
Novel Hybrid Method for Gene Selection and
Cancer Prediction

Liping Jing, Michael K. Ng, and Tieyong Zeng,

Abstract—Microarray data profiles gene expression on a whole
genome scale, therefore, it provides a good way to study associations
between gene expression and occurrence or progression of cancer.
More and more researchers realized that microarray data is helpful
to predict cancer sample. However, the high dimension of gene
expressions is much larger than the sample size, which makes this
task very difficult. Therefore, how to identify the significant genes
causing cancer becomes emergency and also a hot and hard research
topic. Many feature selection algorithms have been proposed in
the past focusing on improving cancer predictive accuracy at the
expense of ignoring the correlations between the features. In this
work, a novel framework (named by SGS) is presented for stable gene
selection and efficient cancer prediction . The proposed framework
first performs clustering algorithm to find the gene groups where
genes in each group have higher correlation coefficient, and then
selects the significant genes in each group with Bayesian Lasso and
important gene groups with group Lasso, and finally builds prediction
model based on the shrinkage gene space with efficient classification
algorithm (such as, SVM, 1NN, Regression and etc.). Experiment
results on real world data show that the proposed framework often
outperforms the existing feature selection and prediction methods,
say SAM, IG and Lasso-type prediction model.

Keywords—Gene Selection, Cancer Prediction, Lasso, Clustering,
Classification.

I. INTRODUCTION

CANCER is a class of diseases for which a group of cells
undergoes uncontrolled growth. It causes destruction of

adjacent tissues and sometimes spreads to other locations
in the body via lymph or blood. American Cancer Society
stated that about 7.6 million people died from cancer in the
world during 2007, and nearly all cancers are caused by
abnormalities in the genetic material of the transformed cells.
Various research efforts based on surgery, chemotherapy and
radiotherapy, are being made to fight against cancer. Recently,
more and more researchers began to study gene expression
profiles obtained by microarray technology. Microarray data
profiles gene expression on a whole genome scale and provides
a good way to study associations between gene expression
and occurrence or progression of cancer [2]. It has been
used extensively in variety of applications, ranging from basic
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molecular biology research, through testing drug treatment
effectiveness, and up to clinical diagnosis of cancer patients
based on their gene expression profiles. Thus, microarray data
analysis has a profound impact on cancer research [1].

In microarray data analysis, there is a big challenging
problem, the dimension of gene expressions is much larger
than the sample size, which makes it be a hot and hard
research topic [23], [24]. In order to solve this problem, feature
selection [3], a technique of selecting a minimum subset of
original features for best predictive accuracy, has attracted
strong interest in the past several decades for text mining,
image processing and etc.. Among them, researchers made
use of feature redundancy techniques [4] which minimize
redundancy and maximize relevance among selected features
for classification. In the field of bioinformatics, a large amount
of efforts have also been made to identify relevant or impor-
tant genes that have influential effects on diseases including
varieties of cancers. For example, statistical approaches for
gene selection and predictive model building have been widely
studied and designed. Previously employed approaches include
the singular value decomposition [5], principal component
analysis [6], [7], partial least squares [8], sparse logistic
regression [12], [13], Lasso [9], [17], [46], support vector
machine [10], [11], information gain [28], fuzzy theory [25],
SAM [31] and etc. These approaches aim at improving the
cancer prediction accuracy by identifying the individual genes,
a small subset of genes or linear combinations of genes often
referred as super genes which can best explain the phenotype
variations.

In real cancer data, many different subsets of genes may
result in the same or similarly good sample class prediction
accuracy [14]. However, the above methods are not necessarily
reliable to identify such candidate genes for subsequent costly
biological validation, even though they are effective in cancer
sample prediction. There are two reasons causing such situa-
tion. One reason is the classic goal of gene selection methods,
which discards the genes relevant to the target concept but
highly correlated to the selected genes. Therefore, among a
set of highly correlated genes, different genes may be selected
under different settings of a selection algorithm. Recent work
has confirmed that the feature selection algorithms can obtain
different subsets of features under training data variations [15].
The other reason is the relatively small number of samples in
high-dimensional data.

