Search results for: Robust Stochastic Model Predictive Control.
9683 An Intelligent Controller Augmented with Variable Zero Lag Compensation for Antilock Braking System
Authors: Benjamin C. Agwah, Paulinus C. Eze
Abstract:
Antilock braking system (ABS) is one of the important contributions by the automobile industry, designed to ensure road safety in such way that vehicles are kept steerable and stable when during emergency braking. This paper presents a wheel slip-based intelligent controller with variable zero lag compensation for ABS. It is required to achieve a very fast perfect wheel slip tracking during hard braking condition and eliminate chattering with improved transient and steady state performance, while shortening the stopping distance using effective braking torque less than maximum allowable torque to bring a braking vehicle to a stop. The dynamic of a vehicle braking with a braking velocity of 30 ms⁻¹ on a straight line was determined and modelled in MATLAB/Simulink environment to represent a conventional ABS system without a controller. Simulation results indicated that system without a controller was not able to track desired wheel slip and the stopping distance was 135.2 m. Hence, an intelligent control based on fuzzy logic controller (FLC) was designed with a variable zero lag compensator (VZLC) added to enhance the performance of FLC control variable by eliminating steady state error, provide improve bandwidth to eliminate the effect of high frequency noise such as chattering during braking. The simulation results showed that FLC-VZLC provided fast tracking of desired wheel slip, eliminated chattering, and reduced stopping distance by 70.5% (39.92 m), 63.3% (49.59 m), 57.6% (57.35 m) and 50% (69.13 m) on dry, wet, cobblestone and snow road surface conditions respectively. Generally, the proposed system used effective braking torque that is less than the maximum allowable braking torque to achieve efficient wheel slip tracking and overall robust control performance on different road surfaces.
Keywords: ABS, Fuzzy Logic Controller, Variable Zero Lag Compensator, Wheel Slip Tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3419682 A Unified Robust Algorithm for Detection of Human and Non-human Object in Intelligent Safety Application
Authors: M A Hannan, A. Hussain, S. A. Samad, K. A. Ishak, A. Mohamed
Abstract:
This paper presents a general trainable framework for fast and robust upright human face and non-human object detection and verification in static images. To enhance the performance of the detection process, the technique we develop is based on the combination of fast neural network (FNN) and classical neural network (CNN). In FNN, a useful correlation is exploited to sustain high level of detection accuracy between input image and the weight of the hidden neurons. This is to enable the use of Fourier transform that significantly speed up the time detection. The combination of CNN is responsible to verify the face region. A bootstrap algorithm is used to collect non human object, which adds the false detection to the training process of the human and non-human object. Experimental results on test images with both simple and complex background demonstrate that the proposed method has obtained high detection rate and low false positive rate in detecting both human face and non-human object.Keywords: Algorithm, detection of human and non-human object, FNN, CNN, Image training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16319681 Measurement and Prediction of Speed of Sound in Petroleum Fluids
Authors: S. Ghafoori, A. Al-Harbi, B. Al-Ajmi, A. Al-Shaalan, A. Al-Ajmi, M. Ali Juma
Abstract:
Seismic methods play an important role in the exploration for hydrocarbon reservoirs. However, the success of the method depends strongly on the reliability of the measured or predicted information regarding the velocity of sound in the media. Speed of sound has been used to study the thermodynamic properties of fluids. In this study, experimental data are reported and analyzed on the speed of sound in toluene and octane binary mixture. Three-factor three-level Box-Benhkam design is used to determine the significance of each factor, the synergetic effects of the factors, and the most significant factors on speed of sound. The developed mathematical model and statistical analysis provided a critical analysis of the simultaneous interactive effects of the independent variables indicating that the developed quadratic models were highly accurate and predictive.
