Optimization of PEM Fuel Cell Biphasic Model
Authors: Boubekeur Dokkar, Nasreddine Chennouf, Noureddine Settou, Belkhir Negrou, Abdesslam Benmhidi
Abstract:
The optimal operation of proton exchange membrane fuel cell (PEMFC) requires good water management which is presented under two forms vapor and liquid. Moreover, fuel cells have to reach higher output require integration of some accessories which need electrical power. In order to analyze fuel cells operation and different species transport phenomena a biphasic mathematical model is presented by governing equations set. The numerical solution of these conservation equations is calculated by Matlab program. A multi-criteria optimization with weighting between two opposite objectives is used to determine the compromise solutions between maximum output and minimal stack size. The obtained results are in good agreement with available literature data.
Keywords: Biphasic model, PEM fuel cell, optimization, simulation, specie transport.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1086923
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2037References:
[1] J. Larminie, A. Dicks, Fuel Cell Systems Explained, Wiley, New York,
2002..
[2] Springer, T. E.; T.A. Zawodzinski, S. Gottesfeld, Polymer electrolyte
fuel cell model. J. Eletrochem. Soc. 138(8), 1991, pp. 2334-2342.
[3] D.M. Bernardi, M.W. Verbrugge, Mathematical model of the solid
polymer-electrolyte fuel cell. J. Electrochem. Soc.; 139 (9), 1992, pp.
2477-2491.
[4] N.P. Siegel, M.W. Ellis, D.J. Nelson, M.R. von Spakovsky, A twodimensional
computational model of a PEMFC with liquid water
transport. Journal of Power Sources; 128, 2004, pp. 173–184.
[5] Yun Wang, Chao-Yang Wang. A Nonisothermal, Two-Phase Model for
Polymer Electrolyte Fuel Cells. Journal of the Electrochemical Society;
153(6), 2006, pp. A1193-A1200.
[6] T.V. Nguyen, R.E. White, Journal of the Electrochemical Society 140
(8), 1993, pp. 2178–2186,
[7] Jay Tawce Pukurshpan, Modelling and control of fuel cell systems and
fuel processors, Phd Thesis of mechanical engineering, University of
Mchigan, USA, 2003.
[8] J. Golbert, D.R. Lewin, Model-based control of fuel cells (2): Optimal
efficiency, Journal of Power Sources 173, 2007, pp. 298–30.
[9] Sheila Mae C. Anga,b, Daniel J.L. Bretta, Eric S. Fraga, A multiobjective
optimisation model for a general polymer electrolyte
membrane fuel cell system, Journal of Power Sources 195, 2010, pp.
2754–2763.
[10] J. Golbert, D.R. Lewin, Journal of Power Sources 135 (1–2) , 2004, pp.
135–151
[11] Wang L., Husar A., Zhou T., Liu H., A parametric study of PEM fuel
cell performances. International Journal of Hydrogen Energy 28, 2003,
pp. 1263-1272.
[12] G. Squadrito, G. Maggio, E. Passalacqua, F. Lufrano, A. Patti, Journal
of Applied Electrochemistry 29 (12) , 1991, pp.1449–1455
[13] Woonki Na, Bei Gou, The efficient and economic design of PEM fuel
cell systems by multi-objective optimization, Journal of Power Sources
166, 2007, pp. 411–418.
[14] P. Pei, W. Yang, P. Li, International Journal of Hydrogen Energy 31,
2006, pp. 361–369.
[15] B. Dokkar, N. Settou, O. Imine, B. Negrou, N. Chennouf, A. Benmhidi,
"Analyse et simulation d’un modèle diphasique d’une pile à combustible
PEMFC", Proceding ICER 2012 Bejaia, Algeria
[16] B. Dokkar, N. Settou, O. Imine, N. Saifi, B. Negrou, Z.
Nemouchi,"Simulation of species transport and water management in
PEM fuel cells”, International Journal of Hydrogen Energy, volume 36
issue 6, 2011, pp. 4220-4227.