
 
Abstract—Automatic cardiac auscultation is still a subject of 

research in order to establish an objective diagnosis. Recorded heart 
sounds as Phonocardiogram (PCG) signals can be used for automatic 
segmentation into components that have clinical meanings. These are 
the first sound, S1, the second sound, S2, and the systolic and 
diastolic components, respectively.  In this paper, an automatic 
method is proposed for the robust segmentation of heart sounds. This 
method is based on calculating an intermediate sawtooth-shaped 
signal from the length variation of the recorded PCG signal in the 
time domain and, using its positive derivative function that is a binary 
signal in training a Recurrent Neural Network (RNN). Results 
obtained in the context of a large database of recorded PCGs with 
their simultaneously recorded Electrocardiograms (ECGs) from 
different patients in clinical settings, including normal and abnormal 
subjects, show on average a segmentation testing performance 
average of 76% sensitivity and 94% specificity. 

 
Keywords—Heart sounds, PCG segmentation, event detection, 

Recurrent Neural Networks, PCG curve length. 

I. INTRODUCTION 

EART sounds give indications to the state of the heart 
and its functioning (rate, rhythm, Fundamental Heart 

Sounds (FHS), gallops and murmurs). Cardiac auscultation is 
the first step of physical examination which makes possible 
the detection of the first signs of heart diseases. Because heart 
diseases are among the leading causes of death in the world 
[1], early detection should be considered which can help in 
stopping their progression.  

Since the invention of the stethoscope in 1816 by Dr. 
Laennec and the description of auscultatory semiology in 1819 
[2] in the Treaty of Mediate auscultation, and up till the last 
decade, cardiac auscultation has not developed much. 
Research on the physical characterization of physiological and 
pathological cardiac sounds has not drawn a lot of attention to 
the research community. However, in clinical practice, the 
ability to distinguish normal from abnormal sounds (murmur, 
gallops) remains critical for diagnosis and medical 
interpretation.  

The classical auscultation based on subjective criteria is far 
from being rigorous for systematic cardiac sounds 
classification. Indeed, the practitioners use only their auditory 
perception and past memories of pathological sounds which 
may lead to errors in practice.  
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Over the last two decades, auscultation has seen remarkable 
progress in the areas of enhancement of the signal acquisition 
and also innovation in the signal processing and analysis of 
auscultatory signals. These improvements should provide 
better sensitivity and specificity in the auscultation results. 

Heart sounds recorded and represented as PCG signals can 
be used for automatic segmentation. PCG signal segmentation 
aims to determine the boundaries of the FHS from the 
temporal segments representing the cardiac cycles of a heart 
functioning. It is considered as the most difficult step in heart 
sound analysis due to interferences from murmurs and other 
noises, which result in extra-peaks. PCG signal segmentation 
has been the subject of numerous studies, particularly PCG 
energy envelope-based methods which have less complexity 
for implementation, such as in [3]-[6]. In [3], different 
envelopes such as: Shannon energy, Hilbert transform and 
cardiac sound characteristic waveform were extracted from a 
PCG and compared. From all the envelopes the FHSs are 
located using both fixed and adaptive thresholding used in a 
clustering technique. In [4], a method based on the second 
derivative function of the multiscale Hilbert envelope of the 
PCG was proposed, where each FHS is located between two 
consecutive maxima of the second derivative function. An 
adaptive thresholding on the continuous energy signal of the 
PCG [5] based on the value of the heart rate was proposed in 
[6]. This method has given promising results on PCGs even   
with extra-peaks, but with stable normal heart rhythms (i.e., 
the cardiac cycles/periods are almost identical). However, in 
the case of PCGs with unstable cardiac rhythms (known as 
arrhythmias), localization of the FHSs may be inaccurate, 
which may result in a false interpretation of PCGs.  

In this paper, an automatic segmentation method is 
proposed in order to overcome the problems cited above, and 
find the accurate localization of the FHSs. This method is 
based on calculating an intermediate sawtooth-shaped signal 
from the length variation of the PCG signal in the time 
domain, and using its positive derivative function in training a 
Layer Recurrent Neural Network.  

The paper is organized as follows: Section II describes the 
proposed method. Section III describes Layer Recurrent 
Neural Network used for training. Results and discussion are 
given in Section IV and Section V concludes the paper. 

II. PROPOSED METHOD 

A. Normalization 

Given different recording conditions, the appearance of 
extra-peaks in a PCG will cause attenuation of the normalized 
signal if the normalization is done on the maximum value of 
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the PCG. If the elimination of the extra-peaks that exceed 
three times the average value of the peaks in an interval of 500 
ms as in [6] is deployed, this elimination has led to the 
elimination of FHSs if the extra-peaks coincide with true 
FHSs. 