In order to handle the above problem, Unger and Chor [16]
presented a linear separating method (named as LinSep) to find
all gene pairs such that the projection of all samples according
to each gene pair can be separated, which to the large extent
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identified all important genes for sample class prediction and
meanwhile considered the relationship between genes. LinSep
has to project the samples on all gene pairs and then select
the best gene pairs, thus it is computationally expensive. Yu
et al. [32] and Loscalzo et al. [33] proposed stable feature
selection approaches via dense and consensus feature groups,
DRAGS and CGS respectively. They firstly identify feature
groups where all features in each group are as much correlated
to each other as possible, and then apply the selection methods
on the feature group level where each group is treated as a
single entity. However, it is better that DRAGS and CGS used
more samples to effectively identify the feature groups firstly,
meanwhile, which adds the uncertainty of the final feature
selection results. Yuan and Lin [21] presented group Lasso
(named as grpLasso) to identify the important gene groups
where the covariates are partitioned into groups. DRAGS,
CGS, grpLasso are able to find the important correlated gene
groups but they can not identify the important individual genes
in each gene group, i.e., they can not automatically determine
the group size.

In this paper, a hybrid strategy was presented to effectively
select important genes from microarray data and accurately
classify the cancer samples. The proposed method combines
Clustering approach, the Bayesian Lasso approach, the group
Lasso approach and Classification approach. These four ap-
proaches have essential connections. Here, the clustering ap-
proach provides the gene group label based on genes’ correla-
tion coefficients to the later group Lasso, the Bayesian Lasso
method identifies a stable subset of important genes for each
group to re-represent the cancer data in the shrinkage space,
the group Lasso selects the important gene groups based on the
obtained group labels and the shrinkage data representation,
and finally the classification approach builds a classifying
model to predict cancer data based on the important shrinkage
space. As these methods are related to each other, their
integration is consistence and thus expected to provide efficient
results. A series of experimental results have shown that the
proposed strategy performs well in real applications. The rest
of our paper is organized as follows. In Section 2, some related
and typical gene selection methods in bioinformatics will be
given. Section 3 will describe the proposed hybrid framework.
Section 4, a series of experimental results will be shown and
discussed. A conclusion will be given in Section 5.

II. RELATED WORKS

Gene selection is necessary, important and difficulty for
cancer identification [23]–[25], therefore, is a hot research
topic. So far, there are many available statistical approaches for
gene selection and predictive model building which consider
the property of microarray data, the dimension is much larger
than the sample size. In this section, several popular methods
for gene selection in microarray data analysis will be briefly
reviewed, such as Information gain [28], SAM mehtod [31]
and Lasso-type methods [17], [18], [21], [46].

Information gain (IG) is a feature-goodness criterion in the
field of machine learning [29]. Recently, it was used in text
mining [26], [27], and predictive gene identification [28]. IG

measures the amount of information that presence or absence
of a particular gene contains about the category of the sample.

𝐼𝐺(𝑖) =
∑

𝑐∈{𝑐1,𝑐2}

∑

𝑔∈{𝑔𝑖,𝑔𝑖}
𝑃 (𝑔, 𝑐)× 𝑙𝑜𝑔

𝑃 (𝑔, 𝑐)

𝑃 (𝑔)× 𝑃 (𝑐)
(1)

where 𝑃 (𝑔), 𝑃 (𝑐), 𝑃 (𝑔, 𝑐) measure the probability of a gene, a
tissue category (cancer or normal), and both a gene and a tissue
category appear in the whole cancer sample set respectively.
The IG measures the number of bits of information obtained
for category prediction by knowing the presence or absence
of a gene in a sample.

Tusher et al. proposed a method to analyze the significance
of genes for ionizing radiation response (SAM method [31]).
The relative difference of each gene is defined as:

𝑆𝐴𝑀(𝑖) =
𝜇1(𝑖)− 𝜇2(𝑖)

𝑠(𝑖) + 𝑠0
(2)

𝑠(𝑖) =

√√√⎷1/𝑛1 + 1/𝑛2

𝑛1 + 𝑛2 − 2
{

𝑛1∑
𝑗=1

[𝑥1𝑗(𝑖)− 𝜇1(𝑖)]2 +

𝑛2∑
𝑗=1

[𝑥2𝑗(𝑖)− 𝜇2(𝑖)]2}

where 𝜇1(𝑖) and 𝜇2(𝑖) are the average levels of expression
for the 𝑖th gene in class 1 and 2 respectively. 𝑠(𝑖) is the
standard deviation of repeated expression measurements (or
the samples), called as gene-specific scatter. 𝑛1 and 𝑛2 are
the numbers of samples in class 1 and 2.