Keywords: Experimental design, octane, speed of sound, toluene.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14129680 Numerical Simulation and Experiment of a Lifting Body with Leading-Edge Rotating Cylinder
Authors: A. Badarudin, C. S. Oon, S. N. Kazi, N. Nik-Ghazali, Y. J. Lee, W. T. Chong
Abstract:
An experimental and simulation flight test has been carried out to evaluate the longitudinal gliding characteristics of a lifting body with blunted half-cone geometry. The novelty here is the lifting body's pitch control mechanism, which consists of a pair of leading-edge rotating cylinders. Flight simulation uses aerodynamic data from computational fluid dynamics supported by wind-tunnel test. Flight test consists of releasing an aluminum lifting body model from a moving vehicle at the appropriate wind speed while measuring the lifting body's variation of altitude against time of flight. Results show that leading-edge rotating cylinder is able to give small amounts of improvement to the longitudinal stability and pitch control to the lifting body.
Keywords: Lifting body, pitch control, aerodynamic, rotating cylinder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19289679 Production Throughput Modeling under Five Uncertain Variables Using Bayesian Inference
Authors: Amir Azizi, Amir Yazid B. Ali, Loh Wei Ping
Abstract:
Throughput is an important measure of performance of production system. Analyzing and modeling of production throughput is complex in today-s dynamic production systems due to uncertainties of production system. The main reasons are that uncertainties are materialized when the production line faces changes in setup time, machinery break down, lead time of manufacturing, and scraps. Besides, demand changes are fluctuating from time to time for each product type. These uncertainties affect the production performance. This paper proposes Bayesian inference for throughput modeling under five production uncertainties. Bayesian model utilized prior distributions related to previous information about the uncertainties where likelihood distributions are associated to the observed data. Gibbs sampling algorithm as the robust procedure of Monte Carlo Markov chain was employed for sampling unknown parameters and estimating the posterior mean of uncertainties. The Bayesian model was validated with respect to convergence and efficiency of its outputs. The results presented that the proposed Bayesian models were capable to predict the production throughput with accuracy of 98.3%.
Keywords: Bayesian inference, Uncertainty modeling, Monte Carlo Markov chain, Gibbs sampling, Production throughput
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21449678 High Performance in Parallel Data Integration: An Empirical Evaluation of the Ratio Between Processing Time and Number of Physical Nodes
Authors: Caspar von Seckendorff, Eldar Sultanow
Abstract:
Many studies have shown that parallelization decreases efficiency [1], [2]. There are many reasons for these decrements. This paper investigates those which appear in the context of parallel data integration. Integration processes generally cannot be allocated to packages of identical size (i. e. tasks of identical complexity). The reason for this is unknown heterogeneous input data which result in variable task lengths. Process delay is defined by the slowest processing node. It leads to a detrimental effect on the total processing time. With a real world example, this study will show that while process delay does initially increase with the introduction of more nodes it ultimately decreases again after a certain point. The example will make use of the cloud computing platform Hadoop and be run inside Amazon-s EC2 compute cloud. A stochastic model will be set up which can explain this effect.
