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Abstract—This paper presents an optimization method for 

reducing the number of input channels and the complexity of the 
feed-forward NARX neural network (NN) without compromising the 
accuracy of the NN model. By utilizing the correlation analysis 
method, the most significant regressors are selected to form the input 
layer of the NN structure. An application of vehicle dynamic model 
identification is also presented in this paper to demonstrate the 
optimization technique and the optimal input layer structure and the 
optimal number of neurons for the neural network is investigated.  

 
Keywords—Correlation analysis, F-ratio, Levenberg-Marquardt, 

MSE, NARX, neural network, optimisation.  

I. INTRODUCTION 

HIS paper is motivated by work on developing reduced 
order models for vehicle dynamics using system 

identification techniques. The idea of the artificial neural 
networks (ANN), often shortened as neural network, 
originated from a biological domain. The neural network is a 
computing system made of simple but highly interconnected 
elements which process information by their dynamic state 
response to external inputs. Neural networks have been 
successfully applied for capturing associations or discovering 
regularities within a set of patterns where the volume, number 
of variables or diversity of the data is very great. They also 
work well in revealing interrelationships which are vaguely 
understood or difficult to describe adequately with 
conventional approaches.  

The feedforward dynamic NARX (Nonlinear 
AutoRegressive eXogenous model) models have proven very 
successful in various engineering applications. In a NARX 
feedforward neural network, the information moves in only 
one direction. It enters the network from the input nodes, 
travels through the hidden layers and produces an overall 
output. The NARX representation for a general discrete 
nonlinear system is 

 

ሻݐሺݕ ൌ ௦݂ ቀݕሺݐ െ 1ሻ,… , ݐ൫ݕ െ ݊௬൯, ,ሻݐሺݑ ݐሺݑ െ 1ሻ,… ݐሺݑ െ ݊௨ሻቁ ൅ 	݁ሺݐሻ (1) 
 

where the time-delayed terms model the ‘memory’ of the 
dynamic system. ௦݂ሺ∙ሻ	is a nonlinear surrogate function of the 
specific system and e(t) is the unexplained noise. A vital task 
is to find the required number of lagged observations ݊௬ ,݊௨ in 
order to generate the auto-regressive structure for the model 
identification in time series. Many researchers made efforts to 
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optimise the structure of a dynamic neural network in the 
time-series domain. The fact that any neural network 
representation for a system can have various solutions of 
weights can cause difficulty in deciding the number of neurons 
and the number of layers [1]. Khashei and Bijari [2] described 
an auto-regressive with integrated moving average (ARIMA) 
modelling method and improved the accuracy of prediction. 
The feed-forward NN model has also been utilized in various 
research areas. Pradhan et al. [3] analysed a landslide-related 
database and developed a feed-forward neural network model 
to provide risk assessment. Mohandes et al. [4] used a three-
layer feed-forward neural network to predict wind speed. 
Zhang et al. [5] estimate indoor air contaminants using an 
optimized neural network. 

Various optimisation approaches exist in order to reduce the 
complexity of the ANN. Performance of the model is usually 
assessed along with the optimisation process and offers hints 
for choosing appropriate values for internal coefficients [6], 
[7]. Taguchi’s design of experiments described in [8] also 
provides a systematic way to reduce complexity. On the other 
hand, the neurons can also be manipulated by a sequential 
algorithm starting from an initial infrastructure; the 
performance of the ANN is assessed by a previously specified 
criterion and neurons are only added when convergence takes 
too long or the mean squared error is larger than a pre-defined 
threshold [9]-[12], [16] utilized a multi-object genetic 
algorithm (GA) to find the optimal compromise of the ANN 
structure between performance and complexity. However, the 
disadvantage is that most of these methods are 
computationally expensive and difficult to implement [13].  

This paper aims to investigate the correlation analysis 
method of input structure optimisation when developing an 
ANN model and reduce the order of the dynamic ANN by 
using selected terms in the input layer. Rather than adopting 
all or part of the delayed linear terms of inputs and output in 
the input layer in most NN identification, this approach only 
selects the most influential regressors within a possible 
searching range, thus dramatically improves the efficiency of 
the training process. A neural network model for vehicle 
dynamics is developed in order to validate the techniques. 

