
 

 

  

Abstract—Many studies have shown that parallelization 

decreases efficiency [1], [2]. There are many reasons for these 

decrements. This paper investigates those which appear in the context 

of parallel data integration. Integration processes generally cannot be 

allocated to packages of identical size (i. e. tasks of identical 

complexity). The reason for this is unknown heterogeneous input 

data which result in variable task lengths. Process delay is defined by 

the slowest processing node. It leads to a detrimental effect on the 

total processing time. With a real world example, this study will 

show that while process delay does initially increase with the 

introduction of more nodes it ultimately decreases again after a 

certain point. The example will make use of the cloud computing 

platform Hadoop and be run inside Amazon’s EC2 compute cloud. A 

stochastic model will be set up which can explain this effect. 

 

Keywords—Process delay, speedup, efficiency, parallel 

computing, data integration, E-Commerce, Amazon Elastic Compute 

Cloud (EC2), Hadoop, Nutch.  

I. INTRODUCTION 

fairly fundamental and common requirement of Web 

portals is matching one’s own data with data from 

external sources. E.g. a price comparison site has to match its 

product catalog with the many product catalogs from its 

various partners. Matching processes are however, 

computationally intensive, especially Fuzzy Matching, and 

must be run daily in order to provide up-to-date information. 

For many online companies, such as Producto AG
1
, this 

matching is a core component of their business. With 

increasing amounts of data being imported, matching jobs 

increase in complexity and duration. For this reason, a scalable 

and high performance solution was evaluated, which is set out 

in this paper. 

Analogous to the E-Commerce example used as a teaching 

case in this paper are, for instance, searching/matching 

addresses and personal data or searching for titles in a library 

catalog or archive. 
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A. Related Work 

Parallel data processing is an issue which has been widely 

discussed against the backdrop of diverse applications. Data 

integration by Web Search Engines, especially Google, ranks 

as one of the most prevalent fields and has led to the 

development of Nutch, an Open-Source Platform for Web 

Search [3], [4]. Its distribution model is comprised of two 

layers, both of which owe a lot to contributions to information 

technology made by Google [5], [6]: storage (Nutch 

Distributed File System, NDFS) and computation 

(MapReduce). Typical fields of application for Nutch in web 

environments primarily cover Search Engines, Natural 

Language Processing (NLP) [7] and identification of link spam 

[8]. The two layers, NDFS and MapReduce, are now 

maintained and developed in the context of a separate project 

fork called Hadoop. Its operating principles, the design of 

cluster computing and large-scale data processing have been 

detailed recently in [9]. An example of its use can be seen in 

the distributed text index developed at HP Labs named 

Distributed Lucene, more information on which can be found 

in [10]. 

Scalability research concerning the inevitable trade-off 

between parallel execution and related communication 

overhead have been carried out within several scopes of 

reference, e.g. parallel SQL-Query executions [11], stream 

processor architecture [12], multi-agent implementation of 

cellular automata in a local network [13] and clustered 

processors [14]. From all of these approaches, the following 

points to consider become apparent: 

• The total cost of execution is made up of the cost of 

execution on all nodes plus a number of fixed costs 

such as those stemming from the size of the 

communication overhead. 

• Communication overhead may be high enough as to 

cancel out benefits from parallelism. 

• The relationship between inter-cluster 

communication and cost of execution is nonlinear. 

These core points are to be considered in analyzing the 

aforementioned trade-off and are also taken as the basis for the 

experiment in this paper. 

It may be incidentally mentioned that this paper does not 

investigate queuing and prioritization problems, parallel 
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algorithms. The example, along with all measurements used 

herein is performed inside an adequately homogeneous 

environment. Improving MapReduce performance in 

heterogeneous environments is object of study in [15]. For 

Amazon EC2 this is particularly relevant if the load of disk 

and network I/O is high.  

B. Problem Description 

Importing and matching the products of diverse partners to 

one’s own product data consists of parsing differently 

formatted files exported by partners e.g. Amazon, 

Shopping.com or Pangora and using an EAN (European 

Article Number), MPN (Manufacturer Part Number) or ASIN 

(Amazon Standard Identification Number) as match criterion 

to be compared with the products in one’s own database. 

