulic servo system have been used in industry in a wide number of applications. Its dynamics are highly nonlinear and also have large extent of model uncertainties and external disturbances. In this paper, a robust back-stepping control (RBSC) scheme is proposed to overcome the problem of disturbances and system uncertainties effectively and to improve the tracking performance of EHS systems. In order to implement the proposed control scheme, the system uncertainties in EHS systems are considered as total leakage coefficient and effective oil volume. In addition, in order to obtain the virtual controls for stabilizing system, the update rule for the system uncertainty term is induced by the Lyapunov control function (LCF). To verify the performance and robustness of the proposed control system, computer simulation of the proposed control system using Matlab/Simulink Software is executed. From the computer simulation, it was found that the RBSC system produces the desired tracking performance and has robustness to the disturbances and system uncertainties of EHS systems.Keywords: Electro hydraulic servo system, back-stepping control, robust back-stepping control, Lyapunov redesign.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14866741 Study on Optimal Control Strategy of PM2.5 in Wuhan, China
Authors: Qiuling Xie, Shanliang Zhu, Zongdi Sun
Abstract:
In this paper, we analyzed the correlation relationship among PM2.5 from other five Air Quality Indices (AQIs) based on the grey relational degree, and built a multivariate nonlinear regression equation model of PM2.5 and the five monitoring indexes. For the optimal control problem of PM2.5, we took the partial large Cauchy distribution of membership equation as satisfaction function. We established a nonlinear programming model with the goal of maximum performance to price ratio. And the optimal control scheme is given.
Keywords: Grey relational degree, multiple linear regression, membership function, nonlinear programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14076740 Bi-linear Complementarity Problem
Authors: Chao Wang, Ting-Zhu Huang Chen Jia
Abstract:
In this paper, we propose a new linear complementarity problem named as bi-linear complementarity problem (BLCP) and the method for solving BLCP. In addition, the algorithm for error estimation of BLCP is also given. Numerical experiments show that the algorithm is efficient.
Keywords: Bi-linear complementarity problem, Linear complementarity problem, Extended linear complementarity problem, Error estimation, P-matrix, M-matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17256739 A Method for Solving a Bi-Objective Transportation Problem under Fuzzy Environment
Authors: Sukhveer Singh, Sandeep Singh
Abstract:
A bi-objective fuzzy transportation problem with the objectives to minimize the total fuzzy cost and fuzzy time of transportation without according priorities to them is considered. To the best of our knowledge, there is no method in the literature to find efficient solutions of the bi-objective transportation problem under uncertainty. In this paper, a bi-objective transportation problem in an uncertain environment has been formulated. An algorithm has been proposed to find efficient solutions of the bi-objective transportation problem under uncertainty. The proposed algorithm avoids the degeneracy and gives the optimal solution faster than other existing algorithms for the given uncertain transportation problem.
Keywords: Transportation problem, efficient solution, ranking function, fuzzy transportation problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13566738 SOA-Based Mobile Application for Crime Control in Thailand
Authors: Jintana Khemprasit, Vatcharaporn Esichaikul
Abstract:
Crime is a major societal problem for most of the world's nations. Consequently, the police need to develop new methods to improve their efficiency in dealing with these ever increasing crime rates. Two of the common difficulties that the police face in crime control are crime investigation and the provision of crime information to the general public to help them protect themselves. Crime control in police operations involves the use of spatial data, crime data and the related crime data from different organizations (depending on the nature of the analysis to be made). These types of data are collected from several heterogeneous sources in different formats and from different platforms, resulting in a lack of standardization. Moreover, there is no standard framework for crime data collection, integration and dissemination through mobile devices. An investigation into the current situation in crime control was carried out to identify the needs to resolve these issues. This paper proposes and investigates the use of service oriented architecture (SOA) and the mobile spatial information service in crime control. SOA plays an important role in crime control as an appropriate way to support data exchange and model sharing from heterogeneous sources. Crime control also needs to facilitate mobile spatial information services in order to exchange, receive, share and release information based on location to mobile users anytime and anywhere.Keywords: Crime Control, Geographic Information System (GIS), Mobile GIS, Service Oriented Architecture (SOA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25336737 Fuzzy Sliding Mode Control of an MR Mount for Vibration Attenuation
Authors: Jinsiang Shaw, Ray Pan, Yin-Chieh Chang
Abstract:
In this paper, an magnetorheological (MR) mount with fuzzy sliding mode controller (FSMC) is studied for vibration suppression when the system is subject to base excitations. In recent years, magnetorheological fluids are becoming a popular material in the field of the semi-active control. However, the dynamic equation of an MR mount is highly nonlinear and it is difficult to identify. FSMC provides a simple method to achieve vibration attenuation of the nonlinear system with uncertain disturbances. This method is capable of handling the chattering problem of sliding mode control effectively and the fuzzy control rules are obtained by using the Lyapunov stability theory. The numerical simulations using one-dimension and two-dimension FSMC show effectiveness of the proposed controller for vibration suppression. Further, the well-known skyhook control scheme and an adaptive sliding mode controller are also included in the simulation for comparison with the proposed FSMC.Keywords: adaptive sliding mode controller, fuzzy sliding modecontroller, magnetorheological mount, skyhook control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17956736 Capacitor Placement in Distribution Systems Using Simulating Annealing (SA)
Authors: Esmail Limouzade, Mahmood.Joorabian, Najaf Hedayat
Abstract:
This paper undertakes the problem of optimal capacitor placement in a distribution system. The problem is how to optimally determine the locations to install capacitors, the types and sizes of capacitors to he installed and, during each load level,the control settings of these capacitors in order that a desired objective function is minimized while the load constraints,network constraints and operational constraints (e.g. voltage profile) at different load levels are satisfied. The problem is formulated as a combinatorial optimization problem with a nondifferentiable objective function. Four solution mythologies based on algorithms (GA),tabu search (TS), and hybrid GA-SA algorithms are presented.The solution methodologies are preceded by a sensitivity analysis to select the candidate capacitor installation locations.Keywords: Genetic Algorithm (GA) , capacitor placement, voltage profile, network losses, Simulated Annealing, distribution network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18066735 Bee Colony Optimization Applied to the Bin Packing Problem
Authors: Kenza Aida Amara, Bachir Djebbar
Abstract:
We treat the two-dimensional bin packing problem which involves packing a given set of rectangles into a minimum number of larger identical rectangles called bins. This combinatorial problem is NP-hard. We propose a pretreatment for the oriented version of the problem that allows the valorization of the lost areas in the bins and the reduction of the size problem. A heuristic method based on the strategy first-fit adapted to this problem is presented. We present an approach of resolution by bee colony optimization. Computational results express a comparison of the number of bins used with and without pretreatment.Keywords: Bee colony optimization, bin packing, heuristic algorithm, pretreatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11026734 Partial Stabilization of a Class of Nonlinear Systems Via Center Manifold Theory
Authors: Ping He
Abstract:
This paper addresses the problem of the partial state feedback stabilization of a class of nonlinear systems. In order to stabilization this class systems, the especial place of this paper is to reverse designing the state feedback control law from the method of judging system stability with the center manifold theory. First of all, the center manifold theory is applied to discuss the stabilization sufficient condition and design the stabilizing state control laws for a class of nonlinear. Secondly, the problem of partial stabilization for a class of plane nonlinear system is discuss using the lyapunov second method and the center manifold theory. Thirdly, we investigate specially the problem of the stabilization for a class of homogenous plane nonlinear systems, a class of nonlinear with dual-zero eigenvalues and a class of nonlinear with zero-center using the method of lyapunov function with homogenous derivative, specifically. At the end of this paper, some examples and simulation results are given show that the approach of this paper to this class of nonlinear system is effective and convenient.Keywords: Partial stabilization, Nonlinear critical systems, Centermanifold theory, Lyapunov function, System reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17636733 Distributed Coverage Control by Robot Networks in Unknown Environments Using a Modified EM Algorithm
Authors: Mohammadhosein Hasanbeig, Lacra Pavel
Abstract:
In this paper, we study a distributed control algorithm for the problem of unknown area coverage by a network of robots. The coverage objective is to locate a set of targets in the area and to minimize the robots’ energy consumption. The robots have no prior knowledge about the location and also about the number of the targets in the area. One efficient approach that can be used to relax the robots’ lack of knowledge is to incorporate an auxiliary learning algorithm into the control scheme. A learning algorithm actually allows the robots to explore and study the unknown environment and to eventually overcome their lack of knowledge. The control algorithm itself is modeled based on game theory where the network of the robots use their collective information to play a non-cooperative potential game. The algorithm is tested via simulations to verify its performance and adaptability.Keywords: Distributed control, game theory, multi-agent learning, reinforcement learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 973