 

 

Fig. 1 Calculation concept of a curve length variation: a,b,c …,.h are 
successive points of a PCG curve from which at each instant the sum 

of cumulative Euclidean distances between them is calculated 
 

In this paper we propose to normalize the recorded PCG to 
its absolute maximum value in a time window of 1 second, 
because in this time window at least one FHS is present [7]. In 
case where an extra-peak appears in this time window, the 
PCG in this time window is normalized to this extra-peak. So 
only the window containing the extra-peak is normalized to 
the wrong value and is then eliminated and not considered. 
See an example in Fig. 2. 

 

 

Fig. 2 Elimination of the extra-peaks from the PCG: (a) PCG 
recorded with two artifacts shown by arrows, (b) PCG attenuated by 

the normalization to the absolute maximum value and (c) PCG 
normalized on a 1 second time window 

B. Curve Length Variation 

After the normalization process, the PCGs are filtered by a 
band pass filter, where only the frequencies between 30 Hz 
and 150 Hz are kept. In this band, only the FHS components 
are present, and other sound components, such as murmurs 

and noise are filtered out [8].  
The Euclidean distance between two points a and b with 

their coordinates (x1,y1) and (x2,y2) respectively is defined by 
the formula: 

 

dist(a,b)= 𝒚𝟐 𝒚𝟐
𝟐 𝒙𝟐 𝒙𝟐

𝟐.       (1) 
 
To show how the length variation at each instant is 

calculated, let us consider the a,b,c,d,…, h successive points of 
a curve with their respective abscissas 0,1,2,3,4…,7 as shown 
in Fig. 1. 
 For sample b, D(1)=dist (a,b). 
 For sample c, D(2)=dist (a,b) + dist(b,c). 
 For sample d, D(3)=dist (a,b) +… dist (c,d) 
 For the last sample h, D(7)=dist(a,b)+ dist (b,c) + dist 

(c,d) +….dist(g,h). 
This can be represented for a PCG curve by: 
 

𝑫 𝒏 ∑ 𝒅𝒊𝒔𝒕 𝑷𝑪𝑮 𝒌 , 𝑷𝑪𝑮 𝒌 𝟏𝒏
𝒌 𝟏            (2) 

 
where dist (PCG (k), PCG (k+ 1)) is the Euclidean distance 
between two successive points of the PCG curve where n is its 
sample instant. 

Since the function D is a sum of the Euclidean distances 
which are by definition positive, it is always increasing. This 
can be expressed by a regression function as follows: 

 
𝑇 𝑛 𝐷 𝑛 𝑌,                                  (3) 

 
where Y is the regression function given by:  
 

𝑌 𝑎 ∗ 𝑛 𝑏 ,                                   (4) 
 

with a the slope of the regression function given by:  
 

𝑎 𝑐𝑜𝑣 𝐷,𝑛
𝑣𝑎𝑟 𝑛

                                  (5) 

 
and cov(D,n) is the covariance between D(n) and n, and var(n) 
is the variance of n.  

The continuous value b is given by:  
 

b=𝐷 𝑎 ∗ 𝑛,                                    (6) 
 
where 𝐷 and 𝑛 are the mean values for D and n.  

Fig. 3 shows results for an example of a normal PCG. The 
Curve T(n) takes the form of a sawtooth function, where the 
intervals of the rising edges represent the fast changes in the 
length of the PCG curve in the S1 or S2 (FHS) intervals. The 
intervals of the falling edges represent the slow variations of 
the PCG curve length in the intervals of systolic and diastolic 
silence. The rising edge of the T function is localized with the 
positive part of the signum function of the derivative function 
dT(n)/dn. Every positive part of this binary signal is taken as 
an FHS location (Fig. 3 (d)). 

After localizing the rising edges, and as it is known the 
systolic duration is less than the diastolic one (i.e. regular 
PCG) [7], the FHSs are labeled as S1 or S2 according to the 
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durations between them. 
The problem that is faced in this method is the difficulty to 

locate the right FHSs on a PCG which has close systolic and 

diastolic durations, diastolic duration less than the systolic one 
(i.e. irregular PCG) and additive murmurs or noise.  

 

 

Fig. 3 Results for an example of a normal PCG 
 

III. LAYER RECURRENT NEURAL NETWORKS 

To overcome the problems of false FHS localization on the 
positive derivative dT(n)/dn function (Fig. 3) and inaccurate 
identification of the S1 and S2 sounds, a RNN architecture is 
used. These neural networks are similar to feed-forward 
networks, except that connections are added between the 
output of the hidden layers and the input layer in order to use 
the predicted data at the previous positions in a sequence as 
input to the network. The outputs of the hidden layers are 
added to the input layer as contextual information.  

