Fekete-Szeg¨o Problem for Subclasses of Analytic Functions Defined by New Integral Operator
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Fekete-Szeg¨o Problem for Subclasses of Analytic Functions Defined by New Integral Operator

Authors: Khalifa AlShaqsi

Abstract:

The author introduced the integral operator , by using this operator a new subclasses of analytic functions are introduced. For these classes, several Fekete-Szeg¨ type coefficient inequalities are obtained.

Keywords: Integral operator, Fekete-Szeg¨ inequalities, Analytic functions.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1337641

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1776

References:


[1] K. Al-Shaqsi, Strong differential subordinations obtained with new integral operator defined by polylogarithm function, Int. J. Math. Math. Sci. 2014, Article ID 260198, 6 pages, 2014.
[2] M. Fekete and G. Szeg¨o. Eine bemerkung ¨uber ungerade schlichte funktionen , 3J. Lond. Math. Soc. 8, 85-89, 1993.
[3] T. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities,J. Math. Anal. Appl. 38, 746-765, 1972.
[4] G. S˘al˘agean, Subclasses of univalent functions, ecture Note in Math.(Springer-Verlag), 1013, 362-372, 1983.
[5] B. Uralegaddi and C. Somanatha, Certain classes of univalent functions, In Current Topics in Analytic Function Theory, (Edited by H .M. Srivastava and S. Own), pp. 371-374, World Scientific, Singapore, 1992.
[6] I. Jung, Y. Kim and H. Srivastava, The Hardy space of analytic functions associated with certain one parameter families of integral operators, J. Math. Anal. Appl. 176,, 138-147, 1993.
[7] Y. Komatu, On analytic prolongation of a family of operator, Math. (Cluj) 32 (55)(2), 141-145, 1990.
[8] P. Duren. Univalent functions , Grundlehren der Mathematics. Wissenchaften, Bd., p259. Springer, New York 1983.
[9] V. Ravichandran, A. Gangadharan and M. Darus. Fekete-Szeg¨o inequality for certain class of Bazilevic functions , Far East J. Math. Sci. 15, 171-180, 2004.
[10] F. Keogh and E. Merkes. A coefficient inequality for certain classes of analytic functions, Proc. Amr. Math. Soc. 20, 8-12, 1969.