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Abstract—In this paper, we propose a solution to the motion
planning and control problem for a swarm of three-dimensional
boids. The swarm exhibit collective emergent behaviors within the
vicinity of the workspace. The capability of biological systems
to autonomously maneuver, track and pursue evasive targets in a
cluttered environment is vastly superior to any engineered system. It
is considered an emergent behavior arising from simple rules that are
followed by individuals and may not involve any central coordination.
A generalized, yet scalable algorithm for attraction to the centroid
and inter-individual swarm avoidance is proposed. We present a set
of new continuous time-invariant velocity control laws, formulated via
the Lyapunov-based control scheme for target attraction and collision
avoidance. The controllers provide a collision-free trajectory. The
control laws proposed in this paper also ensures practical stability
of the system. The effectiveness of the control laws is demonstrated
via computer simulations.

Keywords—Swarm, Practical stability, Motion planning.

I. INTRODUCTION

SWARMING is based on many exciting, attractive and
stimulating entities that cooperate in order to exhibit a

desired behavior. Inspiration for the design of these behaviors
is taken from the collective behavior of social insects such as
ants, termites, bees, and wasps, as well as from the behavior
of other animal societies such as flocks of birds or schools of
fish [1]. Even though single members of these societies are
unsophisticated individuals, they are able to achieve complex
tasks in cooperation [1]. Coordinated behavior emerges from
relatively simple actions or interactions between the individuals
[2]. The swarming behavior is a complex emergent behavior
that occurs when individual agents follow simple behaviorial
rules.
The fact that certain engineering problems can be

solved in an ingenious way by roughly mimicking this
natural phenomenon [3], [4], has led to greater efforts by
mathematicians, engineers, computer scientists, physicists and
biologists, in recent years, to seek better understanding of
self-organization in organisms, and the formation and the
persistence of aggregations [5], [6].
The emerging swarm behavior and its principles are now

being used by scientists and researchers in many new
approaches such as in optimization and in control of robots
[7], [8], [9]. The use of robots with the concept of swarming
is significantly increasing in the manufacturing arena, not only
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for productivity enhancement but also for greater versatility
and flexibility [10].
In literature, the flocking models are built within a

framework of three basic rules of steering namely separation,
alignment and cohesion.
These flocking rules describe how an individual maneuvers

based on the positions and velocities of its nearby flock mates
[11], [12]. Although the rules governing each member of a
flock are seemingly basic, the collective motion is strikingly
spectacular. The superposition of these rules results in the flock
mates moving in a particular formation [13], with a common
heading whilst ensuring all possible collision and obstacle
avoidances [14], that is, basically a life-like behavior emerges
from the flocking rules.
This paper considers the navigation problem of a

three-dimensional swarm via an artificial potential fields (APF)
method: Lyapunov based control scheme (LbCS). It will be
shown that the LbCS is effective in designing the continuous
time-invariant velocity control laws. In essence, we design a
motion planner derived form the LbCS, that guarantees the
establishment and maintenance of a geometrical formation of
a swarm of boids, considering all practical limitations and
constraints. This paper, will in general showcase and mimic
the patterns arising from the emergent behavior of the swarms
into various forms of simulations.
We will use the following two terms from [15] in this paper

as we develop our Lyapunov-like function for system (2):
1) A cohesive group is a group in which the distances
between individuals are bounded from above (members
of a cohesive group tend to stay together and avoid
dispersing).

2) A well-spaced group is a group which does not collapse
into a tight cluster, i.e., where some minimal bin size
exists such that each bin contains at most one individual.
Moreover, the size of such a bin is independent of the
number of individuals in a group.

II. A THREE-DIMENSIONAL SWARM MODEL AND ITS
PRACTICAL STABILITY

We shall construct a model of a swarm with n individuals
moving with the velocity of the swarm’s centroid. At time
t ≥ 0, let (xi(t), yi(t), zi(t)), i = 1, 2, . . . , n, be the planar
position of the ith individual, which we shall define as a point
mass residing in a disk of radius ri > 0,

bi =
[
(z1, z2, z3) ∈ R

3 : (z1 − xi)
2 + (z2 − yi)

2

+(z3 − zi)
2 ≤ r2

i

]
.
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The sphere is described in [15] as a bin, and in [16] as
a private or safety area of each individual. We shall use
the former term, with bin size being the radius ri of the sphere.

