Search results for: Optimization Model Reduction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9817

Search results for: Optimization Model Reduction

9727 Non-Convex Multi Objective Economic Dispatch Using Ramp Rate Biogeography Based Optimization

Authors: Susanta Kumar Gachhayat, S. K. Dash

Abstract:

Multi objective non-convex economic dispatch problems of a thermal power plant are of grave concern for deciding the cost of generation and reduction of emission level for diminishing the global warming level for improving green-house effect. This paper deals with ramp rate constraints for achieving better inequality constraints so as to incorporate valve point loading for cost of generation in thermal power plant through ramp rate biogeography based optimization involving mutation and migration. Through 50 out of 100 trials, the cost function and emission objective function were found to have outperformed other classical methods such as lambda iteration method, quadratic programming method and many heuristic methods like particle swarm optimization method, weight improved particle swarm optimization method, constriction factor based particle swarm optimization method, moderate random particle swarm optimization method etc. Ramp rate biogeography based optimization applications prove quite advantageous in solving non convex multi objective economic dispatch problems subjected to nonlinear loads that pollute the source giving rise to third harmonic distortions and other such disturbances.

Keywords: Economic load dispatch, Biogeography based optimization, Ramp rate biogeography based optimization, Valve Point loading, Moderate random particle swarm optimization method, Weight improved particle swarm optimization method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1050
9726 Parameters Extraction for Pseudomorphic HEMTs Using Genetic Algorithms

Authors: Mazhar B. Tayel, Amr H. Yassin

Abstract:

A proposed small-signal model parameters for a pseudomorphic high electron mobility transistor (PHEMT) is presented. Both extrinsic and intrinsic circuit elements of a smallsignal model are determined using genetic algorithm (GA) as a stochastic global search and optimization tool. The parameters extraction of the small-signal model is performed on 200-μm gate width AlGaAs/InGaAs PHEMT. The equivalent circuit elements for a proposed 18 elements model are determined directly from the measured S- parameters. The GA is used to extract the parameters of the proposed small-signal model from 0.5 up to 18 GHz.

Keywords: PHEMT, Genetic Algorithms, small signal modeling, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262
9725 An Enhanced Particle Swarm Optimization Algorithm for Multiobjective Problems

Authors: Houda Abadlia, Nadia Smairi, Khaled Ghedira

Abstract:

Multiobjective Particle Swarm Optimization (MOPSO) has shown an effective performance for solving test functions and real-world optimization problems. However, this method has a premature convergence problem, which may lead to lack of diversity. In order to improve its performance, this paper presents a hybrid approach which embedded the MOPSO into the island model and integrated a local search technique, Variable Neighborhood Search, to enhance the diversity into the swarm. Experiments on two series of test functions have shown the effectiveness of the proposed approach. A comparison with other evolutionary algorithms shows that the proposed approach presented a good performance in solving multiobjective optimization problems.

Keywords: Particle swarm optimization, migration, variable neighborhood search, multiobjective optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 809
9724 Reservoir Operating by Ant Colony Optimization for Continuous Domains (ACOR) Case Study: Dez Reservoir

Authors: A. B. Dariane, A. M. Moradi

Abstract:

A direct search approach to determine optimal reservoir operating is proposed with ant colony optimization for continuous domains (ACOR). The model is applied to a system of single reservoir to determine the optimum releases during 42 years of monthly steps. A disadvantage of ant colony based methods and the ACOR in particular, refers to great amount of computer run time consumption. In this study a highly effective procedure for decreasing run time has been developed. The results are compared to those of a GA based model.

Keywords: Ant colony optimization, continuous, metaheuristics, reservoir, decreasing run time, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2029
9723 Multivariable System Reduction Using Stability Equation Method and SRAM

Authors: D. Bala Bhaskar

Abstract:

An algorithm is proposed for the order reduction of large scale linear dynamic multi variable systems where the reduced order model denominator is obtained by using Stability equation method and numerator coefficients are obtained by using SRAM. The proposed algorithm produces a lower order model for an original stable high order multivariable system. The reduction procedure is easy to understand, efficient and computer oriented. To highlight the advantages of the approach, the algorithm is illustrated with the help of a numerical example and the results are compared with the other existing techniques in literature.