Matches based on these numbers are called hard-matches. 

However, there is also another way to match product data 

when such identifying information is not available; so-called 

soft-matching (also referred to as fuzzy matching) which 

involves matching products by name (and possibly other “soft” 

criteria such as product description or product category). In the 

case of Producto AG, 150,000 products are to be matched on 

approx. 8m products exported by partners, with only 2.5m 

offers from soft-matched products being displayed on its E-

Commerce portal. The problem can be broken down into the 

following two components: 

1. Masses of raw, unsorted data need to be imported 

into the database, but only a small amount is useful 

for the Website. To cache, replicate or search this 

data is very expensive. 

2. The matching process is itself expensive and in 

addition, needs to be run on a daily basis. 

An established approach to handling the expensive 

processes given in the latter component is to run them in 

parallel. As regards to the former; in order to decrease the 

amount of data stored in databases one must apply pre-filtering 

rules to the matching process, making the whole process more 

expensive and further increasing the need for process 

parallelisation. 

The main questions followed in this paper are: What affects 

processing time when parallelizing a computationally intensive 

process? In particular: How is process delay affected by 

heterogeneous input data? 

C. Methodology 

The methodology in this paper consists of four core steps as 

shown in figure 1. First, a suitable architecture must be chosen 

and set up; this also includes servers, cluster and the 

distributed file system, as well as the appropriate 

implementation. In the second step the input and output is 

defined. This entails identifying factors for processing time 

and defining the variables (adjusting screws) for configuring 

the performance tests. Step three involves running 

performance tests to collect data for the different 

configurations, regulated by the previously identified 

variables. Finally, in the last step, the results will be analyzed 

and used for the construction of the model. 

 

 

Fig. 1 This study consists of 4 steps to evaluate process delay of 

parallelization. 

II. ARCHITECTURE SETUP 

The process of importing and matching products and offers 

to be displayed on the Web pages of an E-Commerce portal 

can be managed by the architecture detailed in Figure 2.  

Of course, products must first be manually entered; in this 

case, this is carried out by a dedicated editorial staff working 

with a CMS (Content Management System) to write these 

products into a database (step 1). This forms the basis of the 

portal’s own database, which will then have to be matched 

with those of partners. 

Following this, step two is to perform a Product-Offer-

Import to import product data and offers provided by partners 

in various formats (e.g. XML, CSV) and store these in a 

generic format in Hadoop’s SequenceFile. This generic format 

is so structured as to store data about partners’ products, any 

associated offers and information relevant to the site’s own 

database. This SequenceFile is mirrored to allow for load 

balancing, split into discrete parts which will then be 

distributed across the nodes. For example having five nodes 

and two copies means every node obtains two fifths of the total 

amount of data. For enabling parallelism Hadoop Framework 

is used, providing both HDFS (Hadoop Distributed File 

System, formerly NDFS) and the MapReduce programming 

model, which contains two fundamental steps: a map operation 

and a reduce operation. The principles of MapReduce are 

explained in [6]. 

Step three is the matching process itself. The process is split 

into a number of tasks. We parallelize the process by doing the 

following; each task builds an index over a part of partner’s 

product catalog and searches in serial for the portal’s products. 

As the set of the partner’s products in each task is unique, 

results of the matching tasks do not need to be repartitioned 

across nodes in order to be merged. By default, Hadoop 

partitions the result of a map operation based on a hash 

function (e.g. hashCode mod nodeNum), therefore, were the 

results of the map-operation to be redistributed across all 

nodes, there would be no discernable benefit. In order to 

prevent this, a custom partitioner was implemented, which 

ensures that product matches will be assigned to a local node 

for the reduce operation. Before starting the matching process, 

the product table is loaded into a distributed cache and made 

available locally to each node in the cluster. The specific 

matching process relevant for the experiment is a soft-

matching process. It is an inherently more computationally 

intensive process than hard-matching which is the primary 

reason for running it in parallel. The soft-matching process 
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uses a q-gram based algorithm for measuring string distance 

and similarity as detailed in [16]. This algorithm was further 

sophisticated by adding heuristic functions. During the soft-

matching process each of our products is to be compared with 

each partner’s products to measure the string similarity. To 

speed up this process, an index over the q-grams is created. 

