Search results for: M. Maaroufi
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Search results for: M. Maaroufi

3 Contribution to Improving the DFIG Control Using a Multi-Level Inverter

Authors: Imane El Karaoui, Mohammed Maaroufi, Hamid Chaikhy

Abstract:

Doubly Fed Induction Generator (DFIG) is one of the most reliable wind generator. Major problem in wind power generation is to generate Sinusoidal signal with very low THD on variable speed caused by inverter two levels used. This paper presents a multi-level inverter whose objective is to reduce the THD and the dimensions of the output filter. This work proposes a three-level NPC-type inverter, the results simulation are presented demonstrating the efficiency of the proposed inverter.

Keywords: DFIG, multilevel inverter, NPC inverter , THD, Induction machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 661
2 Nonlinear Torque Control for PMSM: A Lyapunov Technique Approach

Authors: M. Ouassaid, M. Cherkaoui, A. Nejmi, M. Maaroufi

Abstract:

This study presents a novel means of designing a simple and effective torque controller for Permanent Magnet Synchronous Motor (PMSM). The overall stability of the system is shown using Lyapunov technique. The Lyapunov functions used contain a term penalizing the integral of the tracking error, enhancing the stability. The tracking error is shown to be globally uniformly bounded. Simulation results are presented to show the effectiveness of the approach.

Keywords: Integral action, Lyapunov Technique, Non Linear Control, Permanent Magnet Synchronous Motors, Torque Control, Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3323
1 A New Nonlinear Excitation Controller for Transient Stability Enhancement in Power Systems

Authors: M. Ouassaid, A. Nejmi, M. Cherkaoui, M. Maaroufi

Abstract:

The very nonlinear nature of the generator and system behaviour following a severe disturbance precludes the use of classical linear control technique. In this paper, a new approach of nonlinear control is proposed for transient and steady state stability analysis of a synchronous generator. The control law of the generator excitation is derived from the basis of Lyapunov stability criterion. The overall stability of the system is shown using Lyapunov technique. The application of the proposed controller to simulated generator excitation control under a large sudden fault and wide range of operating conditions demonstrates that the new control strategy is superior to conventional automatic voltage regulator (AVR), and show very promising results.

Keywords: Excitation control, Lyapunov technique, non linearcontrol, synchronous generator, transient stability, voltage regulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2568