

Abstract—Many studies have shown that parallelization

decreases efficiency [1], [2]. There are many reasons for these

decrements. This paper investigates those which appear in the context

of parallel data integration. Integration processes generally cannot be

allocated to packages of identical size (i. e. tasks of identical

complexity). The reason for this is unknown heterogeneous input

data which result in variable task lengths. Process delay is defined by

the slowest processing node. It leads to a detrimental effect on the

total processing time. With a real world example, this study will

show that while process delay does initially increase with the

introduction of more nodes it ultimately decreases again after a

certain point. The example will make use of the cloud computing

platform Hadoop and be run inside Amazon’s EC2 compute cloud. A

stochastic model will be set up which can explain this effect.

Keywords—Process delay, speedup, efficiency, parallel

computing, data integration, E-Commerce, Amazon Elastic Compute

Cloud (EC2), Hadoop, Nutch.

I. INTRODUCTION

fairly fundamental and common requirement of Web

portals is matching one’s own data with data from

external sources. E.g. a price comparison site has to match its

product catalog with the many product catalogs from its

various partners. Matching processes are however,

computationally intensive, especially Fuzzy Matching, and

must be run daily in order to provide up-to-date information.

For many online companies, such as Producto AG
1
, this

matching is a core component of their business. With

increasing amounts of data being imported, matching jobs

increase in complexity and duration. For this reason, a scalable

and high performance solution was evaluated, which is set out

in this paper.

Analogous to the E-Commerce example used as a teaching

case in this paper are, for instance, searching/matching

addresses and personal data or searching for titles in a library

catalog or archive.

Caspar von Seckendorff, Producto AG, Kreuzbergstraße 30, 10965 Berlin,

Germany (e-mail: caspar.seckendorff@testberichte.de).

Eldar Sultanow, Chair of Business Information Systems and Electronic

Government, University of Potsdam, August-Bebel-Straße 89, 14482

Potsdam, Germany (e-mail: eldar.sultanow@wi.uni-potsdam.de).
1 Producto AG runs product comparison sites in Germany

(www.testberichte.de), France (www.otest.fr) and in the UK

(www.otest.co.uk).

A. Related Work

Parallel data processing is an issue which has been widely

discussed against the backdrop of diverse applications. Data

integration by Web Search Engines, especially Google, ranks

as one of the most prevalent fields and has led to the

development of Nutch, an Open-Source Platform for Web

Search [3], [4]. Its distribution model is comprised of two

layers, both of which owe a lot to contributions to information

technology made by Google [5], [6]: storage (Nutch

Distributed File System, NDFS) and computation

(MapReduce). Typical fields of application for Nutch in web

environments primarily cover Search Engines, Natural

Language Processing (NLP) [7] and identification of link spam

[8]. The two layers, NDFS and MapReduce, are now

maintained and developed in the context of a separate project

fork called Hadoop. Its operating principles, the design of

cluster computing and large-scale data processing have been

detailed recently in [9]. An example of its use can be seen in

the distributed text index developed at HP Labs named

Distributed Lucene, more information on which can be found

in [10].

Scalability research concerning the inevitable trade-off

between parallel execution and related communication

overhead have been carried out within several scopes of

reference, e.g. parallel SQL-Query executions [11], stream

processor architecture [12], multi-agent implementation of

cellular automata in a local network [13] and clustered

processors [14]. From all of these approaches, the following

points to consider become apparent:

• The total cost of execution is made up of the cost of

execution on all nodes plus a number of fixed costs

such as those stemming from the size of the

communication overhead.

• Communication overhead may be high enough as to

cancel out benefits from parallelism.

• The relationship between inter-cluster

communication and cost of execution is nonlinear.

These core points are to be considered in analyzing the

aforementioned trade-off and are also taken as the basis for the

experiment in this paper.

It may be incidentally mentioned that this paper does not

investigate queuing and prioritization problems, parallel

High performance in parallel data integration:

An empirical evaluation of the ratio between

processing time and number of physical nodes

Caspar von Seckendorff, Eldar Sultanow

A

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:8, 2009

2073International Scholarly and Scientific Research & Innovation 3(8) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

8,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/6

60
8.

pd
f

algorithms. The example, along with all measurements used

herein is performed inside an adequately homogeneous

environment. Improving MapReduce performance in

heterogeneous environments is object of study in [15]. For

Amazon EC2 this is particularly relevant if the load of disk

and network I/O is high.