The processing time increases nonlinearly when the search 

index increases.  

Within the reduce operation (step four), matches to partner’s 

products are merged. For this step the key is a partner’s 

product and the value a list of products with matches found to 

those of the portal’s own. In this step the Product-Matcher 

writes a new SequenceFile in the same generic format but only 

writes data where product matches were found. That means 

matching information is added and non-matched partners’ 

products removed. 

In steps five to nine the existing soft-matches are enhanced 

by hard-matches done manually by editorial staff from within a 

CMS. In the ninth step the manual matches are finally merged 

into the SequenceFile containing the previously found soft-

matches. 

In the last two steps, the offers for matched products are 

saved into the database to be displayed on Web pages. 
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Fig. 2 The shaded element represents the most computationally intensive step 

within the whole architecture; the automated soft-matching. 

III. FACTORS FOR PROCESSING TIME 

The total duration of the process T(N) depends on N, the 

number of physical nodes. It can be divided into two parts: 

T(1)/N, the ideal duration under which the supposition is that 

the process is divisible into parallelizable packages of identical 

size without loss of efficiency; and Tparallel(N), the deviation 

from this ideal duration, which can be seen as the Process 

Delay. Process Delay is defined by the deviation of the slowest 

node from the ideal duration. Multiplying this process delay by 

the number of nodes will result in the overhead function as 

defined in [1], [2]. 

 

1( ) (1) ( )parallelT N T N T N−= ⋅ +
 

(1) 

 

For the purposes of our study, the number of nodes N is 

defined as the main input. This was done by changing the size 

of the Amazon EC2 cluster. 

The model presented here assumes no other sources of 

overhead (e.g. coordination cost). This is a valid simplification 

for many map-reduce style problems. Other sources of 

overhead were negligible in the application described here. 

The number of simultaneous tasks per single core CPU node 

has been set to 1 for the purpose of this study. Changing this 

variable would increase the number of possible configurations 

for the experiment and exceed the scope of this paper. 

IV. REPEAT-PASS MEASUREMENTS ON EC2 

During the performance tests, the number of processing 

nodes is varied from one node to twenty as shown in table 1. 

As already mentioned, the input data is stored on the nodes 

(via HDFS) and each task only needs to operate on local data. 

As per [6] a machine that takes an unusually long time for 

computation is referred to as a straggler. At this point it is to 

be mentioned that all nodes are of approximately similar 

specification. Therefore, it can be assumed that there will be 

no stragglers based on hardware factors alone. 

Another point to be considered is the need to reboot the 

complete cluster after taking a measurement. This is an 

important step to provide a fresh, clean disk cache before the 

next test run is performed with a new configuration. 

As previously mentioned, the processing time T(1) increases 

when the size of the search index increases, therefore index 

sizes need to be kept constant. This can be done by choosing a 

fixed number of tasks for the complete cluster. The number of 

tasks for the purposes of this study will be fixed at twenty, 

which is equal to the maximum number of nodes. The catalog 

used for the study contains 841,942 partners’ products whereas 

the number of products in the portal’s database stands at 

145,504. Each performance test-run starts with steps two and 

three (see Fig. 2), importing partners’ products and loading the 

portal’s products into distributed cache. 

Table 1 shows the results for each run of the performance 

tests. T(N) is the duration of the process, which equals the 

processing time of the slowest node. The third shows the ideal 

duration if there was no loss of efficiency. The fourth column 

shows the cumulative time of all tasks without idle times. 

Tparallel is given in the rightmost column of the table. Time is 

generally measured in seconds. This data will subsequently be 

analyzed and used for the construction of the model. 