II. INPUT LAYER STRUCTURE OPTIMIZATION 

In a dynamic system, the I/O of the system for the previous 
time affects the system output of the current time, which 
indicates that the dynamic system has ‘memory’. A NN model 
is required to identify to reveal the nonlinear relations between 
the inputs and outputs of the system and accurately replicate 
the system dynamics. The input signal values are usually 
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normalised into [-1, 1] to facilitate the use of log-sigmoid 
weighting function.  

The inputs for a dynamic neural network are usually formed 
by a full series of linear time-delayed input terms in ascending 
order such as u(t-1), u(t-2), u(t-3)…u(t-na), y(t-1), y(t-2), y(t-
3)…,y(t-nb) according to the designed maximum order of the 
NN model. Alternatively, a NARX NN input layer can be 
formed by the selected linear, square and cubic terms which 
are generated based on the original linear terms. From a 
regression pool as shown in Fig. 1, the candidate regressors 
which possess significant dynamic relations with the output 
can be chosen to form the input layer of the neural network 
model. 

 

 

Fig. 1 The pool of candidate regresssor 
 
The former method needs a large number of coefficients 

and thus increases the computational time of the training 
process, but saves a lot of time in designing the input layer 
because the function is already embedded in the Matlab NN 
toolbox library. However, the latter method offers optimised 
input terms which carry the most significant system dynamics, 
thus dramatically reducing network complexity. For selecting 
the input regressors for the input layer, the correlation analysis 
method is proposed with the following steps: 

A. Correlation Analysis 

Firstly, a model regressor pool including all possible 
candidate regressors is established. For the present technique, 
all linear, quadratic and cubic regressors with pre-defined 
maximum time delay forms the overall regressor pool.  

At the beginning of the ith iteration, the correlation factor 
between the jth regressor ࢐࢞ሺ࢏ሻ	and dependent output ࢏ࢠ can be 
represented as: 

 

௝௭ݎ ൌ ∑
ത೔ሿࢠሺ௡ሻି࢏ࢠሻሺ௡ሻି௫̅ೕሺ೔ሻ൧ሾ࢏ሺ࢐࢞ൣ

ඥௌೕೕௌ೥೥
ே
௡ୀଵ , ݆ ൌ 1,2,3, …,	   (2) 

 
where 

௝ݔ̅ ൌ
ଵ

ே
∑ ሻሺ݊ሻே࢏ሺ࢐࢞
௡ୀଵ 													                              (3) 

 

௝ܵ௝ ൌ ∑ ሾ࢐࢞ሺ࢏ሻሺ݊ሻ െ ௝ሺ௜ሻሿଶݔ̅
ே
௡ୀଵ 								                      (4) 

 
ܵ௭௭ ൌ ∑ ሾ࢏ࢠሺ݊ሻ െ ത௜ሿଶࢠ

ே
௡ୀଵ 										                           (5) 

 
where ࢏ࢠ	is defined as the dependent output array which is 
developed at the beginning of ith iteration, ࢞ഥ௝ሺ௜ሻ	is the mean 
value of the jth regressor vector at the beginning of ith 

iteration. Specifically, ࢠଵ	is the initial dependent output 
variable and is assigned as the original output y. The 
correlation factors between all the candidate regressors and 
dependent output ࢏ࢠ are determined for subsequent analysis. 
The regressor inserted into the model should be the one with 
the highest correlation factor. Initially, the regressor matrix ࢄଵ 
only contains a column of 1s as offset terms and we define 
 ௝ሺଵሻ as vector of original regressors. The X matrix is updated࢞
as: 
 

ଵࢄ ൌ ൦

1
1
⋮
1

൪

௡ൈଵ

							                             (6) 

 
௜ାଵࢄ ൌ ,௜ࢄൣ                              (7)							௝ሺଵሻ൧ݔ

 
The parameters for the regressors are defined as vector ࣂ. 