B. Problem Description

Importing and matching the products of diverse partners to

one’s own product data consists of parsing differently

formatted files exported by partners e.g. Amazon,

Shopping.com or Pangora and using an EAN (European

Article Number), MPN (Manufacturer Part Number) or ASIN

(Amazon Standard Identification Number) as match criterion

to be compared with the products in one’s own database.

Matches based on these numbers are called hard-matches.

However, there is also another way to match product data

when such identifying information is not available; so-called

soft-matching (also referred to as fuzzy matching) which

involves matching products by name (and possibly other “soft”

criteria such as product description or product category). In the

case of Producto AG, 150,000 products are to be matched on

approx. 8m products exported by partners, with only 2.5m

offers from soft-matched products being displayed on its E-

Commerce portal. The problem can be broken down into the

following two components:

1. Masses of raw, unsorted data need to be imported

into the database, but only a small amount is useful

for the Website. To cache, replicate or search this

data is very expensive.

2. The matching process is itself expensive and in

addition, needs to be run on a daily basis.

An established approach to handling the expensive

processes given in the latter component is to run them in

parallel. As regards to the former; in order to decrease the

amount of data stored in databases one must apply pre-filtering

rules to the matching process, making the whole process more

expensive and further increasing the need for process

parallelisation.

The main questions followed in this paper are: What affects

processing time when parallelizing a computationally intensive

process? In particular: How is process delay affected by

heterogeneous input data?

C. Methodology

The methodology in this paper consists of four core steps as

shown in figure 1. First, a suitable architecture must be chosen

and set up; this also includes servers, cluster and the

distributed file system, as well as the appropriate

implementation. In the second step the input and output is

defined. This entails identifying factors for processing time

and defining the variables (adjusting screws) for configuring

the performance tests. Step three involves running

performance tests to collect data for the different

configurations, regulated by the previously identified

variables. Finally, in the last step, the results will be analyzed

and used for the construction of the model.

Fig. 1 This study consists of 4 steps to evaluate process delay of

parallelization.

II. ARCHITECTURE SETUP

The process of importing and matching products and offers

to be displayed on the Web pages of an E-Commerce portal

can be managed by the architecture detailed in Figure 2.

Of course, products must first be manually entered; in this

case, this is carried out by a dedicated editorial staff working

with a CMS (Content Management System) to write these

products into a database (step 1). This forms the basis of the

portal’s own database, which will then have to be matched

with those of partners.

Following this, step two is to perform a Product-Offer-

Import to import product data and offers provided by partners

in various formats (e.g. XML, CSV) and store these in a

generic format in Hadoop’s SequenceFile. This generic format

is so structured as to store data about partners’ products, any

associated offers and information relevant to the site’s own

database. This SequenceFile is mirrored to allow for load

balancing, split into discrete parts which will then be

distributed across the nodes. For example having five nodes

and two copies means every node obtains two fifths of the total

amount of data. For enabling parallelism Hadoop Framework

is used, providing both HDFS (Hadoop Distributed File

System, formerly NDFS) and the MapReduce programming

model, which contains two fundamental steps: a map operation

and a reduce operation. The principles of MapReduce are

explained in [6].

Step three is the matching process itself. The process is split

into a number of tasks. We parallelize the process by doing the

following; each task builds an index over a part of partner’s

product catalog and searches in serial for the portal’s products.

As the set of the partner’s products in each task is unique,

results of the matching tasks do not need to be repartitioned

across nodes in order to be merged. By default, Hadoop

partitions the result of a map operation based on a hash

function (e.g. hashCode mod nodeNum), therefore, were the

results of the map-operation to be redistributed across all

nodes, there would be no discernable benefit. In order to

prevent this, a custom partitioner was implemented, which

ensures that product matches will be assigned to a local node

for the reduce operation. Before starting the matching process,

the product table is loaded into a distributed cache and made

available locally to each node in the cluster. The specific

matching process relevant for the experiment is a soft-

matching process. It is an inherently more computationally

intensive process than hard-matching which is the primary

reason for running it in parallel. The soft-matching process

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:8, 2009

2074International Scholarly and Scientific Research & Innovation 3(8) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

8,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/6

60
8.

pd
f

uses a q-gram based algorithm for measuring string distance

and similarity as detailed in [16]. This algorithm was further

sophisticated by adding heuristic functions. During the soft-

matching process each of our products is to be compared with

each partner’s products to measure the string similarity. To

speed up this process, an index over the q-grams is created.