Keywords: Multi variable systems, order reduction, stability equation method, SRAM, time domain characteristics, ISE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 727
9722 Tuning of Thermal FEA Using Krylov Parametric MOR for Subsea Application

Authors: A. Suleng, T. Jelstad Olsen, J. Šindler, P. Bárta

Abstract:

A dead leg is a typical subsea production system component. CFD is required to model heat transfer within the dead leg. Unfortunately its solution is time demanding and thus not suitable for fast prediction or repeated simulations. Therefore there is a need to create a thermal FEA model, mimicking the heat flows and temperatures seen in CFD cool down simulations. This paper describes the conventional way of tuning and a new automated way using parametric model order reduction (PMOR) together with an optimization algorithm. The tuned FE analyses replicate the steady state CFD parameters within a maximum error in heat flow of 6 % and 3 % using manual and PMOR method respectively. During cool down, the relative error of the tuned FEA models with respect to temperature is below 5% comparing to the CFD. In addition, the PMOR method obtained the correct FEA setup five times faster than the manually tuned FEA.

Keywords: CFD, convective heat, FEA, model tuning, subseaproduction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724
9721 Optimization of Kinematics for Birds and UAVs Using Evolutionary Algorithms

Authors: Mohamed Hamdaoui, Jean-Baptiste Mouret, Stephane Doncieux, Pierre Sagaut

Abstract:

The aim of this work is to present a multi-objective optimization method to find maximum efficiency kinematics for a flapping wing unmanned aerial vehicle. We restrained our study to rectangular wings with the same profile along the span and to harmonic dihedral motion. It is assumed that the birdlike aerial vehicle (whose span and surface area were fixed respectively to 1m and 0.15m2) is in horizontal mechanically balanced motion at fixed speed. We used two flight physics models to describe the vehicle aerodynamic performances, namely DeLaurier-s model, which has been used in many studies dealing with flapping wings, and the model proposed by Dae-Kwan et al. Then, a constrained multi-objective optimization of the propulsive efficiency is performed using a recent evolutionary multi-objective algorithm called є-MOEA. Firstly, we show that feasible solutions (i.e. solutions that fulfil the imposed constraints) can be obtained using Dae-Kwan et al.-s model. Secondly, we highlight that a single objective optimization approach (weighted sum method for example) can also give optimal solutions as good as the multi-objective one which nevertheless offers the advantage of directly generating the set of the best trade-offs. Finally, we show that the DeLaurier-s model does not yield feasible solutions.

Keywords: Flight physics, evolutionary algorithm, optimization, Pareto surface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
9720 Optimal Sizing of SSSC Controllers to Minimize Transmission Loss and a Novel Model of SSSC to Study Transient Response

Authors: A. M. El-Zonkoly

Abstract:

In this paper, based on steady-state models of Flexible AC Transmission System (FACTS) devices, the sizing of static synchronous series compensator (SSSC) controllers in transmission network is formed as an optimization problem. The objective of this problem is to reduce the transmission losses in the network. The optimization problem is solved using particle swarm optimization (PSO) technique. The Newton-Raphson load flow algorithm is modified to consider the insertion of the SSSC devices in the network. A numerical example, illustrating the effectiveness of the proposed algorithm, is introduced. In addition, a novel model of a 3- phase voltage source converter (VSC) that is suitable for series connected FACTS a controller is introduced. The model is verified by simulation using Power System Blockset (PSB) and Simulink software.