The above methods, IG and SAM, select genes according
to their corresponding score. The higher score, the more
important genes. In order to identify important genes, these
methods require a threshold to cut the whole gene sets and then
keep the genes with larger score. However, in real application,
it is hard to choice an appropriate threshold.

Recently, the least absolute shrinkage and selection oper-
ator (Lasso), a shrinkage method, has been widely used in
regression analysis for large models [17]. The Lasso procedure
can be interpreted as a Bayesian posterior mode estimate
when assigning an independent double-exponential prior to
each coefficient [17], [21], [46]. Owing to the nature of the
𝐿1-penalty, the lasso does both continuous shrinkage and
automatic variable selection simultaneously. Standard Lasso
approach carries out variable selection at the individual gene
level and takes the form

𝐿𝑎𝑠𝑠𝑜(𝜆, 𝛽) = ∣∣𝑦 −𝑋𝛽∣∣22 + 𝜆

𝑝∑

𝑗=1

∣𝛽𝑗 ∣1. (3)

Although the Lasso penalty leads to sparse models, it does
have two serious drawbacks. Firstly, Lasso is instable when the
data is high-dimensional. In order to deal with this problem,
several researchers proposed new Lasso-type estimators based
on Tibshirani’ analysis result [17] that Lasso can be interpreted
as posterior mode estimates when the regression parame-
ters have independent and identical Laplace (i.e., double-
exponential) priors. Zou [19] proposed an adaptive Lasso
estimator by introducing adaptive data-driven weights and
Laplace-like priors. Park and Casella [46] adopted Bayesian
posterior mode estimate and marginal maximum likelihood
to automatically find the best parameter. Zou and Hastie
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[18] proposed an elastic net estimator (enLasso) to select the
correlated variables as follows.

𝑒𝑛𝐿𝑎𝑠𝑠𝑜(𝜆, 𝜆1, 𝛽) = ∣∣𝑦−𝑋𝛽∣∣22+𝜆

𝑝∑

𝑗=1

∣𝛽𝑗 ∣1+𝜆1

𝑝∑

𝑗=1

∣∣𝛽𝑗 ∣∣22
(4)

The 𝑙1-norm part of Eq.(4) performs automatic variable selec-
tion, while the 𝑙2-norm part stabilizes the solution paths and,
hence, improves the prediction. However, parameter 𝜆1 for 𝑙2-
norm penalty makes elastic net become hard control, so does
adaptive elastic net estimator [20].

Secondly, Lasso does not contain any prior information
about, e.g., possible groups of covariates that one may wish to
select them jointly. Several researchers have recently proposed
new penalties to enforce the estimation of models with specific
sparsity patterns. Yuan and Lin [21] presented group lasso to
deal with the case where the covariates are partitioned into
groups. The group lasso [21], [22] (referred as grpLasso) is
designed for selecting groups of covariates by optimizing the
following estimator

𝑔𝑟𝑝𝐿𝑎𝑠𝑠𝑜(𝜆, 𝛽) = ∣∣𝑦 −𝑋𝛽∣∣22 + 𝜆
𝐺∑

𝑔=1

∣∣𝛽𝐼𝑔 ∣∣2, (5)

where 𝐼𝑔 is the index set belonging to the 𝑔th group of genes,
𝑔 = 1, . . . , 𝐺. This penalty can be viewed as an intermediate
between 𝑙1 and 𝑙2 type penalty. It has the attractive property
that it can select gene at the group level and is invariant under
(groupwise) orthogonal transformations like ridge regression.
Direct application of the grpLasso can identify important gene
groups. However, it is not capable of selecting important genes
within the selected groups.

III. NOVEL FRAMEWORK FOR GENE SELECTION AND
CANCER PREDICTION

In this section, a novel framework for both selecting
important genes and building cancer prediction model will
be presented. The proposed framework effectively combined
several data mining techniques: clustering algorithms based on
Pearson coefficient, sparse feature selection methods, covari-
ates selection methods and classification algorithms, as shown
in Fig.1. The new framework adopted the combination of these
four techniques, so that kept the merits of existing algorithms
(such as, BLasso for sparse individual feature selection and
Group Lasso for covariates identification) and filled up the
drawbacks of them (say, BLasso can not identify covariates,
while Group Lasso can not select important genes in each
group [45]).