The dynamic neural network used in this study is the Layer 
Recurrent Neural Network (LRNN) [9]. In [10] Elman 
proposed the first version of this network. The “layrecnet” 
command in MATLAB generalizes the Elman network to 
have an arbitrary number of layers and transfer functions in 
each layer [11]. 

In order to allow the network to have an infinite dynamic 
response to the time series input data, a flow loop, with a 
single delay around each layer of the network is added, except 
the last layer, as shown in Fig. 4 [11]. The selection of 
appropriate neural network parameters such as the number of 
neurons in each layer, the number of hidden layers, and the 
transfer function types were the most important network 
parameters considered for this architecture [12]. 

 

 

Fig. 4 Designed LRNN composed with: 1 input unit,4 neurons in 4 
output layers and 9 neurons in the hidden layer 

 

A. Labeling PCGs by S1 and S2 

In order to train the LRNN, a database of PCGs labeled by 
their S1 and S2 built by [13] has been used. This database is 
composed of 792 heart sounds recorded from various locations 
on the chest of 135 patients with multiple recordings per 
patient. Each PCG has its own annotations of R peaks (which 
corresponds to the depolarization and contraction of the 
ventricles, right and left) and end T waves (corresponding to 
the depolarization and contraction of the atria, right and left) 
[7]. These annotations were derived from the ECGs recorded 
simultaneously with the corresponding PCGs. 

For labeling a PCG with S1 and S2, in [6] a method is used 
to localize them from R peak and end T wave annotations. The 
beginning of the S1 sound is localized by the R peak of the 
ECG [14], and the duration of S1 is the mean of S1’s durations 
as proposed in [6]. The beginning of the S2 is localized at the 
end of the T wave on the ECG [14], and the S2 sound is 
deduced by localizing the center defined by the maximum 
peak in the Hilbert envelope of the PCG. The S2 duration is 
defined by the mean of S2 durations as proposed in [6]. 

 

 

Fig. 5 Recording of a normal heart sound with corresponding ECG 
tracing; S1 is the first heart sound which marks the beginning of the 
systole, S2 is the second heart sound which marks the beginning of 

the diastole 

0 500 1000 1500 2000 2500 3000 3500 4000
-1

0

1
p

cg

0 500 1000 1500 2000 2500 3000 3500 4000
0

20

40

 

 

0 500 1000 1500 2000 2500 3000 3500 4000
-10

0

10

T
(n

)

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

(d
T

/d
n

)>
0

0 500 1000 1500 2000 2500 3000 3500 4000
-1

0

1

F
H

S

sample

distance Function
regression line

a

b

c

d

e

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-1

-0.5

0

0.5

1

Sample

E
C

G

 

 

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

1

2

3

Sample

P
C

G

R R
T TT

S1

DiastDiastDiast

R (a)

Syst Syst

S1 S1 S2S2 S2

Syst (b)

World Academy of Science, Engineering and Technology
International Journal of Biomedical and Biological Engineering

 Vol:17, No:10, 2023 

228International Scholarly and Scientific Research & Innovation 17(10) 2023 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 B
io

m
ed

ic
al

 a
nd

 B
io

lo
gi

ca
l E

ng
in

ee
ri

ng
 V

ol
:1

7,
 N

o:
10

, 2
02

3 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
26

7.
pd

f



Finally, the S1 sound can be labeled by State 1, the systolic 
silence by State 2, the S2 sound by State 3 and the diastolic 
silence by State 0, as shown in Fig. 5. 

IV. RESULTS AND DISCUSSION 

The layer recurrent network proposed for this study is 
composed by: 1 input unit, 9 neurons in the hidden layer and 4 
neurons in the output layer, one neuron to represent each state. 
The network has a feed-back loop with a tap of 8 delays. Tan-
sigmoid transfer functions are used for the hidden and output 
layers (Fig. 4). 1000 iterations (epochs) are reached for a 
convergence training with a mean squared error (MSE) 
performance goal of 1e-3. The bias value is associated with 
each node in the intermediate and output layers of a network 
whose activation is always 1. 

In the database used, PCGs durations varied from 1 s to 34 s 
and down sampled to 1000 Hz with 12107 R peaks and 11554 
ends of T waves annotations [13] 270 PCGs (3851.1 s) of 60 
normal subjects and 256 PCGs (1696.5 s) of 33 pathological 
subjects are chosen for training the LRNN. The T(n) signal of 
each PCG is calculated as described in Section II (Fig. 3 (c)), 
where the positive part of the signum function of the 
derivative (dT(n)/dn) function is taken and used as the training 
data for the LRNN (Fig. 5 (b)). The labeled signal extracted 
from the ECG as in Section III, A is used as a target of the 
LRNN. To minimize the calculation time, both the data and 
targets are down-sampled to 40 Hz. 