Keywords: FACTS, Modeling, PSO, SSSC, Transmission lossreduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2277
9719 Application of PSO Technique for Seismic Control of Tall Building

Authors: A. Shayeghi, H. Shayeghi, H. Eimani Kalasar

Abstract:

In recent years, tuned mass damper (TMD) control systems for civil engineering structures have attracted considerable attention. This paper emphasizes on the application of particle swarm application (PSO) to design and optimize the parameters of the TMD control scheme for achieving the best results in the reduction of the building response under earthquake excitations. The Integral of the Time multiplied Absolute value of the Error (ITAE) based on relative displacement of all floors in the building is taken as a performance index of the optimization criterion. The problem of robustly TMD controller design is formatted as an optimization problem based on the ITAE performance index to be solved using the PSO technique which has a story ability to find the most optimistic results. An 11- story realistic building, located in the city of Rasht, Iran is considered as a test system to demonstrate effectiveness of the proposed method. The results analysis through the time-domain simulation and some performance indices reveals that the designed PSO based TMD controller has an excellent capability in reduction of the seismically excited example building.

Keywords: TMD, Particle Swarm Optimization, Tall Buildings, Structural Dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
9718 Simulated Annealing Application for Structural Optimization

Authors: Farhad Kolahan, M. Hossein Abolbashari, Samaeddin Mohitzadeh

Abstract:

Several methods are available for weight and shape optimization of structures, among which Evolutionary Structural Optimization (ESO) is one of the most widely used methods. In ESO, however, the optimization criterion is completely case-dependent. Moreover, only the improving solutions are accepted during the search. In this paper a Simulated Annealing (SA) algorithm is used for structural optimization problem. This algorithm differs from other random search methods by accepting non-improving solutions. The implementation of SA algorithm is done through reducing the number of finite element analyses (function evaluations). Computational results show that SA can efficiently and effectively solve such optimization problems within short search time.

Keywords: Simulated annealing, Structural optimization, Compliance, C.V. product.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
9717 Optimization of Fuzzy Cluster Nodes in Cellular Multimedia Networks

Authors: J. D. Mallapur, Supriya H., Santosh B. K., Tej H.

Abstract:

The cellular network is one of the emerging areas of communication, in which the mobile nodes act as member for one base station. The cluster based communication is now an emerging area of wireless cellular multimedia networks. The cluster renders fast communication and also a convenient way to work with connectivity. In our scheme we have proposed an optimization technique for the fuzzy cluster nodes, by categorizing the group members into three categories like long refreshable member, medium refreshable member and short refreshable member. By considering long refreshable nodes as static nodes, we compute the new membership values for the other nodes in the cluster. We compare their previous and present membership value with the threshold value to categorize them into three different members. By which, we optimize the nodes in the fuzzy clusters. The simulation results show that there is reduction in the cluster computational time and iterational time after optimization.

Keywords: Clusters, fuzzy and optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
9716 Optimal Allocation of DG Units for Power Loss Reduction and Voltage Profile Improvement of Distribution Networks using PSO Algorithm

Authors: K. Varesi

Abstract:

This paper proposes a Particle Swarm Optimization (PSO) based technique for the optimal allocation of Distributed Generation (DG) units in the power systems. In this paper our aim is to decide optimal number, type, size and location of DG units for voltage profile improvement and power loss reduction in distribution network. Two types of DGs are considered and the distribution load flow is used to calculate exact loss. Load flow algorithm is combined appropriately with PSO till access to acceptable results of this operation. The suggested method is programmed under MATLAB software. Test results indicate that PSO method can obtain better results than the simple heuristic search method on the 30-bus and 33- bus radial distribution systems. It can obtain maximum loss reduction for each of two types of optimally placed multi-DGs. Moreover, voltage profile improvement is achieved.