The processing time increases nonlinearly when the search

index increases.

Within the reduce operation (step four), matches to partner’s

products are merged. For this step the key is a partner’s

product and the value a list of products with matches found to

those of the portal’s own. In this step the Product-Matcher

writes a new SequenceFile in the same generic format but only

writes data where product matches were found. That means

matching information is added and non-matched partners’

products removed.

In steps five to nine the existing soft-matches are enhanced

by hard-matches done manually by editorial staff from within a

CMS. In the ninth step the manual matches are finally merged

into the SequenceFile containing the previously found soft-

matches.

In the last two steps, the offers for matched products are

saved into the database to be displayed on Web pages.

P
ro

d
u

c
t-

O
ff

e
r

Im
p

o
rt

A
m

a
z

o
n

P
a

n
g

o
ra

S
h

o
p

p
in

g
.c

o
m

M
e

rc
h

a
n

ts
’

E
x

p
o

rt

P
ro

d
u

c
t

M
a

tc
h

 T
a

b
le

O
ff

e
r

T
a

b
le

Fig. 2 The shaded element represents the most computationally intensive step

within the whole architecture; the automated soft-matching.

III. FACTORS FOR PROCESSING TIME

The total duration of the process T(N) depends on N, the

number of physical nodes. It can be divided into two parts:

T(1)/N, the ideal duration under which the supposition is that

the process is divisible into parallelizable packages of identical

size without loss of efficiency; and Tparallel(N), the deviation

from this ideal duration, which can be seen as the Process

Delay. Process Delay is defined by the deviation of the slowest

node from the ideal duration. Multiplying this process delay by

the number of nodes will result in the overhead function as

defined in [1], [2].

1() (1) ()parallelT N T N T N−= ⋅ +

(1)

For the purposes of our study, the number of nodes N is

defined as the main input. This was done by changing the size

of the Amazon EC2 cluster.

The model presented here assumes no other sources of

overhead (e.g. coordination cost). This is a valid simplification

for many map-reduce style problems. Other sources of

overhead were negligible in the application described here.

The number of simultaneous tasks per single core CPU node

has been set to 1 for the purpose of this study. Changing this

variable would increase the number of possible configurations

for the experiment and exceed the scope of this paper.

IV. REPEAT-PASS MEASUREMENTS ON EC2

During the performance tests, the number of processing

nodes is varied from one node to twenty as shown in table 1.

As already mentioned, the input data is stored on the nodes

(via HDFS) and each task only needs to operate on local data.

As per [6] a machine that takes an unusually long time for

computation is referred to as a straggler. At this point it is to

be mentioned that all nodes are of approximately similar

specification. Therefore, it can be assumed that there will be

no stragglers based on hardware factors alone.

Another point to be considered is the need to reboot the

complete cluster after taking a measurement. This is an

important step to provide a fresh, clean disk cache before the

next test run is performed with a new configuration.

As previously mentioned, the processing time T(1) increases

when the size of the search index increases, therefore index

sizes need to be kept constant. This can be done by choosing a

fixed number of tasks for the complete cluster. The number of

tasks for the purposes of this study will be fixed at twenty,

which is equal to the maximum number of nodes. The catalog

used for the study contains 841,942 partners’ products whereas

the number of products in the portal’s database stands at

145,504. Each performance test-run starts with steps two and

three (see Fig. 2), importing partners’ products and loading the

portal’s products into distributed cache.

Table 1 shows the results for each run of the performance

tests. T(N) is the duration of the process, which equals the

processing time of the slowest node. The third shows the ideal

duration if there was no loss of efficiency. The fourth column

shows the cumulative time of all tasks without idle times.

Tparallel is given in the rightmost column of the table. Time is

generally measured in seconds. This data will subsequently be

analyzed and used for the construction of the model.