Keywords: Process delay, speedup, efficiency, parallel computing, data integration, E-Commerce, Amazon Elastic Compute Cloud (EC2), Hadoop, Nutch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16279677 Efficient Tools for Managing Uncertainties in Design and Operation of Engineering Structures
Authors: J. Menčík
Abstract:
Actual load, material characteristics and other quantities often differ from the design values. This can cause worse function, shorter life or failure of a civil engineering structure, a machine, vehicle or another appliance. The paper shows main causes of the uncertainties and deviations and presents a systematic approach and efficient tools for their elimination or mitigation of consequences. Emphasis is put on the design stage, which is most important for reliability ensuring. Principles of robust design and important tools are explained, including FMEA, sensitivity analysis and probabilistic simulation methods. The lifetime prediction of long-life objects can be improved by long-term monitoring of the load response and damage accumulation in operation. The condition evaluation of engineering structures, such as bridges, is often based on visual inspection and verbal description. Here, methods based on fuzzy logic can reduce the subjective influences.Keywords: Design, fuzzy methods, Monte Carlo, reliability, robust design, sensitivity analysis, simulation, uncertainties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18149676 Maximum Power Point Tracking for Small Scale Wind Turbine Using Multilayer Perceptron Neural Network Implementation without Mechanical Sensor
Authors: Piyangkun Kukutapan, Siridech Boonsang
Abstract:
The article proposes maximum power point tracking without mechanical sensor using Multilayer Perceptron Neural Network (MLPNN). The aim of article is to reduce the cost and complexity but still retain efficiency. The experimental is that duty cycle is generated maximum power, if it has suitable qualification. The measured data from DC generator, voltage (V), current (I), power (P), turnover rate of power (dP), and turnover rate of voltage (dV) are used as input for MLPNN model. The output of this model is duty cycle for driving the converter. The experiment implemented using Arduino Uno board. This diagram is compared to MPPT using MLPNN and P&O control (Perturbation and Observation control). The experimental results show that the proposed MLPNN based approach is more efficiency than P&O algorithm for this application.
Keywords: Maximum power point tracking, multilayer perceptron neural network, optimal duty cycle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16779675 Effect of Partial Rootzone Drying on Growth, Yield and Biomass Partitioning of a Soilless Tomato Crop
Authors: N. Affi, A. El Fadl, M. El Otmani, M.C. Benismail, L.M. Idrissi
Abstract:
The object of the present research was to assess the effects of partial rootzone drying (PRD) on tomato growth, productivity, biomass allocation and water use efficiency (WUE). Plants were grown under greenhouse, on a sand substrate. Three treatments were applied: a control that was fully and conventionally irrigated, PRD-70 and PRD-50 in which, respectively, 70% and 50% of water requirements were supplied using PRD. Alternation of irrigation between the two root halves took place each three days. The Control produces the highest total yield (252tons/ha). In terms of fruit number, PRD-50 showed 23% and 16% less fruits than PRD-70 and control, respectively. Fruit size was affected by treatment with PRD-50 treatment producing 66% and 53% more class 3 fruits than, control and PRD-70, respectively. For plant growth, the difference was not significant when comparing control to PRD-70 but was significant when comparing PRD-70 and control to PRD-50. No effect was on total biomass but root biomass was higher for stressed plants compared to control. WUE was 66% and 27% higher for PRD-50 and PRD-70 respectively compared to control.
Keywords: Biomass, growth, partial rootzone drying, water use efficiency yield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20699674 A New Nonlinear Excitation Controller for Transient Stability Enhancement in Power Systems
Authors: M. Ouassaid, A. Nejmi, M. Cherkaoui, M. Maaroufi
Abstract:
The very nonlinear nature of the generator and system behaviour following a severe disturbance precludes the use of classical linear control technique. In this paper, a new approach of nonlinear control is proposed for transient and steady state stability analysis of a synchronous generator. The control law of the generator excitation is derived from the basis of Lyapunov stability criterion. The overall stability of the system is shown using Lyapunov technique. The application of the proposed controller to simulated generator excitation control under a large sudden fault and wide range of operating conditions demonstrates that the new control strategy is superior to conventional automatic voltage regulator (AVR), and show very promising results.Keywords: Excitation control, Lyapunov technique, non linearcontrol, synchronous generator, transient stability, voltage regulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26139673 The Effects of Multipath on OFDM Systems for Broadband Power-Line Communications a Case of Medium Voltage Channel
Authors: Justinian Anatory, N. Theethayi, R. Thottappillil, C. Mwase, N.H. Mvungi
Abstract:
Power-line networks are widely used today for broadband data transmission. However, due to multipaths within the broadband power line communication (BPLC) systems owing to stochastic changes in the network load impedances, branches, etc., network or channel capacity performances are affected. This paper attempts to investigate the performance of typical medium voltage channels that uses Orthogonal Frequency Division Multiplexing (OFDM) techniques with Quadrature Amplitude Modulation (QAM) sub carriers. It has been observed that when the load impedances are different from line characteristic impedance channel performance decreases. Also as the number of branches in the link between the transmitter and receiver increases a loss of 4dB/branch is found in the signal to noise ratio (SNR). The information presented in the paper could be useful for an appropriate design of the BPLC systems.
