The Use of Performance Indicators for Evaluating Models of Drying Jackfruit (Artocarpus heterophyllus L.): Page, Midilli, and Lewis
Authors: D. S. C. Soares, D. G. Costa, J. T. S., A. K. S. Abud, T. P. Nunes, A. M. Oliveira Júnior
Abstract:
Mathematical models of drying are used for the purpose of understanding the drying process in order to determine important parameters for design and operation of the dryer. The jackfruit is a fruit with high consumption in the Northeast and perishability. It is necessary to apply techniques to improve their conservation for longer in order to diffuse it by regions with low consumption. This study aimed to analyze several mathematical models (Page, Lewis, and Midilli) to indicate one that best fits the conditions of convective drying process using performance indicators associated with each model: accuracy (Af) and noise factors (Bf), mean square error (RMSE) and standard error of prediction (% SEP). Jackfruit drying was carried out in convective type tray dryer at a temperature of 50°C for 9 hours. It is observed that the model Midili was more accurate with Af: 1.39, Bf: 1.33, RMSE: 0.01%, and SEP: 5.34. However, the use of the Model Midilli is not appropriate for purposes of control process due to need four tuning parameters. With the performance indicators used in this paper, the Page model showed similar results with only two parameters. It is concluded that the best correlation between the experimental and estimated data is given by the Page’s model.
Keywords: Drying, models, jackfruit.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1091082
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2426References:
[1] M. S. Madruga, F. S. M. Albuquerque, I. R. A. Silva, D. S. Amaral, M. Magnani, V. Q. Neto., "Chemical, Morphological and Functional Properties of Brazilian Jackfruit (Artocarpus heterophyllus L.) Seeds starch”, Food Chemistry, v. 143, p. 440-445, 2014.
[2] Encyclopedia of Foods: A Guide to Healthy Nutrition. San Diego. p. 153–209, 2002. Available:
[3] A. Saxena, A. S. Bawa, P. S. Raju, "Use of Modified Atmosphere Packaging to Extend Shelf-Life of Minimally Processed Jackfruit (Artocarpus heterophyllus L.) Bulbs”, Journal of Food Engineering, v. 87, p. 455-466, 2008.
[4] W. L. Kerr, "Food Drying and Evaporation Processing Operations”. Handbook of Farm, Dairy, and Food Machinery, Myer Kutz, Norwich, NY. p. 303–340, 2007. Available:
[5] H. O. Menges, C. Ertekin, "Mathematical Modeling of Thin Layer Drying of Golden Apples”, Journal of Food Engineering, v. 77, p. 119-125, 2006.
[6] P. C. Panchariya, D. Popovic, A. L. Sharma, "Thin-Layer Modelling of Black Tea Drying Process”, Journal of Food Engineering, v. 52, p. 349-357, 2002.
[7] R. C. Reis, S. B. Ludimilla, M. L. Lima, J. S. Reis, I. A. Devilla, D. P. R. Ascheri, "Modelagem Matemática da Secagem da Pimenta Cumari do Pará”, Revista Brasileira de Engenharia Agrícola e Ambiental, v.15, p. 347-353, 2011.
[8] T. Ross, "Índices for Performance Evaluation of Predictive Models in Food Microbiology”, Journal of Applied Bacteriology, v. 81, p. 501-508, 1996.
[9] N. Shilton, "Drying: Chemical Changes”. Encyclopedia of Food Sciences and Nutrition. Issue 2. Editor-in-Chief: Benjamin Caballero, Oxford. P. 1947–1950, 2003, Available:
[10] S. Simal, A. Femenia, M. C. Garau, C. Rosselló, "Use of Exponential, Page’s and Diffusional Models to Simulate the Drying Kinetics of Kiwi Fruit”, Journal of Food Engineering. v. 66. p. 323–328, 2005.
[11] D. B. Brooker, F. W. Bakker-Arkema, C. W. Hall., "Drying and Storage of Grains and Oilseeds”. New York: van Nostrand Reinhold, 1992.
[12] T. Gunhan, E. Hancioglu, A. Hepbasli, "Mathematical Modelling of Drying of Bay Leaves”, Energy Conversion and Management, v 46, p. 1667-1679, 2005.
[13] P. C. Correa, G. H. H. Oliveira, F. M. Botelho, A. L. D. Goneli, F. M. Carvalho, "Modelagem Matemática e Determinação das Propriedades Termodinâmicas do Café (Coffea arabica L.) Durante o Processo de Secagem”, Revista Ceres, v. 57, p. 595-601, 2010.