Let us define the centroid of the swarm as

(xc, yc, zc) =

(
1

n

n∑
k=1

xk,
1

n

n∑
k=1

yk,
1

n

n∑
k=1

zk

)
.

At time t ≥ 0, let (vi(t), wi(t), ui(t)) := (x′
i(t), y

′
i(t), z

′
i(t))

be the instantaneous velocity of the ith point mass.

Using the above notations, we have thus a system of
first-order ODEs for the ith individual, assuming the initial
condition at t = t0 ≥ 0:

x′
i(t) = vi(t)

y′
i(t) = wi(t)

z′i(t) = ui(t)

xi0 := xi(t0), yi0 := yi(t0), zi0 := zi(t0).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

Suppressing t, we let xi = (xi, yi, zi) ∈ R
3 and x =

(x1, . . . ,xn) ∈ R
3n be our state vectors. Also, let

x0 = x(t0) = (x10, y10, z10, . . . , xn0, yn0, zn0)︸ ︷︷ ︸
3n terms

.

If gi(x) := (vi, wi, ui) ∈ R3 and G(x) :=
(g1(x), . . . ,gn(x)) ∈ R

3n, then our swarm system of n
individuals is

ẋ = G(x), x0 = x(t0). (2)

If G ∈ C[R3n, R3n], then we can invoke the definition
of the practical stability of system (2) as provided by [17],
noting that we do not need the existence of an equilibrium
point of the system. In the definition, R+ := [0,∞).

Definition 1: System (2) is said to be
(S1) practically stable if given (λ,A) with 0 < λ < A, we

have ‖x0 − x∗‖ < λ implies that ‖x(t) − x∗‖ < A,
t ≥ t0 for some t0 ∈ R+;

(S2) uniformly practically stable if (S1) holds for every t0 ∈
R+.

The following comparison principle is adapted from [17] to
analyse the practical stability of system (2),

K = {a ∈ C[R+, R+] : a(d) is strictly increasing
in d and a(d) → ∞ as d → ∞},

S(ρ) = {x ∈ R
3n : ‖x − x∗‖ < ρ},

and, for any Lyapunov-like function V ∈ C[R+ × R
3n, R+],

D+V (t,x) := lim sup
h→0+

V (t + h,x + hG(x)) − V (t,x)

h
,

for (t,x) ∈ R+ ×R
3n, noting that if V ∈ C1[R+ ×R

3n, R+],
then D+V (t,x) = V ′(t,x), where

V ′(t,x) = Vt(t,x) + Vx(t,x)G(x).

Theorem 1: Lakshmikantham, Leela and Martynyuk [17].
Assume that
1. λ and A are given such that 0 < λ < A ;
2. V ∈ C[R+×R

3n, R+] and V (t,x) is locally Lipschitzian
in x ;

3. for (t,x) ∈ R+ × S(A), b1(‖x − x∗‖) ≤ V (t,x) ≤
b2(‖x − x∗‖), b1, b2 ∈ K and D+V (t,x) ≤
q(t, V (t,x)) , q ∈ C[R3

+, R];
4. b2(λ) < b1(A) holds.
Then the practical stability properties of the scalar

differential equation

h′(t) = q(t, h) , h(t0) = h0 ≥ 0 ,

imply the corresponding practical stability properties of
system (2).

III. DEPLOYMENT OF LYAPUNOV-BASED CONTROL
SCHEME

The principal objective of this section is to utilize the
Lyapunov-based control scheme to design the velocity controls,
vi, wi,and ui, such that the swarm of boids will be able
to exhibit unique swarming behavior in certain direction.
The control scheme appropriately combines these potential
functions to form a Lyapunov-like function candidate – a
platform to design the nonlinear velocity controllers for the
swarm of boids. A dichotomy of potential functions will be
designed in the following subsections: the attractive potential
function for convergence and the repulsive potential function
that repels the swarm from specified obstacles in a defined
workspace.

A. Attraction to the Centroid
We can ensure that the individuals of the swarm are attracted

towards each other and also form a cohesive group by having
a measurement of the distance from the ith individual to the
swarm centroid. This is the concept behind flock centering,
which is one of the well-known three heuristic flocking rules
of Reynolds’ [11]. The rule stipulates that the individuals
stay close to the nearest flock mates. It is therefore a form
of attraction between individuals. Centering necessitates a
measurement of the distance from the ith individual to the
swarm centroid. Thus, we define

Ri(x) :=
1

2

⎡
⎣(xi −

1

n

n∑
i=1

xi

)2

+

(
yi −

1

n

n∑
i=1

yi

)2

+

(
zi −

1

n

n∑
i=1

zi

)2
⎤
⎦ , i ∈ N.
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This will be part of a Lyapunov-like function for system (2),
and as we shall see later, its role is to ensure that ith individual
is attracted to the swarm centroid.