In the proposed framework, partitioning around medoids
(PAM) [42] clustering algorithm was adopted to identify the
gene groups. PAM represent each cluster with one of its own
object, i.e., the representative object is a centrotype. PAM
is more robust than 𝑘Means because it minimizes a sum of
dissimilarities instead of a sum of squared Euclidean distances,
which is one reason PAM algorithm was used here. The
other reason is that PAM operates on the dissimilarity matrix
of the given cancer gene expression data, in this case, the
dissimilarity between two genes (𝑥 and 𝑦) is calculated with

Fig. 1. The framework for both important gene selection and prediction
model building
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Fig. 2. Clustering validity index (Weighted inter-intra index) as function of
number of clusters for a) Colon data set and b) Leukaemia data set

the Pearson Correlation Coefficients (as shown in Eq.(6) which
is a popular and efficient similarity metric in gene expression
profiles analysis [44])

𝑟(𝑥, 𝑦) =

∑𝑛
𝑖=1(𝑥𝑖 − �̄�)(𝑦𝑖 − 𝑦)√∑𝑛

𝑖=1(𝑥𝑖 − �̄�)2
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦)2
. (6)

The dissimilarity between 𝑥 and 𝑦 is defined by 𝑑(𝑥, 𝑦) =

1− 1+𝑟(𝑥,𝑦)
2 , where 𝑛 is the number of samples in the cancer

data. Meanwhile, Pearson coefficient will be helpful for later
grpLasso step of our framework.

However, like 𝑘Means, PAM required the number of clusters
𝑘 as the input parameter. Here, a big range of 𝑘 was tested
and the best 𝑘 was identified with weighted inter-intra index
(𝑊𝑡𝑒𝑟𝑡𝑟𝑎) [43].

𝑊𝑡𝑒𝑟𝑡𝑟𝑎 = (1−2𝑘

𝑝
)(1−

∑𝑘
𝑖=1

𝑝𝑖

𝑝−𝑝𝑖

∑𝑘
𝑗=1 𝑝𝑗𝑖𝑛𝑡𝑒𝑟(𝑖, 𝑗)

∑𝑘
𝑖=1 𝑝𝑖𝑖𝑛𝑡𝑟𝑎(𝑖)

(7)

where

𝑖𝑛𝑡𝑒𝑟(𝑖, 𝑗) =
1

𝑝𝑖𝑝𝑗

∑

𝑥∈𝐶𝑖,𝑦∈𝐶𝑗

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥, 𝑦)

and

𝑖𝑛𝑡𝑟𝑎(𝑖) =
2

𝑝𝑖(𝑝𝑖 − 1)

∑

𝑥,𝑦∈𝐶𝑖,𝑥∕=𝑦

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥, 𝑦)

TABLE I
GENE CLUSTERS SIZE OF COLON DATA SET

ClusterID 1 2 3 4 5 6
♯Genes 227 369 221 331 238 614
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Fig. 3. Feature weights obtained by Lasso for each gene group cluster on
Colon Data Set.

𝑝 is the number of total genes, 𝑝𝑖 is the number of genes
in the 𝑖th cluster, 𝑖𝑛𝑡𝑒𝑟(𝑖, 𝑗) is the similarity between the 𝑖th
and the 𝑗th clusters, while, 𝑖𝑛𝑡𝑟𝑎(𝑖) is the similarity in the 𝑖th
cluster. In order to find a desirable clustering result, with high
overall cluster quality (i.e., maximizing intra-cluster similarity
and minimizing inter-cluster similarity) and a small number of
clusters 𝑘, the clustering result with the highest 𝑊𝑡𝑒𝑟𝑡𝑟𝑎 value
was adopted. In other words, PAM with Pearson Correlation
Coefficient and 𝑊𝑡𝑒𝑟𝑡𝑟𝑎 index can identify the gene groups
where the genes in each group are covariates because they
have higher correlation coefficient (i.e., similarity).