The regressor with the highest correlation factor will have the 
highest partial F-ratio. Therefore, only one regressor is added 
into the model in each iteration. With the default offset term in 
the model, we are able to establish the following two 
hypotheses: 

 
ଵߠ	:଴ܪ ൌ ଶߠ ൌ ⋯ ൌ ௡ߠ ൌ 0										                  (8) 

 
:ଵܪ ௝ߠ ് 0														                              (9) 

 
where ܪ଴ and ܪଵ are the null hypothesis and alternative 
hypothesis respectively. The alternative hypothesis indicates 
that at least one jth regressor is inserted into the input layer. In 
order to decide which hypothesis is accepted, there are three 
statistical quantities which should be determined: 

 
்ܵܵ ൌ ∑ ሾݕሺ݊ሻ െ തሿଶேݕ

௡ୀଵ ൌ ்࢟࢟ െ                  (10)					തଶݕܰ
 

											ܵܵோ ൌ 	∑ ሾ࢟ෝሺ݊ሻ െ തሿଶேݕ
௡ୀଵ 															                      (11) 

 
ܵܵா ൌ ∑ ሾ࢟ሺ݊ሻ െ ොሺ݊ሻሿଶேݕ

௡ୀଵ ൌ ்࢟࢟ െ ࢏ࢄ෡௜ࣂ
 (12)										்࢟

 
where N is the number of sample points of the regressor vector 
and ࢟ෝሺ݊ሻ is the estimated output computed by ࢟ෝ ൌ ࢏ࢄ෡௜ࣂ

் from 
the model. ݕത is the mean value of the output variable. ்ܵܵ	is 
the total sum of the squares, ܵܵோ represents the regression sum 
of squares and ܵܵா is the residue sum of squares. The three 
assessment terms are then related as: 
 

															்ܵܵ ൌ ܵܵோ ൅ ܵܵா																																																			(13) 
 
If we substitute (10)-(12) into (13), then the following 

relation is derived: 
 

											ܵܵோ ൌ ࢏ࢄ෡௜ࣂ
்࢟ െ  (14)																																														തଶݕܰ

 

where 
 

෡௜ࣂ																				 ൌ ሺ࢏ࢄ
࢏ࢄሻିଵ࢏ࢄ்

 (15)																																										்࢟
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Subsequently, to assess the regressors, two statistical 
processes are considered in advance of adding each regressor 
into the input layer. 

B. Forward Selection 

The partial F-ratio decides the significance of the regressor. 
In the situation that the model already contains m regressors, 
the jth regressor can be brought into the input layer if 

 

ܨ ൌ
ௌௌೃሺఏ෡ೕ|ࣂ෡೘ሻ

௦మ
ൌ

ௌௌೃ൫ࣂ෡࢓శ࢐൯ିௌௌೃሺࣂ෡࢓ሻ

௦మ
൐    (16)							௜௡ܨ

 
where 

																			ܵܵோ൫ࣂ෡࢓ା࢐൯ ൌ ௠ା௝ࢄ࢐ା࢓෡ࣂ
் ࢟ െ    (17)																തଶݕܰ

 

ଶݏ ൌ
ଵ

ேିሺ௠ାଵሻ
∗ ൫࢟ െ ௠ା௝ࢄ࢐ା࢓෡ࣂ

் ൯
்
൫࢟ െ ௠ା௝ࢄ࢐ା࢓෡ࣂ

் ൯    (18) 

 
	ܵܵோ൫ࣂ෡࢓ା࢐൯	 is the regression sum of squares obtained by 
adding the jth regressor to the original m terms. The index m+ 
j generally means the jth regressor is added to the original m 
terms in the input layer. ݏଶ is the residual sum of squares after 
the jth regressor is added into the structure. 

C. Backward Elimination 

The regressors already entered in the input layer are 
reassessed by means of their partial F-ratios in each iteration, 
since a regressor added in the input layer at the early stage 
may become redundant when it involves some relationship 
with the regressors added subsequently. With the input design 
that already involves p regressors, the jth regressor with the 
lowest partial F-ratio is eliminated if 

 

ܨ ൌ min௝
ܵܵೃ൫ࣂ෡࢖൯ିௌௌೃሺࣂ෡࢖ష࢐ሻ

௦మ
൏             (19)		௢௨௧ܨ

 
where 

ܵܵோ൫ࣂ෡࢐ି࢖൯ ൌ ௣ି௝ࢄ࢐ି࢖෡ࣂ
் ࢟ െ  തଶ                  (20)ݕܰ

 
and 	ܵܵோ൫ࣂ෡࢐ି࢖൯	is the regression sum of squares obtained by 
removing the jth regressor from the p terms which are already 
in the model. The index p−j generally represents the jth 
regressor being removed from the original input layer 
containing p terms. 