Keywords: Distributed Generation (DG), Optimal Allocation, Particle Swarm Optimization (PSO), Power Loss Minimization, Voltage Profile Improvement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3168
9715 Reliability-Based Topology Optimization Based on Evolutionary Structural Optimization

Authors: Sang-Rak Kim, Jea-Yong Park, Won-Goo Lee, Jin-Shik Yu, Seog-Young Han

Abstract:

This paper presents a Reliability-Based Topology Optimization (RBTO) based on Evolutionary Structural Optimization (ESO). An actual design involves uncertain conditions such as material property, operational load and dimensional variation. Deterministic Topology Optimization (DTO) is obtained without considering of the uncertainties related to the uncertainty parameters. However, RBTO involves evaluation of probabilistic constraints, which can be done in two different ways, the reliability index approach (RIA) and the performance measure approach (PMA). Limit state function is approximated using Monte Carlo Simulation and Central Composite Design for reliability analysis. ESO, one of the topology optimization techniques, is adopted for topology optimization. Numerical examples are presented to compare the DTO with RBTO.

Keywords: Evolutionary Structural Optimization, PerformanceMeasure Approach, Reliability-Based Topology Optimization, Reliability Index Approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2800
9714 Simulation-Based Optimization of a Non-Uniform Piezoelectric Energy Harvester with Stack Boundary

Authors: Alireza Keshmiri, Shahriar Bagheri, Nan Wu

Abstract:

This research presents an analytical model for the development of an energy harvester with piezoelectric rings stacked at the boundary of the structure based on the Adomian decomposition method. The model is applied to geometrically non-uniform beams to derive the steady-state dynamic response of the structure subjected to base motion excitation and efficiently harvest the subsequent vibrational energy. The in-plane polarization of the piezoelectric rings is employed to enhance the electrical power output. A parametric study for the proposed energy harvester with various design parameters is done to prepare the dataset required for optimization. Finally, simulation-based optimization technique helps to find the optimum structural design with maximum efficiency. To solve the optimization problem, an artificial neural network is first trained to replace the simulation model, and then, a genetic algorithm is employed to find the optimized design variables. Higher geometrical non-uniformity and length of the beam lowers the structure natural frequency and generates a larger power output.

Keywords: Piezoelectricity, energy harvesting, simulation-based optimization, artificial neural network, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 845
9713 Economic Load Dispatch with Daily Load Patterns and Generator Constraints by Particle Swarm Optimization

Authors: N. Phanthuna V. Phupha N. Rugthaicharoencheep, S. Lerdwanittip

Abstract:

This paper presents an optimization technique to economic load dispatch (ELD) problems with considering the daily load patterns and generator constraints using a particle swarm optimization (PSO). The objective is to minimize the fuel cost. The optimization problem is subject to system constraints consisting of power balance and generation output of each units. The application of a constriction factor into PSO is a useful strategy to ensure convergence of the particle swarm algorithm. The proposed method is able to determine, the output power generation for all of the power generation units, so that the total constraint cost function is minimized. The performance of the developed methodology is demonstrated by case studies in test system of fifteen-generation units. The results show that the proposed algorithm scan give the minimum total cost of generation while satisfying all the constraints and benefiting greatly from saving in power loss reduction

Keywords: Particle Swarm Optimization, Economic Load Dispatch, Generator Constraints.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1859
9712 Particle Swarm Optimization Approach on Flexible Structure at Wiper Blade System

Authors: A. Zolfagharian, M.Z. Md. Zain, A. R. AbuBakar, M. Hussein

Abstract:

Application of flexible structures has been significantly, increased in industry and aerospace missions due to their contributions and unique advantages over the rigid counterparts. In this paper, vibration analysis of a flexible structure i.e., automobile wiper blade is investigated and controlled. The wiper generates unwanted noise and vibration during the wiping the rain and other particles on windshield which may cause annoying noise in different ranges of frequency. A two dimensional analytical modeled wiper blade whose model accuracy is verified by numerical studies in literature is considered in this study. Particle swarm optimization (PSO) is employed in alliance with input shaping (IS) technique in order to control or to attenuate the amplitude level of unwanted noise/vibration of the wiper blade.

