Search results for: thermodynamic functions.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1228

Search results for: thermodynamic functions.

1168 Thermodynamic Analysis of an Ejector-Absorption Refrigeration Cycle with Using NH3-H2O

Authors: Samad Jafarmadar, Amin Habibzadeh, Mohammad Mehdi Rashidi, Sayed Sina Rezaei, Abbas Aghagoli

Abstract:

In this paper, the ejector-absorption refrigeration cycle is presented. This article deals with the thermodynamic simulation and the first and second law analysis of an ammonia-water. The effects of parameters such as condenser, absorber, generator, and evaporator temperatures have been investigated. The influence of the various operating parameters on the performance coefficient and exergy efficiency of this cycle has been studied. The results show that when the temperature of different parts increases, the performance coefficient and the exergy efficiency of the cycle decrease, except for evaporator and generator, that causes an increase in coefficient of performance (COP). According to the results, absorber and ejector have the highest exergy losses in the studied conditions.

Keywords: Absorption refrigeration, COP, ejector, exergy efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1277
1167 Integrating Fast Karnough Map and Modular Neural Networks for Simplification and Realization of Complex Boolean Functions

Authors: Hazem M. El-Bakry

Abstract:

In this paper a new fast simplification method is presented. Such method realizes Karnough map with large number of variables. In order to accelerate the operation of the proposed method, a new approach for fast detection of group of ones is presented. Such approach implemented in the frequency domain. The search operation relies on performing cross correlation in the frequency domain rather than time one. It is proved mathematically and practically that the number of computation steps required for the presented method is less than that needed by conventional cross correlation. Simulation results using MATLAB confirm the theoretical computations. Furthermore, a powerful solution for realization of complex functions is given. The simplified functions are implemented by using a new desigen for neural networks. Neural networks are used because they are fault tolerance and as a result they can recognize signals even with noise or distortion. This is very useful for logic functions used in data and computer communications. Moreover, the implemented functions are realized with minimum amount of components. This is done by using modular neural nets (MNNs) that divide the input space into several homogenous regions. Such approach is applied to implement XOR function, 16 logic functions on one bit level, and 2-bit digital multiplier. Compared to previous non- modular designs, a clear reduction in the order of computations and hardware requirements is achieved.

Keywords: Boolean Functions, Simplification, KarnoughMap, Implementation of Logic Functions, Modular NeuralNetworks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816
1166 Integrating Fast Karnough Map and Modular Neural Networks for Simplification and Realization of Complex Boolean Functions

Authors: Hazem M. El-Bakry

Abstract:

In this paper a new fast simplification method is presented. Such method realizes Karnough map with large number of variables. In order to accelerate the operation of the proposed method, a new approach for fast detection of group of ones is presented. Such approach implemented in the frequency domain. The search operation relies on performing cross correlation in the frequency domain rather than time one. It is proved mathematically and practically that the number of computation steps required for the presented method is less than that needed by conventional cross correlation. Simulation results using MATLAB confirm the theoretical computations. Furthermore, a powerful solution for realization of complex functions is given. The simplified functions are implemented by using a new desigen for neural networks. Neural networks are used because they are fault tolerance and as a result they can recognize signals even with noise or distortion. This is very useful for logic functions used in data and computer communications. Moreover, the implemented functions are realized with minimum amount of components. This is done by using modular neural nets (MNNs) that divide the input space into several homogenous regions. Such approach is applied to implement XOR function, 16 logic functions on one bit level, and 2-bit digital multiplier. Compared to previous non- modular designs, a clear reduction in the order of computations and hardware requirements is achieved.

Keywords: Boolean functions, simplification, Karnough map, implementation of logic functions, modular neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2072
1165 Improved Triple Integral Inequalities of Hermite-Hadamard Type

Authors: Leila Nasiri

Abstract:

In this paper, we present the concept of preinvex functions on the co-ordinates on an invex set and establish some triple integral inequalities of Hermite-Hadamard type for functions whose third order partial derivatives in absolute value are preinvex on the co-ordinates. The results presented here generalize the obtained results in earlier works for functions whose triple order partial derivatives in absolute value are convex on the co-ordinates on a rectangular box in R3.