Keywords: Communication channel model, Power-line communication, Transfer function, Multipath, Branched network, OFDM, QAM, performance evaluation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18479672 Robust Power System Stabilizer Design Using Particle Swarm Optimization Technique
Authors: Sidhartha Panda, N. P. Padhy
Abstract:
Power system stabilizers (PSS) are now routinely used in the industry to damp out power system oscillations. In this paper, particle swarm optimization (PSO) technique is applied to design a robust power system stabilizer (PSS). The design problem of the proposed controller is formulated as an optimization problem and PSO is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The non-linear simulation results are presented under wide range of operating conditions; disturbances at different locations as well as for various fault clearing sequences to show the effectiveness and robustness of the proposed controller and their ability to provide efficient damping of low frequency oscillations. Further, all the simulations results are compared with a conventionally designed power system stabilizer to show the superiority of the proposed design approach.
Keywords: Particle swarm optimization, power system stabilizer, low frequency oscillations, power system stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23579671 Software Model for a Computer Based Training for an HVDC Control Desk Simulator
Authors: José R. G. Braga, Joice B. Mendes, Guilherme H. Caponetto, Alexandre C. B. Ramos
Abstract:
With major technological advances and to reduce the cost of training apprentices for real-time critical systems, it was necessary the development of Intelligent Tutoring Systems for training apprentices in these systems. These systems, in general, have interactive features so that the learning is actually more efficient, making the learner more familiar with the mechanism in question. In the home stage of learning, tests are performed to obtain the student's income, a measure on their use. The aim of this paper is to present a framework to model an Intelligent Tutoring Systems using the UML language. The various steps of the analysis are considered the diagrams required to build a general model, whose purpose is to present the different perspectives of its development.Keywords: Computer based training, Hypermedia, Software modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16069670 The Use of Performance Indicators for Evaluating Models of Drying Jackfruit (Artocarpus heterophyllus L.): Page, Midilli, and Lewis
Authors: D. S. C. Soares, D. G. Costa, J. T. S., A. K. S. Abud, T. P. Nunes, A. M. Oliveira Júnior
Abstract:
Mathematical models of drying are used for the purpose of understanding the drying process in order to determine important parameters for design and operation of the dryer. The jackfruit is a fruit with high consumption in the Northeast and perishability. It is necessary to apply techniques to improve their conservation for longer in order to diffuse it by regions with low consumption. This study aimed to analyze several mathematical models (Page, Lewis, and Midilli) to indicate one that best fits the conditions of convective drying process using performance indicators associated with each model: accuracy (Af) and noise factors (Bf), mean square error (RMSE) and standard error of prediction (% SEP). Jackfruit drying was carried out in convective type tray dryer at a temperature of 50°C for 9 hours. It is observed that the model Midili was more accurate with Af: 1.39, Bf: 1.33, RMSE: 0.01%, and SEP: 5.34. However, the use of the Model Midilli is not appropriate for purposes of control process due to need four tuning parameters. With the performance indicators used in this paper, the Page model showed similar results with only two parameters. It is concluded that the best correlation between the experimental and estimated data is given by the Page’s model.