Let us take a real cancer data set, Colon data including
2000 genes and 62 samples [34], as an example to show the
performance of PAM and 𝑊𝑡𝑒𝑟𝑡𝑟𝑎. Fig.2 gives the clustering
validation results (k from 2 to 100) of PAM on Colon data set.
The best number of gene groups in Colon data is 6 according
to Fig.2. Table I gives the cluster sizes at the best clustering
result on Colon data set. The clustering step provides the gene
group label to supervise the grpLasso step in our proposed
framework.

So far, group Lasso [21] can be used to identify the impor-
tant gene clusters for cancer prediction with the above obtained
gene cluster labels, but grpLasso has bad ability to select
the important individual genes [45]. Therefore, Lasso [17], a
technique encouraging sparsity in individual coefficients based
on a small set of samples, was applied on each gene group
to identify a small subset of informative genes, called marker
genes, which discriminate between the tumor and the normal
tissues, or between different kinds of tumor tissues. Recall the
above Colon example, six gene groups were obtained, which
means that Lasso would be applied six times and once for
each group. Considering the difficulty of parameter selecting in
Lasso, here, Bayesian Lasso (BLasso) [46] was adopted which
can approximate the ideal updated penalty parameter 𝜆 with
marginal maximum likelihood during the iteration process.
Fig.3 lists the gene (variable) coefficients distribution for each
Colon gene group, where the genes with non-zero coefficient

are marker genes, i.e., important to discriminate the cancer
and normal tissue samples.

Once the important genes are identified in each group, all
tissue samples can be represented with these important genes
and their group labels. For example, the genes are clustered
into 𝐾 groups by PAM and 𝑊𝑡𝑒𝑟𝑡𝑟𝑎 index, and the 𝑘th group
has 𝑚𝑘 important genes identified by BLasso, then the tissue
sample 𝑋𝑖 will be represented as a vector with 𝐷 =

∑𝐾
𝑘=1 𝑚𝑘

dimensions like 𝑋𝑖 = {𝑓𝑘1, 𝑓𝑘2, ⋅ ⋅ ⋅ , 𝑓𝑘𝑚𝑘
∣1 ≤ 𝑘 ≤ 𝐾}.

Finally, the cancer data set is re-represented as a 𝑛-by-𝐷
matrix. In the new representation model, the genes in each
group are more similar than the genes in different group.
Among them, the similarity between genes are calculated by
the Pearson correlation coefficient metric, therefore, genes in
the same group are covariates in the whole data set. Recall
the theory of group Lasso (Eq.(5)), identifying the group of
covariates, grpLasso can be applied on the new cancer data
representation under the supervision of group labels.

As we know, the accuracy of the classification model
depends strongly on how the input data is represented. Typ-
ically, the input data is transformed into a feature vector
containing a number of features that are descriptive of the
data. Because of the curse of dimensionality, the number
of features should not be too large, but should be large
enough to accurately predict the output. In our proposed
hybrid framework for cancer prediction, the number of final
selected important genes (i.e., features) are not too large but
large enough to build the classification model, because these
genes are identified by an effective integrated method which
combines clustering, Bayesian Lasso and group Lasso. For
the classification models, support vector machine (SVM) [47]
𝑘-nearest neighbors (KNN) [48] and logistic regression [49]
were adopted. SVM is a popular and efficient linear classifier
by finding a hyperplane so that the distance from it to the
nearest data points on each side is maximized, especially,
for two-class cancer prediction case. KNN algorithm is the
simplest machine learning algorithm which classifies a data
point by a majority vote of its neighbors, in our case, 𝐾 was
set to be 1, i.e., the data is simply assigned to the class of
its nearest neighbor. Also, logistic regression can be used here
to predict the probability of occurrence of an event by fitting
data to a logistic curve. Actually, our framework can adopt
any classification algorithm in this step.