Keywords: Co-ordinated preinvex functions, Hermite-Hadamard type inequalities, partial derivatives, triple integral.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 223
1164 Impact of the Existence of One-Way Functionson the Conceptual Difficulties of Quantum Measurements

Authors: Arkady Bolotin

Abstract:

One-way functions are functions that are easy to compute but hard to invert. Their existence is an open conjecture; it would imply the existence of intractable problems (i.e. NP-problems which are not in the P complexity class). If true, the existence of one-way functions would have an impact on the theoretical framework of physics, in particularly, quantum mechanics. Such aspect of one-way functions has never been shown before. In the present work, we put forward the following. We can calculate the microscopic state (say, the particle spin in the z direction) of a macroscopic system (a measuring apparatus registering the particle z-spin) by the system macroscopic state (the apparatus output); let us call this association the function F. The question is: can we compute the function F in the inverse direction? In other words, can we compute the macroscopic state of the system through its microscopic state (the preimage F -1)? In the paper, we assume that the function F is a one-way function. The assumption implies that at the macroscopic level the Schrödinger equation becomes unfeasible to compute. This unfeasibility plays a role of limit of the validity of the linear Schrödinger equation.

Keywords: One-way functions, P versus NP problem, quantummeasurements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1311
1163 Fekete-Szeg¨o Problem for Subclasses of Analytic Functions Defined by New Integral Operator

Authors: Khalifa AlShaqsi

Abstract:

The author introduced the integral operator , by using this operator a new subclasses of analytic functions are introduced. For these classes, several Fekete-Szeg¨ type coefficient inequalities are obtained.

Keywords: Integral operator, Fekete-Szeg¨ inequalities, Analytic functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1775
1162 Slip Suppression Sliding Mode Control with Various Chattering Functions

Authors: Shun Horikoshi, Tohru Kawabe

Abstract:

This study presents performance analysis results of SMC (Sliding mode control) with changing the chattering functions applied to slip suppression problem of electric vehicles (EVs). In SMC, chattering phenomenon always occurs through high frequency switching of the control inputs. It is undesirable phenomenon and degrade the control performance, since it causes the oscillations of the control inputs. Several studies have been conducted on this problem by introducing some general saturation function. However, study about whether saturation function was really best and the performance analysis when using the other functions, weren’t being done so much. Therefore, in this paper, several candidate functions for SMC are selected and control performance of candidate functions is analyzed. In the analysis, evaluation function based on the trade-off between slip suppression performance and chattering reduction performance is proposed. The analyses are conducted in several numerical simulations of slip suppression problem of EVs. Then, we can see that there is no difference of employed candidate functions in chattering reduction performance. On the other hand, in slip suppression performance, the saturation function is excellent overall. So, we conclude the saturation function is most suitable for slip suppression sliding mode control.

Keywords: Sliding mode control, chattering function, electric vehicle, slip suppression, performance analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1261
1161 The Gerber-Shiu Functions of a Risk Model with Two Classes of Claims and Random Income

Authors: Shan Gao

Abstract:

In this paper, we consider a risk model involving two independent classes of insurance risks and random premium income. We assume that the premium income process is a Poisson Process, and the claim number processes are independent Poisson and generalized Erlang(n) processes, respectively. Both of the Gerber- Shiu functions with zero initial surplus and the probability generating functions (p.g.f.) of the Gerber-Shiu functions are obtained.