Keywords: Drying, models, jackfruit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24209669 A Survey of Access Control Schemes in Wireless Sensor Networks
Authors: Youssou Faye, Ibrahima Niang, Thomas Noel
Abstract:
Access control is a critical security service in Wire- less Sensor Networks (WSNs). To prevent malicious nodes from joining the sensor network, access control is required. On one hand, WSN must be able to authorize and grant users the right to access to the network. On the other hand, WSN must organize data collected by sensors in such a way that an unauthorized entity (the adversary) cannot make arbitrary queries. This restricts the network access only to eligible users and sensor nodes, while queries from outsiders will not be answered or forwarded by nodes. In this paper we presentee different access control schemes so as to ?nd out their objectives, provision, communication complexity, limits, etc. Using the node density parameter, we also provide a comparison of these proposed access control algorithms based on the network topology which can be flat or hierarchical.Keywords: Access Control, Authentication, Key Management, Wireless Sensor Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26549668 Chaos-based Secure Communication via Continuous Variable Structure Control
Authors: Cheng-Fang Huang, Meei-Ling Hung, Teh-Lu Liao, Her-Terng Yau, Jun-Juh Yan
Abstract:
The design of chaos-based secure communication via synchronized modified Chua-s systems is investigated in this paper. A continuous control law is proposed to ensure synchronization of the master and slave modified Chua-s systems by using the variable structure control technique. Particularly, the concept of extended systems is introduced such that a continuous control input is obtained to avoid chattering phenomenon. Then, it becomes possible to ensure that the message signal embedded in the transmitter can be recovered in the receiver.Keywords: Chaos, Secure communication, Synchronization, Variable structure control (VSC)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14339667 Comparison between LQR and ANN Active Anti-Roll Control of a Single Unit Heavy Vehicle
Authors: Babesse Saad, Ameddah Djameleddine
Abstract:
In this paper, a learning algorithm using neuronal networks to improve the roll stability and prevent the rollover in a single unit heavy vehicle is proposed. First, LQR control to keep balanced normalized rollovers, between front and rear axles, below the unity, then a data collected from this controller is used as a training basis of a neuronal regulator. The ANN controller is thereafter applied for the nonlinear side force model, and gives satisfactory results than the LQR one.Keywords: Rollover, single unit heavy vehicle, neural networks, nonlinear side force.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10429666 Simulation of Inverter Fed Induction Motor Drive with LabVIEW
Authors: R. Gunabalan, S. Immanuel Prabakaran, J. Reegan, S. Ganesh
Abstract:
This paper describes a software approach for modeling inverter fed induction motor drive using Laboratory Virtual Instrument Engineering Workbench (LabVIEW). The reason behind the selection of LabVIEW software is because of its strong graphical interface, flexibility of its programming language combined with built-in tools designed specifically for test, measurement and control. LabVIEW is generally used in most of the applications for data acquisition, test and control. In this paper, inverter and induction motor are modeled using LabVIEW toolkits. Simulation results are presented and are validated.
Keywords: Induction motor, LabVIEW, State model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 85729665 Adaptive Kaman Filter for Fault Diagnosis of Linear Parameter-Varying Systems
Authors: Rajamani Doraiswami, Lahouari Cheded
Abstract:
Fault diagnosis of Linear Parameter-Varying (LPV) system using an adaptive Kalman filter is proposed. The LPV model is comprised of scheduling parameters, and the emulator parameters. The scheduling parameters are chosen such that they are capable of tracking variations in the system model as a result of changes in the operating regimes. The emulator parameters, on the other hand, simulate variations in the subsystems during the identification phase and have negligible effect during the operational phase. The nominal model and the influence vectors, which are the gradient of the feature vector respect to the emulator parameters, are identified off-line from a number of emulator parameter perturbed experiments. A Kalman filter is designed using the identified nominal model. As the system varies, the Kalman filter model is adapted using the scheduling variables. The residual is employed for fault diagnosis. The proposed scheme is successfully evaluated on simulated system as well as on a physical process control system.Keywords: Keywords—Identification, linear parameter-varying systems, least-squares estimation, fault diagnosis, Kalman filter, emulators
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12999664 Behavior Model Mapping and Transformation using Model-Driven Architecture
Authors: Mohammed Abdalla Osman Mukhtar, Azween Abdullah, Alan Giffin Downe
Abstract:
Model mapping and transformation are important processes in high level system abstractions, and form the cornerstone of model-driven architecture (MDA) techniques. Considerable research in this field has devoted attention to static system abstraction, despite the fact that most systems are dynamic with high frequency changes in behavior. In this paper we provide an overview of work that has been done with regard to behavior model mapping and transformation, based on: (1) the completeness of the platform independent model (PIM); (2) semantics of behavioral models; (3) languages supporting behavior model transformation processes; and (4) an evaluation of model composition to effect the best approach to describing large systems with high complexity.