In the next Section, the proposed method will be applied on
the real cancer data sets and the experimental results will be
reported. The proposed method combines Clustering approach,
the Bayesian Lasso approach, the group Lasso approach and
Classification approach. These four approaches have important
connections. Indeed, the clustering approach provides the gene
group label based on their correlation coefficients to the later
group Lasso, the Bayesian Lasso method identifies a series of
important genes for each group to re-represent the cancer data
in the shrinkage space, the group Lasso selects the important
gene groups based on the obtained group labels and the
shrinkage data representation, and finally the classification ap-
proach builds a classifying model to predict cancer data based
on the important shrinkage space. The clustering algorithm
measures the correlation between features effectively, thus it
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is helpful for the group Lasso to select the import covariates.
The Bayesian Lasso effectively shrinks the sparsity of the
gene space, therefore, it is useful for the group Lasso and
classification model building. As these methods are related to
each other, their integration is consistence and is thus expected
to provide efficient results.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed hybrid framework was tested with the real
cancer data, Colon cancer data [34], Leukaemia data [30] and
breaset cancer data [35]. The colon cancer data describes the
expression of 2000 genes in 40 cancer and 22 normal tissue
samples, the aim being to construct a classifier capable of
distinguishing between cancer and normal tissues. The aim of
the leukaemia benchmark is to form a decision rule capable of
distinguishing between acute myeloid leukaemia (AML) and
acute lymphoblastic leukaemia (ALL). The data describes the
expression of 7129 genes in 47 ALL samples and 25 AML
samples. The breast cancer data set is consisted of 49 tumour
samples in 7129 genes. This data provides two functions. One
is to build a classifier to distinguish into estrogen receptor-
positive (ER+) tumour samples and estrogen receptor-negative
(ER-) ones, the other is to classify the tumor samples lymph
node-positive (LN+) and lymph node-negative (LN-).

For SAM and IG scoring methods, the number of genes
was selected same with the number of genes obtained by
SGS method, and applied SVM and 1NN classification al-
gorithms on the selected gene space. BLasso and grpLasso
were compared with the proposed framework in two ways.
One is using BLasso or grpLasso as the gene selection method
and then adopt SVM and 1NN to build the cancer prediction
model. For the whole data set, the best penalty parameter 𝜆
of BLasso was automatically determined during the iteration,
and the corresponding numbers of selected genes are 27 for
Colon, 71 for Leukaemia, 48 for Breast (LN) and 48 for Breast
(ER) respectively. The other way is directly running BLasso
and grpLasso to predict the samples with logistic regression
method, and their results were compared with the prediction
results obtained by the integrated method SGS and logistic
regression model.

Our proposed hybrid method identified that the best cluster
numbers are 6 for Colon, 54 for Leukaemia, 49 for Breast
(LN) and 54 for Breast (ER) respectively (for all data, set
k from 2 to 100). The number of selected genes are 20 for
Colon, 49 for Leukaemia, 33 for Breast (LN), and 36 for
Breast (ER). Table II and III show the classification accuracy
of the above four data sets, The first evaluation method (Table
II) is 10-fold validation on training data, and the second one
(Table III) is classification accuracy on test data. According to
the experimental results, the proposed hybrid gene selection
method (SGS) significantly outperforms the existing feature
selection methods BLasso, grpLasso, SAM and IG.

Meanwhile, the gene weights (for Leukemia data) and their
distribution were listed, where gene weights were obtained
by these three methods (SGS (Fig.4(a)), SAM (Fig.4(b)),
and IG (Fig.4(c)).) and the weights distribution between the
proposed SGS and the other two methods SAM (Fig.4(d))

and IG (Fig.4(e)). Fig.4(a) makes us conveniently select the
important genes with non-zero weights, however, SAM and IG
scoring methods have to predefine a threshold to choose the
significant genes. The comparison distributions between SGS
and SAM scores, and between SGS and IG scores indicate
that not all genes with higher SAM score or IG score have
higher SGS score. Meanwhile the selected genes by SGS
(as shown in Table V) were checked by the biologists and
they found that most of such genes are empirically useful
to determine ALL and AML, thus SGS methods are more
reasonable than SAM and IG to identify significant genes
for cancer prediction. The reason why SGS performs better
than BLasso and grpLasso is that SGS efficiently integrated
both of them and clustering algorithm, so that SGS keeps the
merits of BLasso and grpLasso and simultaneously filled up
their drawbacks. Furthermore, comparing with the prediction
accuracy 82.3% of BLogReg on Colon data [13], 93.1% of
BLogReg on Leukemia data [13], 81.9% of SLogReg on ER
Breast data [12], 92.1% of enLasso on Leukemia data [18], our
proposed hybrid framework also performs better than them.

Furthermore, the final selected genes were checked, espe-
cially for Colon data and Leukemia data, to confirm whether
the identified genes are related to the cancer samples.