B. Inter-individual Collision Avoidance
The short range repulsion requirement between individuals

necessitates first a measurement of the distance between the
ith and the jth individuals, j �= i, i, j ∈ N. With (1) of the ith
individual in mind and for the boids to avoid each other, we
consider the function

Qij(x) :=
1

2

[
(xi − xj)

2
+ (yi − yj)

2

+ (zi − zj)
2
− (ri + rj)

2

]
.

The function is an Euclidean measure of the distance between
the individual boids, and will appear in the denominator of an
appropriate term in the candidate Lyapunov-like function to be
proposed.

IV. DESIGN OF THE VELOCITY CONTROLLERS
The nonlinear control laws for system (1) will be designed

using the LbCS. In parallel, the control scheme will then utilize
Theorem 1 to provide the mathematical proof of the practical
stability of the system (1).

A. Lyapunov-like Function
As per the LbCS, we combine the attractive and the repulsive

potential functions. We introduce tuning parameters (or control
parameters), that is, let there be real numbers γi > 0, βij > 0,
and define, for i, j = 1, . . . , n, a Lyapunov-like function for
system (1) as

Li(x) = γiRi(x) +

n∑
j=1,
j �=i

βijRi(x)

Qij(x)
. (3)

Next, we consider a Lyapunov-like function for system (2)
as

L(x) :=

n∑
i=1

Li(xi).

It is clear that L is continuous and locally positive definite
over the domain

D(L) :=

⎧⎪⎪⎨
⎪⎪⎩x ∈ R

3n :

n∑
i=1

n∑
j=1,
j �=i

Qij(x) > 0

⎫⎪⎪⎬
⎪⎪⎭ .

Note that L(x∗) = 0. However, x∗ /∈ D(L) since
n∑

i=1

n∑
j=1,
j �=i

Qij(x
∗) = −

1

2

n∑
i=1

n∑
j=1,
j �=i

(ri + rj)
2 < 0.

This is indeed a desirable situation since if x∗ ∈ D(L),
and if at some time t ≥ 0, we have that x = x∗, then this
implies that the swarm has collapsed onto itself, a biologically
impossible situation. As such, we are not interested in the
centroid, but in the behavior of our swarm in the vicinity of
its centroid.

B. Nonlinear Velocity Controllers for the Swarm
The time-derivative of L along every solution of system (2)

is the dot product of the gradient of L, given by,

∇L =

(
∂L

∂x1

,
∂L

∂y1

,
∂L

∂z1

, · · · ,
∂L

∂xn

,
∂L

∂yn

,
∂L

∂zn

)
,

and the time-derivative of the state vector x =
(x1, y1, z1 . . . , xn, yn, zn).
Let there be real numbers μi > 0, νi > 0 and ηi > 0 such

that

vi = −μi

∂L

∂xi

, wi = −νi

∂L

∂yi

and ui = −ηi

∂L

∂zi

.

Then

L̇(x) = −

n∑
i=1

[
μi

(
∂L

∂xi

)2

+ νi

(
∂L

∂yi

)2

+ηi

(
∂L

∂zi

)2
]

= −
n∑

i=1

[
v2

i

μi

+
w2

i

νi

+
u2

i

ηi

]
≤ 0,

for all x ∈ D(L).

For the ith individual, system (1) therefore becomes

x′
i(t) = vi(t) = vi(x(t)) = −μi

∂L

∂xi

,

y′
i(t) = wi(t) = wi(x(t)) = −νi

∂L

∂yi

,

z′i(t) = ui(t) = ui(x(t)) = −ηi

∂L

∂zi

,

xi0 = xi(t0), yi0 = yi(t0), zi0 = zi(t0),

t0 ≥ 0,

(4)

where

∂L

∂xi

=

⎛
⎜⎜⎝γi +

n∑
j=1,
j �=i

βij

Qij(x)

⎞
⎟⎟⎠
(

xi −
1

n

n∑
k=1

xk

)

− 2

n∑
j=1,
j �=i

βijRi(x)

Q2
ij(x)

(xi − xj),

∂L

∂yi

=

⎛
⎜⎜⎝γi +

n∑
j=1,
j �=i

βij

Qij(x)

⎞
⎟⎟⎠
(

yi −
1

n

n∑
k=1

yk

)

− 2

n∑
j=1,
j �=i

βijRi(x)

Q2
ij(x)

(yi − yj),

and
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∂L

∂zi

=

⎛
⎜⎜⎝γi +

n∑
j=1,
j �=i

βij

Qij(x)

⎞
⎟⎟⎠
(

zi −
1

n

n∑
k=1

zk

)

− 2

n∑
j=1,
j �=i

βijRi(x)

Q2
ij(x)

(zi − zj).