Keywords: MDA; PIM, PSM, QVT, Model Transformation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17609663 Robust Heart Sounds Segmentation Based on the Variation of the Phonocardiogram Curve Length
Authors: Mecheri Zeid Belmecheri, Maamar Ahfir, Izzet Kale
Abstract:
Automatic cardiac auscultation is still a subject of research in order to establish an objective diagnosis. Recorded heart sounds as Phonocardiogram (PCG) signals can be used for automatic segmentation into components that have clinical meanings. These are the first sound, S1, the second sound, S2, and the systolic and diastolic components, respectively. In this paper, an automatic method is proposed for the robust segmentation of heart sounds. This method is based on calculating an intermediate sawtooth-shaped signal from the length variation of the recorded PCG signal in the time domain and, using its positive derivative function that is a binary signal in training a Recurrent Neural Network (RNN). Results obtained in the context of a large database of recorded PCGs with their simultaneously recorded Electrocardiograms (ECGs) from different patients in clinical settings, including normal and abnormal subjects, show on average a segmentation testing performance average of 76% sensitivity and 94% specificity.
Keywords: Heart sounds, PCG segmentation, event detection, Recurrent Neural Networks, PCG curve length.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3209662 The Effect of Drug Prevention Programme Based On Cognitive-Behavioral Therapy (Cbt) and Multidimensional Self Concept Module towards Resiliency and Aggression among At-Risk Youth in Malaysia
Authors: Mohammad Aziz Shah Mohamed Arip, Aslina Ahmad, Fauziah Mohd Sa'ad, Samsiah Mohd Jais, Syed Sofian Syed Salim
Abstract:
This experimental study evaluates the effect of using Cognitive-Behavioral Therapy (CBT) and Multidimensional Self- Concept Model (MSCM) in a drug prevention programme to increase resiliency and reduce aggression among at-risk youth in Malaysia. A number of 60 (N=60) university students who were at-risk of taking drugs were involved in this study. Participants were identified with self-rating scales, Adolescent Resilience Attitude Scale (ARAS) and Aggression Questionnaire. Based on the mean score of these instruments, the participants were divided into the treatment group, and the control group. Data were analyzed using t-test. The finding showed that the mean score of resiliency was increased in the treatment group compared to the control group. It also shows that the mean score of aggression was reduced in the treatment group compared to the control group. Drug Prevention Programme was found to help in enhancing resiliency and reducing aggression among participants in the treatment group compared to the controlled group. Implications were given regarding the preventive actions on drug abuse among youth in Malaysia.