D. Iterative Structure Update 

Finally, the structure of the input layer is represented as the 
regressors included in the X matrix. In order to remove the 
influence of the selected regressors, the dependent output 
variable ࢠ௜ and candidate regressors which are not selected are 
modified according to the regressors already in the input layer 
design, i.e., at the end of the ith iteration, the dependent 
variable is altered as 

 
௜ାଵࢠ ൌ ࢟ െ  (21)                                    ࢏෡ࣂ࢏ࢄ

 
and all the remaining regressors modified by removing the 
least squares components formed by already selected terms 
and the next iteration becomes 

 

ା૚ሻ࢏ሺ࢐࢞ ൌ ሻ࢏ሺ࢐࢞ െ ,ሻ࢏ሺ࢐෡ࢼ࢏ࢄ ݆ ൌ 1,2,3…             (22) 
 

where  
 

ሻ࢏ሺ࢐෡ࢼ ൌ ሺ࢏ࢄ
,ሻ࢏ሺ࢐࢞࢏ࢄሻି૚࢏ࢄࢀ ݆ ൌ 1,2,3…            (23) 

 
At the end of this iteration, i is increased by 1 for the next 

iteration. 
The iterations from step A to step D continue until no other 

candidate regressor in the regressor pool possesses a partial F-
ratio higher than ܨ௜௡ and no regressor in the model has a 
partial F-ratio less then ܨ௢௨௧, where ܨ௜௡ and ݐݑ݋ܨ are the 
preselected stopping criteria for the iteration. At 95% 
confidence level, we use the criterion F(0.05, 1, N −m) ≈ 4, 
where the sample number N is much larger than number of the 
identified coefficients m. In other words, if the selected 
regressor possesses a partial F-ratio larger than 4, there is at 
least 95% chance that we made the correct decision to add the 
regressor into the input layer. Usually we find	ܨ௜௡ ൌ  ,௢௨௧ܨ
however ܨ௜௡ ൐  ௢௨௧ indicates it is harder to accept a regressorܨ
than delete one. As a result, all the significant terms in the 
regressor pool are found and inserted into the input layer 
through the iteration process. The selection process stops 
when the number of qualified regressors has reached the pre-
defined maximum in the input layer or there are no further 
qualified regressors to be selected. 

III. SETUP OF A TWO LAYER NETWORK 

The two layer neural network structure comprises a hidden 
layer and an output layer. In each neuron of the hidden layer, a 
threshold function is defined and the neuron is ‘fired’ when 
the weighted sum of inputs reaches a particular threshold. In 
the example, the log-sigmoid function which generates a 
threshold at 0 and +1 is used. For most nonlinear problems, 
one hidden layer is sufficient to recognise continuous wave 
pattern and the number of neurons needed in the hidden layer 
is one of the key parameters in defining the complexity of the 
NN model. By building NN models with increasing number of 
neurons and comparing validation results, the optimal number 
of neurons can be determined. Although a computationally 
expensive process, the searching can be done effectively and 
automatically. The final delivered neural network model does 
not need to run this process again. In Fig. 2, in the input layer, 
x(t) with the number ‘4’ underneath indicates that 4 input 
channels are formed by the input regressors including linear 
and nonlinear terms. The output signal y(t) goes through a 
delay circle marked ‘1’ in the center and becomes the one-step 
ahead output y(t-1). Apart from y(t-1), the rest of input 
channels are within the block of x(t). For a two-layer MISO 
dynamic neural network using log-sigmoid weighting 
function, the network can be analytically defined as  

 
ሻݐሺݕ ൌ ∑ ௜ߙ ∙

௠
௜ୀଵ ௛݂ሺ∑ ሻݐ௞ሺ࢞௜௞ݓ ൅ ܾ௜௞

௡
௞ୀଵ ሻ ൅ ܾ଴            (24) 

 
where m is the number of neurons in the hidden layer, n is the 
number of input nodes, ௛݂ is the weighting function used in the 
hidden layer, ݓ௜௞ and ܾ௜௞ the weight and bias corresponding to 
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the kth input in the ith neuron. ߙ௜ and ܾ଴ are the weights and 
bias in the output layer.  