Keywords: Input shaping, noise reduction, particle swarmoptimization, wiper blade

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1987
9711 The Knapsack Sharing Problem: A Tree Search Exact Algorithm

Authors: Mhand Hifi, Hedi Mhalla

Abstract:

In this paper, we study the knapsack sharing problem, a variant of the well-known NP-Hard single knapsack problem. We investigate the use of a tree search for optimally solving the problem. The used method combines two complementary phases: a reduction interval search phase and a branch and bound procedure one. First, the reduction phase applies a polynomial reduction strategy; that is used for decomposing the problem into a series of knapsack problems. Second, the tree search procedure is applied in order to attain a set of optimal capacities characterizing the knapsack problems. Finally, the performance of the proposed optimal algorithm is evaluated on a set of instances of the literature and its runtime is compared to the best exact algorithm of the literature.

Keywords: Branch and bound, combinatorial optimization, knap¬sack, knapsack sharing, heuristics, interval reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
9710 Vehicle Aerodynamics: Drag Reduction by Surface Dimples

Authors: C. K. Chear, S. S. Dol

Abstract:

For a bluff body, dimples behave like roughness elements in stimulating a turbulent boundary layer, leading to delayed flow separation, a smaller wake and lower form drag. This is very different in principle from the application of dimples to streamlined body, where any reduction in drag would be predominantly due to a reduction in skin friction. In the present work, a car model with different dimple geometry is simulated using k-ε turbulence modeling to determine its effect to the aerodynamics performance. Overall, the results show that the application of dimples manages to reduce the drag coefficient of the car model.

Keywords: Aerodynamics, Boundary Layer, Dimple, Drag, Kinetic Energy, Turbulence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6334
9709 Design of a Permanent Magnet Synchronous Machine for the Hybrid Electric Vehicle

Authors: Arash Hassanpour Isfahani, Siavash Sadeghi

Abstract:

Permanent magnet synchronous machines are known as a good candidate for hybrid electric vehicles due to their unique merits. However they have two major drawbacks i.e. high cost and small speed range. In this paper an optimal design of a permanent magnet machine is presented. A reduction of permanent magnet material for a constant torque and an extension in speed and torque ranges are chosen as the optimization aims. For this purpose the analytical model of the permanent magnet synchronous machine is derived and the appropriate design algorithm is devised. The genetic algorithm is then employed to optimize some machine specifications. Finally the finite element method is used to validate the designed machine.

Keywords: Design, Finite Element, Hybrid electric vehicle, Optimization, Permanent magnet synchronous machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4115
9708 A Combined Conventional and Differential Evolution Method for Model Order Reduction

Authors: J. S. Yadav, N. P. Patidar, J. Singhai, S. Panda, C. Ardil

Abstract:

In this paper a mixed method by combining an evolutionary and a conventional technique is proposed for reduction of Single Input Single Output (SISO) continuous systems into Reduced Order Model (ROM). In the conventional technique, the mixed advantages of Mihailov stability criterion and continued Fraction Expansions (CFE) technique is employed where the reduced denominator polynomial is derived using Mihailov stability criterion and the numerator is obtained by matching the quotients of the Cauer second form of Continued fraction expansions. Then, retaining the numerator polynomial, the denominator polynomial is recalculated by an evolutionary technique. In the evolutionary method, the recently proposed Differential Evolution (DE) optimization technique is employed. DE method is based on the minimization of the Integral Squared Error (ISE) between the transient responses of original higher order model and the reduced order model pertaining to a unit step input. The proposed method is illustrated through a numerical example and compared with ROM where both numerator and denominator polynomials are obtained by conventional method to show its superiority.

Keywords: Reduced Order Modeling, Stability, Mihailov Stability Criterion, Continued Fraction Expansions, Differential Evolution, Integral Squared Error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2163
9707 Optimization of the Input Layer Structure for Feed-Forward Narx Neural Networks

Authors: Zongyan Li, Matt Best

Abstract:

This paper presents an optimization method for reducing the number of input channels and the complexity of the feed-forward NARX neural network (NN) without compromising the accuracy of the NN model. By utilizing the correlation analysis method, the most significant regressors are selected to form the input layer of the NN structure. An application of vehicle dynamic model identification is also presented in this paper to demonstrate the optimization technique and the optimal input layer structure and the optimal number of neurons for the neural network is investigated.