Keywords: Drug Prevention Programme, Cognitive-Behavioral Therapy (CBT), Multidimensional Self Concept Model (MSCM), resiliency, aggression, at-risk youth.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27899661 A Novel Digital Watermarking Technique Basedon ISB (Intermediate Significant Bit)
Authors: Akram M. Zeki, Azizah A. Manaf
Abstract:
Least Significant Bit (LSB) technique is the earliest developed technique in watermarking and it is also the most simple, direct and common technique. It essentially involves embedding the watermark by replacing the least significant bit of the image data with a bit of the watermark data. The disadvantage of LSB is that it is not robust against attacks. In this study intermediate significant bit (ISB) has been used in order to improve the robustness of the watermarking system. The aim of this model is to replace the watermarked image pixels by new pixels that can protect the watermark data against attacks and at the same time keeping the new pixels very close to the original pixels in order to protect the quality of watermarked image. The technique is based on testing the value of the watermark pixel according to the range of each bit-plane.Keywords: Watermarking, LSB, ISB, Robustness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17079660 Space Vector Pulse Width Modulation Technique Based Design and Simulation of a Three-Phase Voltage Source Converter Systems
Authors: Farhan Beg
Abstract:
A Space Vector based Pulse Width Modulation control technique for the three-phase PWM converter is proposed in this paper. The proposed control scheme is based on a synchronous reference frame model. High performance and efficiency is obtained with regards to the DC bus voltage and the power factor considerations of the PWM rectifier thus leading to low losses. MATLAB/SIMULINK are used as a platform for the simulations and a SIMULINK model is presented in the paper. The results show that the proposed model demonstrates better performance and properties compared to the traditional SPWM method and the method improves the dynamic performance of the closed loop drastically. For the Space Vector based Pulse Width Modulation, Sine signal is the reference waveform and triangle waveform is the carrier waveform. When the value sine signal is large than triangle signal, the pulse will start produce to high. And then when the triangular signals higher than sine signal, the pulse will come to low. SPWM output will changed by changing the value of the modulation index and frequency used in this system to produce more pulse width. The more pulse width produced, the output voltage will have lower harmonics contents and the resolution increase.
Keywords: Power Factor, SVPWM, PWM rectifier, SPWM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40229659 Freighter Aircraft Selection Using Entropic Programming for Multiple Criteria Decision Making Analysis
Authors: C. Ardil
Abstract:
This paper proposes entropic programming for the freighter aircraft selection problem using the multiple criteria decision analysis method. The study aims to propose a systematic and comprehensive framework by focusing on the perspective of freighter aircraft selection. In order to achieve this goal, an integrated entropic programming approach was proposed to evaluate and rank alternatives. The decision criteria and aircraft alternatives were identified from the research data analysis. The objective criteria weights were determined by the mean weight method and the standard deviation method. The proposed entropic programming model was applied to a practical decision problem for evaluating and selecting freighter aircraft. The proposed entropic programming technique gives robust, reliable, and efficient results in modeling decision making analysis problems. As a result of entropic programming analysis, Boeing B747-8F, a freighter aircraft alternative ( a3), was chosen as the most suitable freighter aircraft candidate.
Keywords: entropic programming, additive weighted model, multiple criteria decision making analysis, MCDMA, TOPSIS, aircraft selection, freighter aircraft, Boeing B747-8F, Boeing B777F, Airbus A350F
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5489658 Vector Control Using Series Iron Loss Model of Induction, Motors and Power Loss Minimization
Authors: Kheldoun Aissa, Khodja Djalal Eddine
Abstract:
The iron loss is a source of detuning in vector controlled induction motor drives if the classical rotor vector controller is used for decoupling. In fact, the field orientation will not be satisfied and the output torque will not truck the reference torque mostly used by Loss Model Controllers (LMCs). In addition, this component of loss, among others, may be excessive if the vector controlled induction motor is driving light loads. In this paper, the series iron loss model is used to develop a vector controller immune to iron loss effect and then an LMC to minimize the total power loss using the torque generated by the speed controller.Keywords: Field Oriented Controller, Induction Motor, Loss ModelController, Series Iron Loss.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27019657 Genetic Algorithm based Optimization approach for MR Dampers Fuzzy Modeling
Authors: Behnam Mehrkian, Arash Bahar, Ali Chaibakhsh
Abstract:
Magneto-rheological (MR) fluid damper is a semiactive control device that has recently received more attention by the vibration control community. But inherent hysteretic and highly nonlinear dynamics of MR fluid damper is one of the challenging aspects to employ its unique characteristics. The combination of artificial neural network (ANN) and fuzzy logic system (FLS) have been used to imitate more precisely the behavior of this device. However, the derivative-based nature of adaptive networks causes some deficiencies. Therefore, in this paper, a novel approach that employ genetic algorithm, as a free-derivative algorithm, to enhance the capability of fuzzy systems, is proposed. The proposed method used to model MR damper. The results will be compared with adaptive neuro-fuzzy inference system (ANFIS) model, which is one of the well-known approaches in soft computing framework, and two best parametric models of MR damper. Data are generated based on benchmark program by applying a number of famous earthquake records.Keywords: Benchmark program, earthquake record filtering, fuzzy logic, genetic algorithm, MR damper.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21159656 Simulation of Obstacle Avoidance for Multiple Autonomous Vehicles in a Dynamic Environment Using Q-Learning
Authors: Andreas D. Jansson
Abstract:
The availability of inexpensive, yet competent hardware allows for increased level of automation and self-optimization in the context of Industry 4.0. However, such agents require high quality information about their surroundings along with a robust strategy for collision avoidance, as they may cause expensive damage to equipment or other agents otherwise. Manually defining a strategy to cover all possibilities is both time-consuming and counter-productive given the capabilities of modern hardware. This paper explores the idea of a model-free self-optimizing obstacle avoidance strategy for multiple autonomous agents in a simulated dynamic environment using the Q-learning algorithm.Keywords: Autonomous vehicles, industry 4.0, multi-agent system, obstacle avoidance, Q-learning, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5129655 A Robust Optimization Method for Service Quality Improvement in Health Care Systems under Budget Uncertainty
Authors: H. Ashrafi, S. Ebrahimi, H. Kamalzadeh
Abstract:
With the development of business competition, it is important for healthcare providers to improve their service qualities. In order to improve service quality of a clinic, four important dimensions are defined: tangibles, responsiveness, empathy, and reliability. Moreover, there are several service stages in hospitals such as financial screening and examination. One of the most challenging limitations for improving service quality is budget which impressively affects the service quality. In this paper, we present an approach to address budget uncertainty and provide guidelines for service resource allocation. In this paper, a service quality improvement approach is proposed which can be adopted to multistage service processes to improve service quality, while controlling the costs. A multi-objective function based on the importance of each area and dimension is defined to link operational variables to service quality dimensions. The results demonstrate that our approach is not ultra-conservative and it shows the actual condition very well. Moreover, it is shown that different strategies can affect the number of employees in different stages.
Keywords: Service quality assessment, healthcare resource allocation, robust optimization, budget uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11169654 Novel Hybrid Method for Gene Selection and Cancer Prediction
Authors: Liping Jing, Michael K. Ng, Tieyong Zeng
Abstract:
Microarray data profiles gene expression on a whole genome scale, therefore, it provides a good way to study associations between gene expression and occurrence or progression of cancer. More and more researchers realized that microarray data is helpful to predict cancer sample. However, the high dimension of gene expressions is much larger than the sample size, which makes this task very difficult. Therefore, how to identify the significant genes causing cancer becomes emergency and also a hot and hard research topic. Many feature selection algorithms have been proposed in the past focusing on improving cancer predictive accuracy at the expense of ignoring the correlations between the features. In this work, a novel framework (named by SGS) is presented for stable gene selection and efficient cancer prediction . The proposed framework first performs clustering algorithm to find the gene groups where genes in each group have higher correlation coefficient, and then selects the significant genes in each group with Bayesian Lasso and important gene groups with group Lasso, and finally builds prediction model based on the shrinkage gene space with efficient classification algorithm (such as, SVM, 1NN, Regression and etc.). Experiment results on real world data show that the proposed framework often outperforms the existing feature selection and prediction methods, say SAM, IG and Lasso-type prediction model.Keywords: Gene Selection, Cancer Prediction, Lasso, Clustering, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2041