 

 

Fig. 2 Two layer perceptron networks 
 

Hence, the weighted sum of the weighted inputs within the 
hidden layer can be represented as: 

 
ࡿ ൌ ∑ ሻݐ௞ሺ࢞௜௞ݓ ൅ ܾ௜௞

௡
௞ୀଵ                                  (25) 

ൌ ൦

ଵଵݓ ଵଶݓ ଵଷݓ ⋯ ଵ௡ݓ
ଶଵݓ ଶଶݓ ଶଷݓ ⋯ ଶ௡ݓ
⋮ ⋮ ⋮ ⋯ ⋮

௠ଵݓ ௠ଶݓ ௠ଷݓ ⋯ ௠௡ݓ

൪

௠ൈ௡ ۏ
ێ
ێ
ێ
ۍ
ଵݔ
ଶݔ
ଷݔ
⋮
ے௡ݔ
ۑ
ۑ
ۑ
ې

൅ ൦

ܾଵଵ
ܾଵଶ
⋮

ܾଵ௠

൪				 

 

	ൌ ൦

ܾଵଵ ൅ ଵݔଵଵݓ ൅ ଶݔଵଶݓ ൅ ⋯൅ݓଵ௡ݔ௡
ܾଵଶ ൅ ଵݔଶଵݓ ൅ ଶݔଶଶݓ ൅ ⋯൅ݓଶ௡ݔ௡

⋮
ܾଵ௠ ൅ ଵݔ௠ଵݓ ൅ ଶݔ௠ଶݓ ൅⋯൅ݓ௠௡ݔ௡

൪                   (26) 

 
Then this weighted sum of the inputs ࡿ is applied to the log-

sigmoid weighting function which determines which neurons 
are excited by calculating:   

 

݄ ൌ ௛݂ሺࡿሻ ൌ
ଵ

ଵାୣ୶୮ሺࡿሻ
, 1 ൐ ݄ ൐ 0                      (27) 

 
the first derivative of the log –sigmoid function h with respect 
to the weights and bias used in the training algorithm is  
 

డ௛

డ௪࢑࢏
ൌ െ ୣ୶୮	ሺࡿሻ

ሾଵାୣ୶୮ሺࡿሻሿమ
∙  ௞                             (28)࢞

 
߲݄

డ௕࢑࢏
ൌ െ ୣ୶୮	ሺࡿሻ

ሾଵାୣ୶୮ሺࡿሻሿమ
                                  (29) 

 
The output layer then uses the linear transfer function to 

filter the weighted sum of output from the hidden layer. The 
output from each neuron of the hidden layer is linearly gained 
and biased without changing the nonlinear dynamics. 

For the training process, at least two sets of data are 
commonly used: training data for establishing the network and 
test data for validation. The weights are initially assigned 
randomly and the training process is supervised by the 
measured output of the training data. In order to determine 
coefficients ࣂ ൌ ሾ࢝, -ሿ in the neural network, the Levenberg࢈
Marquardt (LM) algorithm [14], [15], also known as 
Nonlinear Least Squares Minimisation, is used. The problem 
for the application of LM algorithm is defined as optimizing  , 
so that the sum of squares of the errors:  

 

ሻࣂሺܮ ൌ
ଵ

ଶ
∑ ሾሺݕ௜ െ ݂ሺݔ௜, ሻሿଶࣂ
ே
௜ୀଵ ൌ

ଵ

ଶ
 (30)                ࢋ்ࢋ

 

is minimised. N is the number of input and output samples. 
The index ݅ represents the sample number for a pair of input 
and output. ݂ሺݔ௜,  ሻ is a non-linear function which estimatesߠ
the output, in this case, the neural network model. 

The LMA is an iterative process starting with an initial 
guess of the coefficient. In each epoch the coefficient ࣂ is 
varied by a small amount	ࢾ, hence a new estimation ݂ሺݔ௜, ࣂ ൅
  :ሻ is calculated asࢾ

 
݂ሺݔ௜, ࣂ ൅ ሻࢾ ൎ ݂ሺݔ௜, ሻࣂ ൅  (31)                        ࢾ௜ܬ

 
where ܬ௜ is the back-propagation gradient defined as: 

 

௜ܬ ൌ
ࢋࣔ

డࣂ
ൌ

డሾ௬೔ି௙ሺ௫೔,ࣂሻሿ

డࣂ
ൌ െ

௙ሺ௫೔,ࣂሻ

డࣂ
                   (32)       