Table IV shows the selected significant genes from Colon
cancer data. Among them, Gene Hsa.3016 is S-100P protein.
100P is well-known expressed in human cancers, including
breast, colon, prostate, and lung, therefore, its expression level
was correlated with resistance to chemotherapy. Similar to our
work, [36] also identified that Hsa.1039 and Hsa.627 were
associated with Colon cancers. Hsa.140 and Hsa.1737 were
also selected by [37], although the gene selection procedure
adopted there was different from the one used in the proposed
method. Gene Hsa.4621 has been shown to be significantly
correlated to colon tissues. Bolmont et al. [38] proved that
Human desmin gene (Hsa.8147) played an important role
in colon disease. Hsa.36689, Hsa.37937 and Hsa.2291 were
identified by [12] and the first two and Hsa.6814 were also
identified by [39]. Tristetraprolin (Hsa.1682) was examined to
have ability to regulate COX-2 which increases in colon tumor
microenvironment, that is, Hsa.1682 is observed during colon
tumorigenesis [40]. Hsa.8214 has been shown to be associ-
ated with tumor cell proliferation in general, while Hsa.696
was revealed to be related to small intestine, colon, testis,
and leukocytes by RT-PCR analysis. Meanwhile, researchers
revealed that Hsa.1454 acts as a negative regulator of the LEF-
1/beta-catenin transcription complex, thereby protecting cells
from development of cancer [41]. Estrogen sulfotransferase
(Hsa.42949) can inhibit competitively the activation of pro-
mutagenic estrogen metabolities into carcinogens, so that it
has protective effect for colon cancer.

Table V listed the important 49 genes for Leukemia data
identified by the proposed SGS method. Among them, 44
genes have been empirically proved to be discriminative genes
between ALL and AML [30]. For the other five genes M27830,
M11722, M12886, M14483 and X00437 , although there is
no exact biological experiments to show they can determine

1http://www.nextbio.com/b/search/ov/SERPINC1?type=feature
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TABLE II
COMPARISON OF CLASSIFICATION ACCURACY (% 10-FOLD VALIDATION ON ALL DATA) WITH DIFFERENT METHODS

SVM 1NN Regression
Dataset SGS BLasso grpLasso SAM IG SGS BLasso grpLasso SAM IG BLasso grpLasso SGS
Colon 90.5 87.1 87.1 88.7 87.1 85.5 88.7 85.5 82.3 85.5 88.7 87.1 83.8
Leukaemia 95.8 98.6 98.6 91.7 93.1 96.7 97.2 97.2 95.8 94.4 94.4 94.4 95.8
Breast (LN) 94.1 49.0 63.3 81.6 77.5 100 73.5 67.3 83.7 85.7 83.7 84.5 91.8
Breast (ER) 91.8 67.3 71.4 77.5 83.7 87.8 81.6 87.8 83.7 85.7 89.8 87.8 91.8

TABLE III
COMPARISON OF CLASSIFICATION ACCURACY (% 10-FOLD VALIDATION ON TESTING DATA) WITH DIFFERENT METHODS

SVM 1NN Regression
Dataset SGS BLasso grpLasso SAM IG SGS BLasso grpLasso SAM IG BLasso grpLasso SGS
Colon 90.5 90.5 90.5 90.5 85.7 90.5 85.7 90.5 71.4 85.7 90.5 90.5 95.2
Leukaemia 100 100 100 100 95.8 96.7 87.5 95.8 95.8 94.4 95.8 95.8 95.8
Breast (LN) 94.1 58.8 70.6 81.6 77.5 100 64.7 76.5 83.7 85.5 82.4 88.2 88.2
Breast (ER) 94.1 35.3 35.3 76.5 76.5 100 94.1 70.6 82.4 82.4 87.8 76.5 91.8
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Fig. 4. The gene weights obtained by different methods: a) the proposed SGS method, b) SAM method, c) Information gain method, and the distribution
d) between SGS weights and SAM weight, e) between SGS weight and IG weight

the difference between ALL and AML, our results can help
the biologist to design future lab experiments to confirm
the confidence of the relationship between gene and cancer
samples. As we know, when biologists choose gene candidates,
due to the difficulties intrinsic in the biological experiments,
it is not feasible for them to validate a large number of genes.
Therefore, our experimental results are meaningful.