Keywords: Poisson process, generalized Erlang risk process, Gerber-Shiu function, generating function, generalized Lundberg equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1318
1160 Constructing Distinct Kinds of Solutions for the Time-Dependent Coefficients Coupled Klein-Gordon-Schrödinger Equation

Authors: Anupma Bansal

Abstract:

We seek exact solutions of the coupled Klein-Gordon-Schrödinger equation with variable coefficients with the aid of Lie classical approach. By using the Lie classical method, we are able to derive symmetries that are used for reducing the coupled system of partial differential equations into ordinary differential equations. From reduced differential equations we have derived some new exact solutions of coupled Klein-Gordon-Schrödinger equations involving some special functions such as Airy wave functions, Bessel functions, Mathieu functions etc.

Keywords: Klein-Gordon-Schödinger Equation, Lie Classical Method, Exact Solutions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4537
1159 Thermodynamic Performance of Regenerative Organic Rankine Cycles

Authors: Kyoung Hoon Kim

Abstract:

ORC (Organic Rankine Cycle) has potential of reducing consumption of fossil fuels and has many favorable characteristics to exploit low-temperature heat sources. In this work thermodynamic performance of ORC with regeneration is comparatively assessed for various working fluids. Special attention is paid to the effects of system parameters such as the turbine inlet pressure on the characteristics of the system such as net work production, heat input, volumetric flow rate per 1 MW of net work and quality of the working fluid at turbine exit as well as thermal efficiency. Results show that for a given source the thermal efficiency generally increases with increasing of the turbine inlet pressure however has optimal condition for working fluids of low critical pressure such as iso-pentane or n-pentane.

Keywords: low-grade energy source, organic Rankine cycle(ORC), regeneration, Patel-Teja equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2287
1158 Power Efficiency Characteristics of Magnetohydrodynamic Thermodynamic Gas Cycle

Authors: Mahmoud Huleihil

Abstract:

In this study, the performance of a thermodynamic gas cycle of magnetohydrodynamic (MHD) power generation is considered and presented in terms of power efficiency curves. The dissipation mechanisms considered include: fluid friction modeled by means of the isentropic efficiency of the compressor, heat transfer leakage directly from the hot reservoir to the cold heat reservoir, and constant velocity of the MHD generator. The study demonstrates that power and efficiency vanish at the extremes of both slow and fast operating conditions. These points are demonstrated on power efficiency curves and the locus of efficiency at maximum power and the locus of maximum efficiency. Qualitatively, the considered loss mechanisms have a similar effect on the efficiency at maximum power operation and on maximum efficiency operation, thus these efficiencies are reduced, even for small values of the loss mechanisms.

Keywords: Magnetohydrodynamic generator, electrical efficiency, maximum power, maximum efficiency, heat engine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 719
1157 Radar Task Schedulers based on Multiple Queue

Authors: María I. Jiménez, Alberto Izquierdo, Juan J. Villacorta, Lara del Val, Mariano Raboso

Abstract:

There are very complex communication systems, as the multifunction radar, MFAR (Multi-Function Array Radar), where functions are integrated all together, and simultaneously are performed the classic functions of tracking and surveillance, as all the functions related to the communication, countermeasures, and calibration. All these functions are divided into the tasks to execute. The task scheduler is a key element of the radar, since it does the planning and distribution of energy and time resources to be shared and used by all tasks. This paper presents schedulers based on the use of multiple queue. Several schedulers have been designed and studied, and it has been made a comparative analysis of different performed schedulers. The tests and experiments have been done by means of system software simulation. Finally a suitable set of radar characteristics has been selected to evaluate the behavior of the task scheduler working.

Keywords: Queue Theory, Radar, Scheduler, Task.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2206
1156 Prediction of Protein Subchloroplast Locations using Random Forests

Authors: Chun-Wei Tung, Chyn Liaw, Shinn-Jang Ho, Shinn-Ying Ho

Abstract:

Protein subchloroplast locations are correlated with its functions. In contrast to the large amount of available protein sequences, the information of their locations and functions is less known. The experiment works for identification of protein locations and functions are costly and time consuming. The accurate prediction of protein subchloroplast locations can accelerate the study of functions of proteins in chloroplast. This study proposes a Random Forest based method, ChloroRF, to predict protein subchloroplast locations using interpretable physicochemical properties. In addition to high prediction accuracy, the ChloroRF is able to select important physicochemical properties. The important physicochemical properties are also analyzed to provide insights into the underlying mechanism.