An example to show robustness of this method can be seen 
in Fig. 7, where an abnormal PCG with two extra peaks (the 
first in the diastole of the first heart cycle and the second in the 
systole of the fourth heart cycle) is considered. From this PCG 
the variation curve length is calculated T(n) (Fig. 7 (b)), then 
the positive part of the signum function of the derivative 
(dT(n)/dn) function is taken as the input of the LRNN. In this 
case, the extra-peaks are represented by a positive part of this 
binary signal in the same way of the FHSs location (Fig. 7 
(c)). The output of the LRNN is represented in the form of a 
stepped signal (Fig. 7 (d)), which indicates the state of each 
PCG sample. In this figure, it can be seen that the problem of 
the extra peaks is removed by the LRNN. 

The evaluation of the segmentation algorithm is usually 
based on the calculation of the sensitivity and specificity 
metrics for the localized FHSs.  This is done by determining 
the True Positive, False Positive, True Negative and False 
Negative of samples localization. 

The evaluation method proposed in [6] and [15] led to the 
conclusion that the S1 sound was labeled as correctly 
identified if its start was found to be within 100 ms of the R-
peak of the ECG. Likewise, S2 was labeled as correctly 
identified if found within 100 ms of the end of the T-wave. 

In this paper, an evaluation method has been adopted, which 
is based on the results of segmentation for every time sample 
at every state. This will enable us to evaluate the partial 
localization of the S1, S2, systole and diastole states. The state 
deduced from the ECG will be used as a reference to calculate 
the sensitivity and specificity for each state (Fig. 6). A True 
Positive (TP) sample of each state is a sample which is 

correctly localized by the segmentation method as compared 
to the ECG labeled state. Otherwise, it is considered as a False 
Positive (FP). The same process is followed for other states. 

 

sensitivity state =100 ×
TP

TP+FN
         (7) 

 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 𝑠𝑡𝑎𝑡𝑒 100                (8) 

 
The segmentation method with layer recurrent neural 

network based on the variation of the PCG curve length was 
tested with a set of 130 PCGs (3191 s) which have a duration 
that exceeds eight seconds each, and all are from the same 
database. These are 65 normal PCGs (1612.51 s) and 65 
abnormal PCGs (1579.26 s). The evaluation did not take into 
consideration the first two seconds of any PCG. This time was 
rejected so as to eliminate the initial samples in order to allow 
more time for the algorithm to adapt to the signal. 

The segmentation evaluation results reported in Table I 
show 94% specificities and 76% sensitivities performance for 
all the PCG components (S1, S2, systole and diastole) and 
almost regardless of its clinical case, being normal or 
abnormal PCG. 

The low performance value of the sensitivity as compared 
to that of the specificity can be explained by a less appropriate 
selection of the neural network parameters, such as: the 
number of neurons in each layer, the number of hidden layers 
and the transfer function types. 

 
TABLE I 

RESULTS OF THE PCG SEGMENTATION EVALUATION (SENSITIVITY AND 

SPECIFICITY (%)) 

Sens/ S1 Sens/ S2 Sens/syt Sens/ diast 

Normal 84.35 77.74 80.78 65.18 

Abnormal 86.95 74.04 77.50 62.10 

Speci/S1 Speci/S2 Speci/sys Speci/ diast 

Normal 92.47 92.95 93.61 97.05 

Abnormal 89.60 94.34 94.06 96.96 

 

 

Fig. 6 Results of PCG segmentation with LRNN (blue line) compared 
with the ECG labeled states (green line) 

V. CONCLUSION 

In this paper an automatic segmentation method has been 
proposed which uses an intermediate signal to localize the 
Fundamental Heart Sounds S1 and S2 and the systolic and 
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diastolic components in the PCG signal. This intermediate 
signal is derived from the variation of the PCG curve length. 
A Layer Recurrent Neural Network is trained with the positive 
derivative function of the intermediate signal to achieve a 

robust segmentation of noisy PCG or with irregular rhythm. 
Results obtained from the segmentation of a large database 
show on average a 94% specificity and a 76% sensitivity of 
the segmentation testing performance. 

 

 

Fig. 7 (a) A normalized abnormal PCG; (b) the T function calculated from the PCG (as explained in Section II); (c) detection of the rising edge 
of the T function, the positive part of the derivative of T(n) to be used as an input data to the LRNN; (d) results of the output of the LRNN 

(blue line) with the ECG labeled states (green line) 
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