                           
Hence the gradient for weight and bias are 

 

௜௪ܬ ൌ െߙ௜
డ௛

߲࢝
                                       (33) 

 

௜௕ܬ ൌ െ
డ௛

డ࢈
                                             (34) 

 
Therefore, the following equation holds:  

 

ࣂሺܮ ൅ ሻࢾ ൎ
ଵ

ଶ
∑ ሺݕ௜ െ ݂ሺݔ௜, ሻࣂ െ ሻଶࢾ௜ܬ
ே
௜ୀଵ 						    (35)      

     

ൌ ଵ

ଶ
ห|࢟ െ ݂ሺࣂሻ െ ห|ࢾࡶ

ଶ
			                            (36)          

                 
where ࡶ is the Jacobian matrix which contains the first 
derivatives of the network errors with respect to the weights 
and bias. ܬ௜ is the ith row of ࡶ, ݂ሺݔ௜,  ሻࣂሻ is the ith row of ݂ሺࣂ
and ݕ௜ is the ith row of ࢟.  

Taking the derivative of (28) and setting the result to zero 
leads to: 

 
ሺࡶࢀࡶሻࢾ ൌ ࢟ሾࢀࡶ െ ݂ሺࣂሻሿ                           (37) 

 
Levenberg modifies an adaptive value ߤ which creates a 

‘damped’ version: 
 

ሺࡶࢀࡶ ൅ ࢾሻࡵߤ ൌ ࢟ሾࢀࡶ െ ݂ሺࣂሻሿ                    (38) 
 

The damping factor ߤ is adjusted in each iteration according 
to the convergence speed. A smaller ߤ can be used when the 
convergence speed is rapid. 

Therefore, the increment of coefficient ࢾ can be determined 
as  

 
ࢾ ൌ ା૚࢑ࣂ െ ࢑ࣂ ൌ ሺࡶࢀࡶ ൅ ࢟ሾࢀࡶሻି૚ࡵߤ െ ݂ሺ࢑ࣂሻሿ           (39) 

 
The LM backpropagation is achieved by performing the 

gradient descent within the solution’s vector space towards a 
‘global minimum’. The LM algorithm appears to be the fastest 
method for training moderate-sized feedforward neural 
networks (up to several hundred weights) [16]. Moreover, this 
method uses the Jacobian for calculations, which assumes that 
performance is measured by a mean or sum of squared errors. 
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IV. APPLICATION IN DYNAMIC VEHICLE MODELING 

A Jaguar Land Rover SUV is used to test the identification 
of a reduced order dynamic model. The dynamic information 
of the vehicle is generated by a high-fidelity model in 
CarMaker. As illustrated in Fig. 3, a virtual vehicle ride test is 
conducted on a randomly generated digital road and three 
segments of data which represents the dynamics of the SUV 
operating at 10m/s, 20m/s and 30m/s respectively. The 
random road profile approximates a nominally high real world 
conditions, and the test data are collected at sampling rate 
100Hz. 

 

 

Fig. 3 Inputs of virtual test for NN identification (RoadFZ: road 
displacement at front wheel, Road RZ: road displacement at back 

wheel) 
 

A two layer dynamic neural network structure is established 
between the road input and vehicle dynamic response 
represented by various dynamic outputs (pitch angle as an 
example). The original linear inputs are shown in Table. I, and 
the identified neural network model with various reduced 
input sets illustrate the optimization process shown in Table. 
II. The regressor is selected by assessing its correlation and 
partial F-ratio. The regressor with the highest correlation 
would be found at each iteration and every newly added 
regressor can rebalance the partial F-ratio for all the selected 
regressors. 