TABLE I

RESULTS FOR PERFORMANCE TESTS

N T(N) T(1)/N

Processing

time of all

tasks

Tparallel(N)

1 90,775 90,775 90,775 0
2 44,778 45,387 89,289 -609
4 23,983 22,694 89,178 1289
5 19,627 18,155 89,179 1,472

10 12,140 9,077 89,669 3,063
20 6,738 4,539 88,994 2,199

The data collected contains, from left to right, the time of the worst

performing node T(N), the average time, the cumulative time and the effect

of parallelization (each in seconds).

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:8, 2009

2075International Scholarly and Scientific Research & Innovation 3(8) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

8,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/6

60
8.

pd
f

V. RESULT ANALYSIS AND MODEL CONSTRUCTION

While total process duration decreases by adding nodes into

the cluster, the sum of processing times of all tasks remains

fairly constant.

A graphical representation of the values given in Table 1

can be found in Figure 3 where the results for time and number

of nodes produce an approximately hyperbolic curve in

agreement with the first term in (1). As shown in the rightmost

column, process delay increases as the number of nodes is

increased from 2 through 10. It is interesting to note however,

that according to the data, process delay decreases as the

number of nodes is increased from 10 to 20.

In order to explain this unexpected result a simple model

was build based on the previously defined factors.

To discuss the result in a more general way, the processing

times of individual tasks will be treated as if drawn from a

stochastic distribution. Even though processing times of tasks

are deterministic based on the input data, they are generally

not known in advance. As can be seen in Fig. 4, task times

approximately follow the shape of a normal distribution in our

case.

5 10 15 20

2
0

0
0

0
4

0
0

0
0

6
0

0
0

0
8

0
0

0
0

N

T
(s

e
c

)

Fig. 3 Processing time of all tasks (∆) is fairly constant. Total process

duration (o) is longer than ideal process duration (+) for N > 1.

2000 3000 4000 5000 6000 7000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time(sec)

F
(t

)

Fig. 4 The task processing times (here for N = 10) approximately follow a

normal distribution.

We assume that tasks lengths t follow a normal distribution

Φ with mean T1 / k and variance σ2
. T1 is the expected process

duration free from inefficiencies, i.e. T1 = E(T(1)) and k is the

number of tasks (k = 20 for the purposes of this study). Mean

and variance depend on the complexity and heterogeneity of

input data.

The number of tasks on each node is i = k / N. We avoid the

additional complexity if i is not an integer by choosing k and N

appropriately (otherwise it cannot be ensured that all nodes

will execute the same number of tasks).

The total process duration T(N) is determined by the

maximum of the nodes processing times u:

21

1

, ,
i T

u t u i i
k

σ = Φ ⋅

∑ :

(2)

1

21

2

() ()

max max(), 0,

, ~ 0,

parallel

N

T
T N T N

N

T k
u v v

N N

k
w w

N

σ

σ

= −

 = − = Φ

 = Φ

:

(3)

The expected value of Tparallel(N) was estimated by

simulating 100.000 samples, based on (3) with σ2
 taken from

the data of our previous measurements:

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:8, 2009

2076International Scholarly and Scientific Research & Innovation 3(8) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

8,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/6

60
8.

pd
f

E(Tparallel(1)) ≈ -2,4

E(Tparallel(2)) ≈ 1884,3

E(Tparallel(4)) ≈ 2428,9

E(Tparallel(5)) ≈ 2454,5

E(Tparallel(10)) ≈ 2300,1

E(Tparallel(20)) ≈ 1972,4

This shows that from N = 1 to N = 5 the expected process

delay increases, whereas from N = 5 to N = 20 it decreases.

Figure 5 displays the cumulative distribution function of the

term Tparallel for N = 1, 5 and 20.

-10000 -5000 0 5000 10000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Tparallel(N) in seconds

F
(T

p
a

ra
lle

l(N
))

N = 1

N = 5
N = 20

Fig. 5 The mean of Tparallel increases from N = 1 to N = 5 and decrease from

N = 5 to N = 20.

VI. CONCLUSION AND FUTURE WORK

Our results show that one source of overhead in

parallelization is non constant task lengths. In practice it is

often difficult to partition the input data in advance into parts

of equal computational complexity. Therefore non constant

task lengths will in fact present a problem: It would be

desirable to increase the number of tasks each node is

processing sequentially and simultaneously decrease the

duration of each single task. Better balancing of workload

could be achieved by dynamically reducing the number of

tasks for "slower" nodes during the process. Decreasing task

length is however not always possible, at least not without

introducing other inefficiencies. In our case the overhead of

building up an index before the start of the task would be

increased with each task and the index size would become

inoptimal. In other scenarios additional communication costs

between nodes (e.g. if input data is not stored locally) could

also play a role.