Keywords: Chloroplast, Physicochemical properties, Proteinlocations, Random Forests.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679
1155 Evaluation of Wavelet Filters for Image Compression

Authors: G. Sadashivappa, K. V. S. AnandaBabu

Abstract:

The aim of this paper to characterize a larger set of wavelet functions for implementation in a still image compression system using SPIHT algorithm. This paper discusses important features of wavelet functions and filters used in sub band coding to convert image into wavelet coefficients in MATLAB. Image quality is measured objectively using peak signal to noise ratio (PSNR) and its variation with bit rate (bpp). The effect of different parameters is studied on different wavelet functions. Our results provide a good reference for application designers of wavelet based coder.

Keywords: Wavelet, image compression, sub band, SPIHT, PSNR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2228
1154 Equilibrium, Kinetic and Thermodynamic Studies of Simultaneous Co-Adsorptive Removal of Phenol and Cyanide Using Chitosan

Authors: Bhumica Agarwal, Priya Sengupta, Chandrajit Balomajumder

Abstract:

The present study analyses the potential of acid treated chitosan for simultaneous co-adsorptive removal of phenol and cyanide from a binary waste water solution. The effects of parameters like pH, temperature, initial concentration, adsorbent dose, and adsorbent size were studied. At an optimum pH of 8, temperature of 30⁰C, initial phenol and cyanide concentration of 200 mg/L and 20 mg/L respectively, adsorbent dose of 30 g/L and size between 0.4-0.6 mm the maximum percentage removal of phenol and cyanide was found to be 60.97% and 90.86% respectively. Amongst the adsorption isotherms applied extended Freundlich best depicted the adsorption of both phenol and cyanide based on lowest MPSD value. The kinetics depicted that chemisorption was the adsorption mechanism and intraparticle diffusion is not the only rate controlling step of the reaction. Thermodynamic studies revealed that phenol adsorption was exothermic and spontaneous whereas that of cyanide was an endothermic process.

 

Keywords: Chitosan, Co-adsorption, Cyanide, Phenol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2421
1153 Analytical Modeling of Globular Protein-Ferritin in α-Helical Conformation: A White Noise Functional Approach

Authors: Vernie C. Convicto, Henry P. Aringa, Wilson I. Barredo

Abstract:

This study presents a conformational model of the helical structures of globular protein particularly ferritin in the framework of white noise path integral formulation by using Associated Legendre functions, Bessel and convolution of Bessel and trigonometric functions as modulating functions. The model incorporates chirality features of proteins and their helix-turn-helix sequence structural motif.

Keywords: Globular protein, modulating function, white noise, winding probability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958
1152 Low Leakage MUX/XOR Functions Using Symmetric and Asymmetric FinFETs

Authors: Farid Moshgelani, Dhamin Al-Khalili, Côme Rozon

Abstract:

In this paper, FinFET devices are analyzed with emphasis on sub-threshold leakage current control. This is achieved through proper biasing of the back gate, and through the use of asymmetric work functions for the four terminal FinFET devices. We are also examining different configurations of multiplexers and XOR gates using transistors of symmetric and asymmetric work functions. Based on extensive characterization data for MUX circuits, our proposed configuration using symmetric devices lead to leakage current and delay improvements of 65% and 47% respectively compared to results in the literature. For XOR gates, a 90% improvement in the average leakage current is achieved by using asymmetric devices. All simulations are based on a 25nm FinFET technology using the University of Florida UFDG model.