Define the n × n diagonal matrix

H = diag(μ1, ν1, η1 . . . , μn, νn, ηn︸ ︷︷ ︸
3n elements

).

Then system (2) becomes the gradient system

ẋ = G(x) = −H (∇L(x)), x0 := x(t0), t0 ≥ 0, (5)

the ith term of which is given by (4). It is clear that G ∈
C[D(L), R32n].

V. PRACTICAL STABILITY ANALYSIS
In this section, we shall prove the practical stability of

system (5), using the method by Lakshmikantham, Leela and
Martynyuk [17].
Theorem 2: System (5) is uniformly practically stable.
Proof. Since

L̇(x(t)) ≤ 0,

we have

0 ≤ L(x(t)) ≤ L(x(t0)) ∀ t ≥ t0 ≥ 0. (6)

Accordingly, for comparative analysis, it is sufficient to
consider the practical stability of the scalar differential
equation

h′(t) = 0, h(t0) =: h0, t0 ≥ 0. (7)

The solution is
h(t; t0, h0) = h0,

so that relative to every point h∗ ∈ R, we have

h(t; t0, h0 − h∗) = h0 − h∗,

so that for any given number P0 > 0,

|h(t; t0, h0 − h∗)| ≤ |h0 − h∗| + P0.

We shall next show that by applying Theorem 1, we can
simultaneously derive the explicit form of P0 > 0, with which
it is easy to see that (S2) holds for equation (7) if

A = A(λ) := λ + P0.

To apply Theorem 1, we restrict our domain to D(L) over
which we see that L ∈ C[D(L), R+], and note that L is locally
Lipschitzian in D(L) since dL/dt ≤ 0 in D(L). Re-defining
S(ρ) as S(ρ) = {x ∈ D(L) : ‖x − x∗‖ < ρ}, we get

S(A) = {x ∈ D(L) : ‖x − x∗‖ < λ + P0}.

Recalling that γi > 0, i ∈ N, we let

γmin := min
i∈N

γi and γmax := max
i∈N

γi.

Further, let

b1(‖x − x∗‖) :=
1

2
γmin‖x − x∗‖2

and

b2(‖x − x∗‖) :=
1

2
γmax [‖x − x∗‖ + L(x0)]

2
,

noting that b1, b2 ∈ K. Then assuming P0 > 0 we easily see
that with (6) we have

b1(‖x − x∗‖) ≤ L(x) ≤ b2(‖x − x∗‖),

for x ∈ S(A) since
n∑

i=1

Ri(x) =
1

2

n∑
i=1

⎡
⎣(xi −

1

n

n∑
i=1

xi

)2

+

(
yi −

1

n

n∑
i=1

yi

)2

+

(
zi −

1

n

n∑
i=1

zi

)2
⎤
⎦

=
1

2
‖x − x∗‖2.

Indeed, the inequality b2(λ) < b1(A) yields
1

2
γmax [λ + L(x0)]

2
<

1

2
γmin[λ + P0]

2,

which holds if we choose

P0 >

[(√
γmax

γmin

− 1

)
+

√
γmax

γmin

L(x0)

]
.

Since γmax/γmin ≥ 1 for any γmax, γmin > 0, and because
of (6), it is clear that P0 exists and P0 > 0. Thus, with q(t, z) ≡
0, we conclude the proof of Theorem 2.