TABLE I 

RESULTS FOR PERFORMANCE TESTS 

N T(N) T(1)/N 

Processing 

time of all 

tasks 

Tparallel(N) 

1 90,775 90,775 90,775 0 
2 44,778 45,387 89,289 -609 
4 23,983 22,694 89,178 1289 
5 19,627 18,155 89,179 1,472 

10 12,140 9,077 89,669 3,063 
20 6,738 4,539 88,994 2,199 

The data collected contains, from left to right, the time of the worst 

performing node T(N), the average time, the cumulative time and the effect 

of parallelization (each in seconds). 
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V. RESULT ANALYSIS AND MODEL CONSTRUCTION 

While total process duration decreases by adding nodes into 

the cluster, the sum of processing times of all tasks remains 

fairly constant. 

A graphical representation of the values given in Table 1 

can be found in Figure 3 where the results for time and number 

of nodes produce an approximately hyperbolic curve in 

agreement with the first term in (1). As shown in the rightmost 

column, process delay increases as the number of nodes is 

increased from 2 through 10. It is interesting to note however, 

that according to the data, process delay decreases as the 

number of nodes is increased from 10 to 20. 

In order to explain this unexpected result a simple model 

was build based on the previously defined factors. 

To discuss the result in a more general way, the processing 

times of individual tasks will be treated as if drawn from a 

stochastic distribution. Even though processing times of tasks 

are deterministic based on the input data, they are generally 

not known in advance. As can be seen in Fig. 4, task times 

approximately follow the shape of a normal distribution in our 

case. 
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Fig. 3 Processing time of all tasks (∆) is fairly constant. Total process 

duration (o) is longer than ideal process duration (+) for N > 1. 
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Fig. 4 The task processing times (here for N = 10) approximately follow a 

normal distribution. 

 

We assume that tasks lengths t follow a normal distribution 

Φ with mean T1 / k and variance σ2
. T1 is the expected process 

duration free from inefficiencies, i.e. T1 = E(T(1)) and k is the 

number of tasks (k = 20 for the purposes of this study). Mean 

and variance depend on the complexity and heterogeneity of 

input data. 

The number of tasks on each node is i = k / N. We avoid the 

additional complexity if i is not an integer by choosing k and N 

appropriately (otherwise it cannot be ensured that all nodes 

will execute the same number of tasks). 

The total process duration T(N) is determined by the 

maximum of the nodes processing times u: 
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(3) 

 

The expected value of Tparallel(N) was estimated by 

simulating 100.000 samples, based on (3) with σ2
 taken from 

the data of our previous measurements: 
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E(Tparallel(1)) ≈ -2,4 

E(Tparallel(2)) ≈ 1884,3 

E(Tparallel(4)) ≈ 2428,9 

E(Tparallel(5)) ≈ 2454,5 

E(Tparallel(10)) ≈ 2300,1 

E(Tparallel(20)) ≈ 1972,4 

 

This shows that from N = 1 to N = 5 the expected process 

delay increases, whereas from N = 5 to N = 20 it decreases. 

Figure 5 displays the cumulative distribution function of the 

term Tparallel for N = 1, 5 and 20. 
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Fig. 5 The mean of Tparallel increases from N = 1 to N = 5 and decrease from 

N = 5 to N = 20. 

VI. CONCLUSION AND FUTURE WORK 

Our results show that one source of overhead in 

parallelization is non constant task lengths. In practice it is 

often difficult to partition the input data in advance into parts 

of equal computational complexity. Therefore non constant 

task lengths will in fact present a problem: It would be 

desirable to increase the number of tasks each node is 

processing sequentially and simultaneously decrease the 

duration of each single task. Better balancing of workload 

could be achieved by dynamically reducing the number of 

tasks for "slower" nodes during the process. Decreasing task 

length is however not always possible, at least not without 

introducing other inefficiencies. In our case the overhead of 

building up an index before the start of the task would be 

increased with each task and the index size would become 

inoptimal. In other scenarios additional communication costs 

between nodes (e.g. if input data is not stored locally) could 

also play a role. 