Keywords: FinFET, logic functions, asymmetric workfunction devices, back gate biasing, sub-threshold leakage current.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2866
1151 Thermodynamic Performance of a Combined Power and Ejector Refrigeration Cycle

Authors: Hyung Jong Ko, Kyoung Hoon Kim

Abstract:

In this study thermodynamic performance analysis of a combined organic Rankine cycle and ejector refrigeration cycle is carried out for use of low-grade heat source in the form of sensible energy. Special attention is paid to the effects of system parameters including the turbine inlet temperature and turbine inlet pressure on the characteristics of the system such as ratios of mass flow rate, net work production, and refrigeration capacity as well as the coefficient of performance and exergy efficiency of the system. Results show that for a given source the coefficient of performance increases with increasing of the turbine inlet pressure. However, the exergy efficiency has an optimal condition with respect to the turbine inlet pressure.

Keywords: Coefficient of performance, ejector refrigeration cycle, exergy efficiency, low-grade energy, organic rankine cycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2507
1150 Thermodynamic Analysis of a Novel Thermal Driven Refrigeration System

Authors: Linghui Zhu, Junjie Gu

Abstract:

Thermal-driven refrigeration systems have attracted increasing research and development interest in recent years. These systems do not cause ozone depletion and can reduce demand on electricity. The main objective of this work is to perform theoretical analyses of a thermal-driven refrigeration system using a new sorbent-sorptive pair as the working pair. The active component of sorbent is sodium thiocyanate (NaSCN). Ammonia (NH3) is chosen as sorptive. Based on the thermodynamic properties of the working solution, a mathematical model is introduced to analyze the system characteristics and performance. The results are used to compare with other thermal-driven refrigeration systems. It is shown that the advantages provided by this system over other absorption units include lower generator and evaporator temperatures, a higher coefficient of performance (COP). The COP is about 10 percent higher than the ones for the NH3-H2O system working at the same conditions.

Keywords: Absorption; Ammonia-Sodium thiocyanate, Exergy, coefficient of performance (COP)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1803
1149 Thermodynamic Analysis of R507A-R23 Cascade Refrigeration System

Authors: A. D. Parekh, P. R. Tailor

Abstract:

The present work deals with thermodynamic analysis of cascade refrigeration system using ozone friendly refrigerants pair R507A and R23. R507A is azeotropic mixture composed of HFC refrigerants R125/R143a (50%/50% wt.). R23 is a single component HFC refrigerant used as replacement to CFC refrigerant R13 in low temperature applications. These refrigerants have zero ozone depletion potential and are non-flammable and as R507A an azeotropic mixture there is no problem of temperature glide. This study thermodynamically analyzed R507A-R23 cascade refrigeration system to optimize the design and operating parameters of the system. The design and operating parameters include: Condensing, evaporating, subcooling and superheating temperatures in the high temperature circuit, temperature difference in the cascade heat exchanger, Condensing, evaporating, subcooling and superheating temperatures in the low temperature circuit.

Keywords: COP, R507A, R23, cascade refrigeration system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2953
1148 Performance Study of Cascade Refrigeration System Using Alternative Refrigerants

Authors: Gulshan Sachdeva, Vaibhav Jain, S. S. Kachhwaha

Abstract:

Cascade refrigeration systems employ series of single stage vapor compression units which are thermally coupled with evaporator/condenser cascades. Different refrigerants are used in each of the circuit depending on the optimum characteristics shown by the refrigerant for a particular application. In the present research study, a steady state thermodynamic model is developed which simulates the working of an actual cascade system. The model provides COP and all other system parameters e.g. total compressor work, temperature, pressure, enthalpy and entropy at different state points. The working fluid in low temperature circuit (LTC) is CO2 (R744) while Ammonia (R717), Propane (R290), Propylene (R1270), R404A and R12 are the refrigerants in high temperature circuit (HTC). The performance curves of Ammonia, Propane, Propylene, and R404A are compared with R12 to find its nearest substitute. Results show that Ammonia is the best substitute of R12.