VI. COMPUTER SIMULATIONS
As part of the article, computer simulations were done

using "Mathematica Software" to show the effectiveness of
the proposed velocity control laws of the swarm model.
The RK4 method was used to numerically integrate system
(5) to confirm the emergent behavior of a sufficiently large
number of individuals governed by the system. Extensive
computer simulations show that for a sufficiently large number
of individuals the proposed model (5) generates collective
behaviors, some of which are similar to those reported in
literature. Indeed, we shall utilize the same descriptions of the
behaviors. However, in our case, we obtain them as a direct
result of manipulating the cohesion parameters (γi > 0, i ∈ N),
which are a measure of the strength of attraction between an
individual i and the swarm centroid, the coupling parameters
(βij > 0, i, j ∈ N, i �= j), which are a measure of the strength
of the interaction between individual i and individual j, and
the convergence parameters (αs

i > 0, s = 1, 2; i ∈ N), which
are measures of rate convergence of the ith individual to the
swarm centroid.
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A. Scenario 1: Leader-following Behavior
For our first example, we expect an individual with a low

cohesion parameter to be further away from a more compactly
arranged group of individuals with similar but higher cohesion
parameters. Because of the effects of the attraction and the
inter-individual collision-avoidance functions, the individual
with the lower cohesion parameter can either be following or
leading the group. In this example, the cohesion parameters
(γi > 0, i ∈ N) are randomized between 0.01 and 1, and
the coupling and convergence parameters are fixed. This
means that some boids can be further away from a more
compact group of individuals. Fig 1 shows some boids
following a compact swarm in an aligned manner, and an
outermost boid leading the swarm almost along the path of the
centroid. We can assume that this is a leader-follower behavior.

Recently Justh and Krishnaprasad [18] and Morgan
and Schwartz [19] proposed an individual-based continuum
mechanics approach that utilizes the Frenet-Serret equations of
motion to describe the position and orientation of interacting
individuals in a swarm. Their models can be used to designate
and control a leader, which then leads the swarm. The dynamics
of their models – which result in an emergent behavior –
depend on the initial conditions. Our approach differs in that
the leader emerges from the swarm, and our system dynamics
depend only on the system parameters, not on the initial
conditions.

B. Scenario 2: A Spiral-Like Behavior
In our second example, we encounter an interesting

behavior that is very similar to a spiral behavior. Using
our model, the spiral behavior can be induced by allocating
large randomized values of the coupling parameter to each
individual. The simulations shows a cohesive group with
individuals hovering about the centroid in a spiral fashion. As
they change positions, the centroid traces out spiral curves.

From nature, we see that many millipedes defend themselves
by rolling their bodies up into a ball or spiral. This behavior
protects the legs and delicate underside of the animal, leaving
only the hard plates of the body segments exposed [2]. At the
beginning phase, the swarm members gradually aggregate and
form a cohesive cluster. Then, they continuously move in the
same direction as a group, and eventually evolve into a spiral
motion.

VII. CONCLUSION

This paper introduces a set of continuous, time-invariant
velocity control laws, derived from the Lyapunov-based
control scheme to show the emergent behavior arising from
a swarm of boids and in general provides a solution to the
motion planning and control of boids. The different emerging
behaviors were a result of varying the control parameters in
each of the case. The nonlinear control laws presented in this
paper guarantees practical stability of the system which has
been proved using the Lakshmikantham, Leela and Martynyuk

(a) Initial state of the swarm (t = 0).

(b) State of the swarm at t = 7 units.

(c) State of the swarm at t = 50 units.

Fig. 1. Leader-following behavior. There are n = 30 individuals
(shown in red), each with bin size 10, randomly positioned at the
initial time t = 0. The parameters are αs

i = 1, s = 1, 2, 3, and
βij = 30. The cohesion parameters γi are randomized between 0.01
and 1. The axes are z1(t), z2(t) and z3(t), respectively, for each
individual i at time t ≥ 0. The grey lines show the trajectories and of
the individuals. The path of the centroid is given by the green line.
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(a) Initial state of the swarm (t = 0).

(b) State of the swarm at t = 10 units.

(c) State of the swarm at t = 100 units.

Fig. 2. A spiral-like behavior. There are n = 20 individuals (shown
in red), each with bin size 10, randomly positioned at the initial time
t = 0. The parameters are αs

i = 5, s = 1, 2, 3, and γi = 5. The
coupling parameters βij are randomized between and including 300
and 500. The axes are z1(t), z2(t) and z3(t), respectively, for each
individual i at time t ≥ 0. The grey lines shows the trajectories of
the individuals. The path of the centroid is shown thick in green. The
swarm is cohesive throughout.

method [20]. The efficiency of the control laws have been
demonstrated through interesting simulations arising from the
emergent behaviors of the swarm. This showed that the swarm
model is a gradient system that is practically stable about the
centroid.

Future work will attempt to extend the results of this paper
and focus on the behavior of the swarms in the presence of
obstacles.