Keywords: Correlation analysis, F-ratio, Levenberg-Marquardt, MSE, NARX, neural network, optimisation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2188
9706 Non-Stationary Stochastic Optimization of an Oscillating Water Column

Authors: María L. Jalón, Feargal Brennan

Abstract:

A non-stationary stochastic optimization methodology is applied to an OWC (oscillating water column) to find the design that maximizes the wave energy extraction. Different temporal cycles are considered to represent the long-term variability of the wave climate at the site in the optimization problem. The results of the non-stationary stochastic optimization problem are compared against those obtained by a stationary stochastic optimization problem. The comparative analysis reveals that the proposed non-stationary optimization provides designs with a better fit to reality. However, the stationarity assumption can be adequate when looking at averaged system response.

Keywords: Non-stationary stochastic optimization, oscillating water column, temporal variability, wave energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1379
9705 Selection of an Optimum Configuration of Solar PV Array under Partial Shaded Condition Using Particle Swarm Optimization

Authors: R. Ramaprabha

Abstract:

This paper presents an extraction of maximum energy from Solar Photovoltaic Array (SPVA) under partial shaded conditions by optimum selection of array size using Particle Swarm Optimization (PSO) technique. In this paper a detailed study on the output reduction of different SPVA configurations under partial shaded conditions have been carried out. A generalized MATLAB M-code based software model has been used for any required array size, configuration, shading patterns and number of bypass diodes. Comparative study has been carried out on different configurations by testing several shading scenarios. While the number of shading patterns and the rate of change are very low for stationary SPVA but these may be quite large for SPVA mounted on a mobile platforms. This paper presents the suitability of PSO technique to select optimum configuration for mobile arrays by calculating the global peak (GP) of different configurations and to transfer maximum power to the load.

Keywords: Global peak, Mobile PV arrays, Partial shading, optimization, PSO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4235
9704 An Application of a Cost Minimization Model in Determining Safety Stock Level and Location

Authors: Bahareh Amirjabbari, Nadia Bhuiyan

Abstract:

In recent decades, the lean methodology, and the development of its principles and concepts have widely been applied in supply chain management. One of the most important strategies of being lean is having efficient inventory within the chain. On the other hand, managing inventory efficiently requires appropriate management of safety stock in order to protect against increasing stretch in the breaking points of the supply chain, which in turn can result in possible reduction of inventory. This paper applies a safety stock cost minimization model in a manufacturing company. The model results in optimum levels and locations of safety stock within the company-s supply chain in order to minimize total logistics costs.

Keywords: Cost, efficient inventory, optimization, safety stock, supply chain

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1636
9703 Optimization of PEM Fuel Cell Biphasic Model

Authors: Boubekeur Dokkar, Nasreddine Chennouf, Noureddine Settou, Belkhir Negrou, Abdesslam Benmhidi

Abstract:

The optimal operation of proton exchange membrane fuel cell (PEMFC) requires good water management which is presented under two forms vapor and liquid. Moreover, fuel cells have to reach higher output require integration of some accessories which need electrical power. In order to analyze fuel cells operation and different species transport phenomena a biphasic mathematical model is presented by governing equations set. The numerical solution of these conservation equations is calculated by Matlab program. A multi-criteria optimization with weighting between two opposite objectives is used to determine the compromise solutions between maximum output and minimal stack size. The obtained results are in good agreement with available literature data.

Keywords: Biphasic model, PEM fuel cell, optimization, simulation, specie transport.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2031
9702 Evaluating and Selecting Optimization Software Packages: A Framework for Business Applications

Authors: Waleed Abohamad, Amr Arisha

Abstract:

Owing the fact that optimization of business process is a crucial requirement to navigate, survive and even thrive in today-s volatile business environment, this paper presents a framework for selecting a best-fit optimization package for solving complex business problems. Complexity level of the problem and/or using incorrect optimization software can lead to biased solutions of the optimization problem. Accordingly, the proposed framework identifies a number of relevant factors (e.g. decision variables, objective functions, and modeling approach) to be considered during the evaluation and selection process. Application domain, problem specifications, and available accredited optimization approaches are also to be regarded. A recommendation of one or two optimization software is the output of the framework which is believed to provide the best results of the underlying problem. In addition to a set of guidelines and recommendations on how managers can conduct an effective optimization exercise is discussed.