Final results are given in Table. III revealing that the 
training time is reduced significantly because of reduced 
number of weights when the neuron number is optimized. In 
order to assess and compare quality, the model performance is 
measured by MSE (Mean Squared Error) and R-square: 

 

ܧܵܯ ൌ 	
ଵ

ே
∑ ሺ݁௜ሻଶ
ே
௜ୀଵ                             (40) 

 

ܴଶ ൌ
௘೅௘

௒೅௒
ൈ 100                                (41)  

               

 

Fig. 4 Validation of the optimized NN model for vehicle ride 
dynamics 

 

 

Fig. 5 Search for the optimal neuron number for the optimized neural 
network 

 
Validation results showed that the optimized NN model is 

able to achieve a slightly higher value of R2 while keeping a 
lower number of weights. Fig. 4 demonstrates this result for 
the vehicle ride model and proves the effectiveness of the 
optimized neural network. Based on the optimized input layer 
structure including five selected terms shown in Table II, we 
continue to search for the optimal number of neurons which 
can produce the model with best quality whereas this value is 
kept as small as possible in order to reduce the possibility of 
over-fit. Fig. 5 reveals the variation of ܴଶ in validation result 
along with increase of neuron number and this illustrate that 
model quality would not necessarily keep improving due to 
the side effect of over-fitting which decreases model accuracy. 
Therefore an optimal number of neurons can be achieved by 
searching for the best compromise between model complexity 
and accuracy. For this specific problem, the optimal neuron 
number is chosen as 2. 

 
TABLE I 

DEFINITION OF INPUTS AND OUTPUTS FOR VEHICLE RIDE MODEL 

Original Inputs/Outputs Basic Regressors for the Input Layer Units 
Vertical Road 

Displacement for Front 
Wheel 

 
ݐଵሺݑ െ 1ሻ, ݐଵሺݑ െ 2ሻ, ݐଵሺݑ െ 3ሻ, 
ݐଵሺݑ െ 4ሻ,	ݑଵሺݐ െ 5ሻ,	ݑଵሺݐ െ 6ሻ 

 
m 

Vertical Road 
Displacement for Rear 

Wheel 

ݐଶሺݑ െ 1ሻ, ݐଶሺݑ െ 2ሻ, ݐଶሺݑ െ 3ሻ, 
ݐଶሺݑ െ 4ሻ,	ݑଶሺݐ െ 5ሻ,	ݑଶሺݐ െ 6ሻ 

m 

Vehicle Forward 
Velocity 

ݐଷሺݑ െ 1ሻ, ݐଷሺݑ െ 2ሻ, ݐଷሺݑ െ 3ሻ, 
ݐଷሺݑ െ 4ሻ,	ݑଷሺݐ െ 5ሻ,	ݑଷሺݐ െ 6ሻ 

m/s 

Pitch Angle 
ݐሺݕ െ 1ሻ, ݐሺݕ െ 2ሻ, ݐሺݕ െ 3ሻ, 
ݐሺݕ െ 4ሻ,	ݕሺݐ െ 5ሻ,	ݕሺݐ െ 6ሻ 

rad 
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TABLE II 
CORRELATION ANALYSIS FOR FIVE SELECTED INPUTS 

Iteration No. 1 2 3 4 5 

Correlation Factor 0.9946 0.9636 0.0887 0.1153 0.0441 
Regressors added at 

each iteration 
Partial F-ratio 

ݐሺݕ െ 1ሻ 2206800 1281200 1290800 1307100 1308900 

ݐሺݕ െ 2ሻ  311900 314500 294570 295020 

ଷݑ
ଶሺݐ െ 6ሻ   190 376 411 

ݐଷሺݑ െ 2ሻ ൈ ݐሺݕ െ 2ሻ    323 327 

ଵݑ
ଶሺݐ െ 1ሻ ൈ ݐଶሺݑ െ 1ሻ     47 

 
TABLE III 

COMPARISON BETWEEN FULL LINEAR TIME-SERIES INPUTS AND OPTIMIZED 

INPUTS  

Input design 
Input 
term 

number 

Neuron 
number/
Weights 
number 

MSE 
(10-7) 

R2 
Training  

time 
(second) 

Simulation 
time (second) 

Full Linear 
time-series 

24 2 / 50 4.57 99.61 18.927 2.59 

Optimized 
inputs 

5 2 / 12 0.251 99.98 7.081 2.49 

V. CONCLUSION 

In this paper, the input layer structure of the NARX neural 
network is formed from regressors selected using a correlation 
analysis method. The technique has been successfully 
implemented in the identification process of vehicle ride 
model and the optimal neuron number and input layer 
structure are determined for the developed neural network. It 
can be concluded that the input layer optimization process has 
successfully reduced the computational time for neural 
network training whereas the model validation accuracy is 
maintained to a high standard.  
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