Keywords: Cascade system, Refrigerants, Thermodynamic model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5751
1147 A Study on the Effects of Thermodynamic Nonideality and Mass Transfer on Multi-phase Hydrodynamics Using CFD Methods

Authors: Irani, Mohammad, Bozorgmehry Boozarjomehry, Ramin, Pishvaie Mahmoud Reza, Ahmad Tavasoli

Abstract:

Considering non-ideal behavior of fluids and its effects on hydrodynamic and mass transfer in multiphase flow is very essential. Simulations were performed that takes into account the effects of mass transfer and mixture non-ideality on hydrodynamics reported by Irani et al. In this paper, by assuming the density of phases to be constant and Raullt-s law instead of using EOS and fugacity coefficient definition, respectively for both the liquid and gas phases, the importance of non-ideality effects on mass transfer and hydrodynamic behavior was studied. The results for a system of octane/propane (T=323 K, P =445 kpa) also indicated that the assumption of constant density in simulation had major role to diverse from experimental data. Furthermore, comparison between obtained results and the previous report indicated significant differences between experimental data and simulation results with more ideal assumptions.

Keywords: Multiphase flow, VOF, mass transfer, Raoult's law, non-ideal thermodynamic, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959
1146 A System Functions Set-Up through Near Field Communication of a Smartphone

Authors: Jaemyoung Lee

Abstract:

We present a method to set up system functions through a near filed communication (NFC) of a smartphone. The short communication distance of the NFC which is usually less than 4 cm could prevent any interferences from other devices and establish a secure communication channel between a system and the smartphone. The proposed set-up method for system function values is demonstrated for a blacbox system in a car. In demonstration, system functions of a blackbox which is manipulated through NFC of a smartphone are controls of image quality, sound level, shock sensing level to store images, etc. The proposed set-up method for system function values can be used for any devices with NFC.

Keywords: System set-up, near field communication, smartphone, Android.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1707
1145 Simulating Gradient Contour and Mesh of a Scalar Field

Authors: Usman Ali Khan, Bismah Tariq, Khalida Raza, Saima Malik, Aoun Muhammad

Abstract:

This research paper is based upon the simulation of gradient of mathematical functions and scalar fields using MATLAB. Scalar fields, their gradient, contours and mesh/surfaces are simulated using different related MATLAB tools and commands for convenient presentation and understanding. Different mathematical functions and scalar fields are examined here by taking their gradient, visualizing results in 3D with different color shadings and using other necessary relevant commands. In this way the outputs of required functions help us to analyze and understand in a better way as compared to just theoretical study of gradient.

Keywords: MATLAB, Gradient, Contour, Scalar Field, Mesh

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3445
1144 Effect of Al Addition on Microstructure and Physical Properties of Fe-36Ni Invar Alloy

Authors: Seok Hong Min, Tae Kwon Ha

Abstract:

High strength Fe-36Ni-base Invar alloys containing Al contents up to 0.3 weight percent were cast into ingots and thermodynamic equilibrium during solidification has been investigated in this study. From the thermodynamic simulation using Thermo-Calc®, it has been revealed that equilibrium phases which can be formed are two kinds of MC-type precipitates, MoC, and M2C carbides. The mu phase was also expected to form by addition of aluminum. Microstructure observation revealed the coarse precipitates in the as-cast ingots, which was non-equilibrium phase and could be resolved by the successive heat treatment. With increasing Al contents up to 0.3 wt.%, tensile strength of Invar alloy increased as 1400MPa after cold rolling and thermal expansion coefficient increased significantly. Cold rolling appeared to dramatically decrease thermal expansion coefficient.