Keywords: Complex Business Problems, Optimization, Selection Criteria, Software Evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2910
9701 2-DOF Observer Based Controller for First Order with Dead Time Systems

Authors: Ashu Ahuja, Shiv Narayan, Jagdish Kumar

Abstract:

This paper realized the 2-DOF controller structure for first order with time delay systems. The co-prime factorization is used to design observer based controller K(s), representing one degree of freedom. The problem is based on H∞ norm of mixed sensitivity and aims to achieve stability, robustness and disturbance rejection. Then, the other degree of freedom, prefilter F(s), is formulated as fixed structure polynomial controller to meet open loop processing of reference model. This model matching problem is solved by minimizing integral square error between reference model and proposed model. The feedback controller and prefilter designs are posed as optimization problem and solved using Particle Swarm Optimization (PSO). To show the efficiency of the designed approach different variety of processes are taken and compared for analysis.

Keywords: 2-DOF, integral square error, mixed sensitivity function, observer based controller, particle swarm optimization, prefilter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2432
9700 A Multi-Objective Optimization Model to the Integrating Flexible Process Planning And Scheduling Based on Modified Particle Swarm Optimization Algorithm (MPSO)

Authors: R. Sahraian, A. Karampour Haghighi, E. Ghasemi

Abstract:

Process planning and production scheduling play important roles in manufacturing systems. In this paper a multiobjective mixed integer linear programming model is presented for the integrated planning and scheduling of multi-product. The aim is to find a set of high-quality trade-off solutions. This is a combinatorial optimization problem with substantially large solution space, suggesting that it is highly difficult to find the best solutions with the exact search method. To account for it, a PSO-based algorithm is proposed by fully utilizing the capability of the exploration search and fast convergence. To fit the continuous PSO in the discrete modeled problem, a solution representation is used in the algorithm. The numerical experiments have been performed to demonstrate the effectiveness of the proposed algorithm.

Keywords: Integrated process planning and scheduling, multi objective, MILP, Particle swarm optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430
9699 Application of Soft Computing Methods for Economic Dispatch in Power Systems

Authors: Jagabondhu Hazra, Avinash Sinha

Abstract:

Economic dispatch problem is an optimization problem where objective function is highly non linear, non-convex, non-differentiable and may have multiple local minima. Therefore, classical optimization methods may not converge or get trapped to any local minima. This paper presents a comparative study of four different evolutionary algorithms i.e. genetic algorithm, bacteria foraging optimization, ant colony optimization and particle swarm optimization for solving the economic dispatch problem. All the methods are tested on IEEE 30 bus test system. Simulation results are presented to show the comparative performance of these methods.

Keywords: Ant colony optimization, bacteria foraging optimization, economic dispatch, evolutionary algorithm, genetic algorithm, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2481
9698 Seat Assignment Model for Student Admissions Process at Saudi Higher Education Institutions

Authors: Mohammed Salem Alzahrani

Abstract:

In this paper, student admission process is studied to optimize the assignment of vacant seats with three main objectives. Utilizing all vacant seats, satisfying all programs of study admission requirements and maintaining fairness among all candidates are the three main objectives of the optimization model. Seat Assignment Method (SAM) is used to build the model and solve the optimization problem with help of Northwest Coroner Method and Least Cost Method. A closed formula is derived for applying the priority of assigning seat to candidate based on SAM.

Keywords: Admission Process Model, Assignment Problem, Hungarian Method, Least Cost Method, Northwest Corner Method, Seat Assignment Method (SAM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977