Future studies could investigate the effect on non-constant 

task lengths in parallel data integration in the context of other 

sources of overhead. To reduce the problem in Hadoop, one 

could define an algorithm for splitting input data more 

intelligently. This algorithm would not only consider raw data 

size. It should sample the data and take its complexity into 

account, which is application specific. 

REFERENCES   

[1] Kumar, V.: Introduction to Parallel Computing, 2nd edition. Addison-

Wesley Longman Publishing Co., Inc., (2002) 

[2] Eager, D. L., Zahorjan, J., Lozowska, E. D.: Speedup Versus Efficiency 

in Parallel Systems. IEEE Transactions on Computers, Vol. 38, No. 3, 

pp. 408--423 (1989) 

[3] Cutting, D.: Nutch: an Open-Source Platform for Web Search. In: 

Beigbeder, M., Yee, W. G. (eds.) Workshop on Open Source Web 

Information Retrieval (OSWIR), pp. 31--33 (2005) 

[4] Khare, R., Cutting, D., Sitaker, K., Rifkin, A.: Nutch: A Flexible and 

Scalable Open-Source Web Search Engine (2004) 

[5] Ghemawat, S., Gobioff, H., Leung, S.-T.: The Google File System. 

SOSP '03: Proceedings of 19th ACM symposium on Operating systems 

principles, ACM Press, pp. 29--43, NY (2003) 

[6] Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on 

Large Clusters, OSDI'04: Sixth Symposium on Operating System 

Design and Implementation, San Francisco, CA (2004) 

[7] Cafarella, M. J., Etzioni, O.: A Search Engine for Natural Language 

Applications. WWW '05: Proceedings of the 14th international 

conference on World Wide Web, pp. 442--452. ACM Press, NY (2005) 

[8] Drost, I., Scheffer, T.: Thwarting the Nigritude Ultramarine: Learning to 

Identify Link Spam. ECML, pp. 96--107 (2005) 

[9] Kimball, A., Michels-Slettvet, S., Bisciglia, C.: Cluster Computing for 

Web-Scale Data Processing. SIGCSE '08: Proceedings of the 39th 

SIGCSE technical symposium on Computer science education, ACM, 

pp. 116--120 (2008) 

[10] Butler, M. H., Rutherford, J.: Distributed Lucene : A distributed free 

text index for Hadoop. HP Laboratories (2008) 

[11] Hasan, W., Motwani, R.: Optimization Algorithms for Exploiting the 

Parallelism-Communication Tradeoff in Pipelined Parallelism. VLDB 

'94: Proceedings of the 20th International Conference on Very Large 

Data Bases, Morgan Kaufmann Publishers Inc., pp. 36--47 (1994) 

[12] Ahn, J. H., Erez, M., Dally, W. J.: Tradeoff between Data-, Instruction-, 

and Thread-Level Parallelism in Stream Processors. ICS '07: 

Proceedings of the 21st annual international conference on 

Supercomputing, ACM, pp. 126--137 (2007) 

[13] Amini, H., Kazakov D., Ridge, E.: Parallelism vs Communication 

Overhead Trade-off in a JADE Multi-Agent Implementation of Cellular 

Automata. The First International Symposium on Nature-Inspired 

Systems for Parallel, Asynchronous and Decentralised Environments 

(NISPADE), AISB convention, Bristol (2006) 

[14] Balasubramonian, R., Dwarkadas, S., Albonesi, D. H.: Dynamically 

managing the communication-parallelism trade-off in future clustered 

processors. SIGARCH Comput. Archit. News, ACM, pp. 275--287 

(2003) 

[15] Zaharia, M., Konwinski, A., Joseph, A. D., Katz, R. H., Stoica, I.: 

Improving MapReduce Performance in Heterogeneous Environments. 

8th Symposium on Operating Systems Design and Implementation, pp. 

29--42 (2008) 

[16] Ukkonen, E.: Approximate string-matching with q-grams and maximal 

matches. Theor. Comput. Sci., Elsevier Science Publishers Ltd., 92, pp. 

191--211 (1992) 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:8, 2009 

2077International Scholarly and Scientific Research & Innovation 3(8) 2009 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

8,
 2

00
9 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/6

60
8.

pd
f