Keywords: Invar alloy, Aluminum, Phase equilibrium, thermal expansion coefficient, microstructure, tensile properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2658
1143 2-D Realization of WiMAX Channel Interleaver for Efficient Hardware Implementation

Authors: Rizwan Asghar, Dake Liu

Abstract:

The direct implementation of interleaver functions in WiMAX is not hardware efficient due to presence of complex functions. Also the conventional method i.e. using memories for storing the permutation tables is silicon consuming. This work presents a 2-D transformation for WiMAX channel interleaver functions which reduces the overall hardware complexity to compute the interleaver addresses on the fly. A fully reconfigurable architecture for address generation in WiMAX channel interleaver is presented, which consume 1.1 k-gates in total. It can be configured for any block size and any modulation scheme in WiMAX. The presented architecture can run at a frequency of 200 MHz, thus fully supporting high bandwidth requirements for WiMAX.

Keywords: Interleaver, deinterleaver, WiMAX, 802.16e.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2315
1142 Open Problems on Zeros of Analytic Functions in Finite Quantum Systems

Authors: Muna Tabuni

Abstract:

The paper contains an investigation on basic problems about the zeros of analytic theta functions. A brief introduction to analytic representation of finite quantum systems is given. The zeros of this function and there evolution time are discussed. Two open problems are introduced. The first problem discusses the cases when the zeros follow the same path. As the basis change the quantum state |f transforms into different quantum state. The second problem is to define a map between two toruses where the domain and the range of this map are the analytic functions on toruses.

Keywords: open problems, constraint, change of basis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553
1141 Free Vibration and Buckling of Rectangular Plates under Nonuniform In-Plane Edge Shear Loads

Authors: T. H. Young, Y. J. Tsai

Abstract:

A method for determining the stress distribution of a rectangular plate subjected to two pairs of arbitrarily distributed in-plane edge shear loads is proposed, and the free vibration and buckling of such a rectangular plate are investigated in this work.  The method utilizes two stress functions to synthesize the stress-resultant field of the plate with each of the stress functions satisfying the biharmonic compatibility equation. The sum of stress-resultant fields due to these two stress functions satisfies the boundary conditions at the edges of the plate, from which these two stress functions are determined. Then, the free vibration and buckling of the rectangular plate are investigated by the Galerkin method. Numerical results obtained by this work are compared with those appeared in the literature, and good agreements are observed.

Keywords: Stress analysis, free vibration, plate buckling, nonuniform in-plane edge shear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 770
1140 Influence of Silica Surface Hydrophilicity on Adsorbed Water and Isopropanol Studied by in-situ NMR

Authors: Hyung T. Kwak, Jun Gao, Yao An, Alfred Kleinhammes, Yue Wu

Abstract:

Surface wettability is a crucial factor in oil recovery. In oil industry, the rock wettability involves the interplay between water, oil, and solid surface. Therefore, studying the interplay between adsorptions of water and hydrocarbon molecules on solid surface would be very informative for understanding rock wettability. Here we use the in-situ Nuclear Magnetic Resonance (NMR) gas isotherm technique to study competitive adsorptions of water and isopropanol, an intermediate step from hydrocarbons. This in-situ NMR technique obtains information on thermodynamic properties such as the isotherm, molecular dynamics via spin relaxation measurements, and adsorption kinetics such as how fast the system can reach thermal equilibrium after changes of vapor pressures. Using surfaces of silica glass beads, which can be modified from hydrophilic to hydrophobic, we obtained information on the influence of surface hydrophilicity on the state of surface water via obtained thermodynamic and dynamic properties.

Keywords: Competitive adsorption, nuclear magnetic resonance, wettability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 735
1139 Constructive Proof of Tychonoff’s Fixed Point Theorem for Sequentially Locally Non-Constant Functions

Authors: Yasuhito Tanaka

Abstract:

We present a constructive proof of Tychonoff’s fixed point theorem in a locally convex space for uniformly continuous and sequentially locally non-constant functions.

Keywords: sequentially locally non-constant functions, Tychonoff’s fixed point theorem, constructive mathematics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511