Future studies could investigate the effect on non-constant

task lengths in parallel data integration in the context of other

sources of overhead. To reduce the problem in Hadoop, one

could define an algorithm for splitting input data more

intelligently. This algorithm would not only consider raw data

size. It should sample the data and take its complexity into

account, which is application specific.

REFERENCES

[1] Kumar, V.: Introduction to Parallel Computing, 2nd edition. Addison-

Wesley Longman Publishing Co., Inc., (2002)

[2] Eager, D. L., Zahorjan, J., Lozowska, E. D.: Speedup Versus Efficiency

in Parallel Systems. IEEE Transactions on Computers, Vol. 38, No. 3,

pp. 408--423 (1989)

[3] Cutting, D.: Nutch: an Open-Source Platform for Web Search. In:

Beigbeder, M., Yee, W. G. (eds.) Workshop on Open Source Web

Information Retrieval (OSWIR), pp. 31--33 (2005)

[4] Khare, R., Cutting, D., Sitaker, K., Rifkin, A.: Nutch: A Flexible and

Scalable Open-Source Web Search Engine (2004)

[5] Ghemawat, S., Gobioff, H., Leung, S.-T.: The Google File System.

SOSP '03: Proceedings of 19th ACM symposium on Operating systems

principles, ACM Press, pp. 29--43, NY (2003)

[6] Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on

Large Clusters, OSDI'04: Sixth Symposium on Operating System

Design and Implementation, San Francisco, CA (2004)

[7] Cafarella, M. J., Etzioni, O.: A Search Engine for Natural Language

Applications. WWW '05: Proceedings of the 14th international

conference on World Wide Web, pp. 442--452. ACM Press, NY (2005)

[8] Drost, I., Scheffer, T.: Thwarting the Nigritude Ultramarine: Learning to

Identify Link Spam. ECML, pp. 96--107 (2005)

[9] Kimball, A., Michels-Slettvet, S., Bisciglia, C.: Cluster Computing for

Web-Scale Data Processing. SIGCSE '08: Proceedings of the 39th

SIGCSE technical symposium on Computer science education, ACM,

pp. 116--120 (2008)

[10] Butler, M. H., Rutherford, J.: Distributed Lucene : A distributed free

text index for Hadoop. HP Laboratories (2008)

[11] Hasan, W., Motwani, R.: Optimization Algorithms for Exploiting the

Parallelism-Communication Tradeoff in Pipelined Parallelism. VLDB

'94: Proceedings of the 20th International Conference on Very Large

Data Bases, Morgan Kaufmann Publishers Inc., pp. 36--47 (1994)

[12] Ahn, J. H., Erez, M., Dally, W. J.: Tradeoff between Data-, Instruction-,

and Thread-Level Parallelism in Stream Processors. ICS '07:

Proceedings of the 21st annual international conference on

Supercomputing, ACM, pp. 126--137 (2007)

[13] Amini, H., Kazakov D., Ridge, E.: Parallelism vs Communication

Overhead Trade-off in a JADE Multi-Agent Implementation of Cellular

Automata. The First International Symposium on Nature-Inspired

Systems for Parallel, Asynchronous and Decentralised Environments

(NISPADE), AISB convention, Bristol (2006)

[14] Balasubramonian, R., Dwarkadas, S., Albonesi, D. H.: Dynamically

managing the communication-parallelism trade-off in future clustered

processors. SIGARCH Comput. Archit. News, ACM, pp. 275--287

(2003)

[15] Zaharia, M., Konwinski, A., Joseph, A. D., Katz, R. H., Stoica, I.:

Improving MapReduce Performance in Heterogeneous Environments.

8th Symposium on Operating Systems Design and Implementation, pp.

29--42 (2008)

[16] Ukkonen, E.: Approximate string-matching with q-grams and maximal

matches. Theor. Comput. Sci., Elsevier Science Publishers Ltd., 92, pp.

191--211 (1992)

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:8, 2009

2077International Scholarly and Scientific Research & Innovation 3(8) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

8,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/6

60
8.

pd
f