V. CONCLUSIONS

A hybrid gene selection method was presented in our paper.
The hybrid method effectively integrated three techniques,
clustering, Baybesian Lasso and group Lasso, so that it can
identify both the important individual gens and their correlated
genes. The clustering algorithm based on Pearson coefficient
metric provides supervision information (e.g., group labels)
for group Lasso, and Bayesian Lasso extracted important
individual genes for each group, thus the final step, group
Lasso, can efficiently find the significant gene groups where
each group only contains the important correlated genes. Based

on this hybrid gene selection method, the original cancer data
is represented in the selected genes space, and then any classi-
fication algorithm (such as, SVM, 1NN, Regression and etc.)
can be applied to build the prediction model. Experimental
results on four cancer data sets have shown that our proposed
method (SGS) always performs better than the existing gene
selection methods, say, SAM, IG, Lasso-type.
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TABLE V
SIGNIFICANT GENES OF LEUKEMIA DATA SELECTED BY THE PROPOSED SGS METHOD

CI GeneID Gene Discription
Y00787 INTERLEUKIN-8 PRECURSOR
M80254 PEPTIDYL-PROLYL CIS-TRANS ISOMERASE, MITOCHONDRIAL PRECURSOR

16 L08246 INDUCED MYELOID LEUKEMIA CELL DIFFERENTIATION PROTEIN MCL1
M28130 Interleukin 8 (IL8) gene
M69043 MAJOR HISTOCOMPATIBILITY COMPLEX ENHANCER-BINDING PROTEIN MAD3
L47738 Inducible protein mRNA

19 U35451 Heterochromatin protein p25 mRNA
M13792 ADA Adenosine deaminase
M12886 TCRB T-cell receptor, beta cluster
M14483 PTMA gene extracted from Human prothymosin alpha mRNA
X00437 TCRB T-cell receptor, beta cluster
U05259 MB-1 gene

21 D26156 Transcriptional activator hSNF2b
U29175 Transcriptional activator hSNF2b
Y08612 RABAPTIN-5 protein
M27830 AFFX-M27830-5-at (endogenous control)
M11722 Terminal transferase mRNA
U22376 C-myb gene extracted from Human (c-myb) gene, complete primary cds, and five complete alternatively spliced cds

26 Z15115 TOP2B Topoisomerase (DNA) II beta (180kD)
X15949 IRF2 Interferon regulatory factor 2
Z69881 Adenosine triphosphatase, calcium
U50136 Leukotriene C4 synthase (LTC4S) gene

32 M84526 DF D component of complement (adipsin)
X17042 PRG1 Proteoglycan 1, secretory granule
U46751 Phosphotyrosine independent ligand p62 for the Lck SH2 domain mRNA

33 M55150 FAH Fumarylacetoacetate
X95735 Zyxin
M16038 LYN V-yes-1 Yamaguchi sarcoma viral related oncogene homolog
U82759 GB DEF = Homeodomain protein HoxA9 mRNA
M23197 CD33 CD33 antigen (differentiation antigen)
M27891 CST3 Cystatin C (amyloid angiopathy and cerebral hemorrhage)
M62762 ATP6C Vacuolar H+ ATPase proton channel subunit
M81695 ITGAX Integrin, alpha X (antigen CD11C (p150), alpha polypeptide)
X04085 Catalase (EC 1.11.1.6) 5’flank and exon 1 mapping to chromosome 11, band p13 (and joined CDS)

35 X59417 PROTEASOME IOTA CHAIN
S50223 HKR-T1
M31303 Oncoprotein 18 (Op18) gene

38 M63138 DDC Dopa decarboxylase (aromatic L-amino acid decarboxylase)
M57710 LGALS3 Lectin, galactoside-binding, soluble, 3 (galectin 3) (NOTE: redefinition of symbol)
M19045 LYZ Lysozyme
M83652 PFC Properdin P factor, complement

42 M31211 MYL1 Myosin light chain (alkali)
X74262 RETINOBLASTOMA BINDING PROTEIN P48
U32944 Cytoplasmic dynein light chain 1 (hdlc1) mRNA
X63469 GTF2E2 General transcription factor TFIIE beta subunit, 34 kD
M91432 ACADM Acyl-Coenzyme A dehydrogenase, C-4 to C-12 straight chain
U20998 SRP9 Signal recognition particle 9 kD protein
U26266 DHPS Deoxyhypusine synthase
M2969 IL7R Interleukin 7 receptor
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