REFERENCES
[1] A. Okubo. Diffusion and Ecological problems: Mathematical Models.

Springer - Verla, New York, 1980.
[2] C. Blum and D. Merkle. Swarm Intelligence: Introduction and

Applications. Springer - Verlag Berlin Heidelberg, Germany, 2008.
[3] E. Bonebeau. Swarm Intelligence: From Natural to Artificial Sytems.

Oxford University Press, New York, 1999.
[4] A. Martinoli, K. Easton, and W. Agassounon. Modeling swarm

robotic systems: A case study in collaborative distributed manipulation.
International Journal of Robotics Research, 23(4):415–436, 2004.
Special Issue on Experimental Robotics, P. Dario and B. Siciliano,
editors. Invited paper.

[5] L. Edelstein-Keshet. Mathematical models of swarming and
social aggregation. In Procs. 2001 International Symposium on
Nonlinear Theory and Its Applications, pages 1–7, Miyagi, Japan,
October-November 2001.

[6] E. Forgoston and I. B. Schwartz. Delay-induced instabilities in
self-propelling swarms. Phys. Rev. E, 77(3):035203, Mar 2008.

[7] M. Dorigo, L.M. Gambardella, M. Birattari, A. Martinoli, R. Poli,
and T. Stützle. Ant Colony Optimization and Swarm Intelligence: 5th
International Workshop, ANTS 2006, Brussels, Belgium, September 4-7,
2006, Proceedings, volume 4150. Springer, 2006.

[8] Q.K. Pan, M. Fatih Tasgetiren, and Y.C. Liang. A discrete particle swarm
optimization algorithm for the no-wait flowshop scheduling problem.
Computers & Operations Research, 35(9):2807–2839, 2008.

[9] J. Raj, B. Sharma, J. Vanualailai, and S. Singh. Swarm navigation in a
complex environment. In International Conference on Mathematical,
Computational and Statistical Sciences, and Engineering, WASET,
Phuket, Thailand, Issue 72, pages 1157 – 1163, December 2012.

[10] G.J. Gelderblom, G. Cremers, M. de Wilt, W. Kortekaas, A. Thielmann,
K. Cuhls, A. Sachinopoulou, and I. Korhonen. The opinions expressed
in this study are those of the authors and do not necessarily reflect the
views of the european commission. 2008.

[11] C. W. Reynolds. Flocks, herds, and schools: A distributed behavioral
model, in computer graphics. In Proceedings of the 14th annual
conference on Computer graphics and interactive techniques, pages
25–34, New York, USA, 1987.

[12] C. W. Reynolds. Steering behaviors for autonomous characters. In
Proceedings of Game Developers Conference, pages 763–782, Miller
Freeman Game Group, San Francisco, California, USA, 1999.

[13] B. Sharma, J. Vanualailai, and A. Prasad. Formation control of a
swarm of mobile manipulators. Rocky Mountain Journal of Mathematics,
41(3):909–940, 2011.

[14] H. G. Tanner, A. Jadbabaie, and G. J. Pappas. Stable flocking of mobile
agents, part I: fixed topology. volume 2, pages 2010–2015, 2003.

[15] A. Mogilner, L. Edelstein-Keshet, L. Bent, and A. Spiros. Mutual
interactions, potentials, and individual distance in a social aggregation.
Journal of Mathematical Biology, 47:353–389, 2003.

[16] V. Gazi and K.M. Passino. Stability analysis of social foraging swarms.
In IEEE Transactions on Systems, Man and Cybernetics - Part B, volume
34(1), pages 539–557, 2004.

[17] V. Lakshmikantham, S. Leela, and A. A. Martynyuk. Practical Stability
of Nonlinear Systems. World Scientific, Singapore, 1990.

[18] E. W. Justh and P. S. Krishnaprasad. Equilibria and steering laws for
planar formations. Systems & Control Letters, 52(1):25 – 38, 2004.

[19] David S. Morgan and Ira B. Schwartz. Dynamic coordinated control
laws in multiple agent models. Physics Letters A, 340(1-4):121 – 131,
2005.

[20] V. Lakshmikantham, V. M. Matrosov, and S. Sivasundaram. Vector
Lyapunov Functions and Stability Analysis of Nonlinear Systems. Kluwer
Academic, Dordrecht / Boston / London, 1991.

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:8, No:2, 2014 

252International Scholarly and Scientific Research & Innovation 8(2) 2014 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:8
, N

o:
2,

 2
01

4 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/9
99

73
21

.p
df


