Constructing Distinct Kinds of Solutions for the Time-Dependent Coefficients Coupled Klein-Gordon-Schrödinger Equation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Constructing Distinct Kinds of Solutions for the Time-Dependent Coefficients Coupled Klein-Gordon-Schrödinger Equation

Authors: Anupma Bansal

Abstract:

We seek exact solutions of the coupled Klein-Gordon-Schrödinger equation with variable coefficients with the aid of Lie classical approach. By using the Lie classical method, we are able to derive symmetries that are used for reducing the coupled system of partial differential equations into ordinary differential equations. From reduced differential equations we have derived some new exact solutions of coupled Klein-Gordon-Schrödinger equations involving some special functions such as Airy wave functions, Bessel functions, Mathieu functions etc.

Keywords: Klein-Gordon-Schödinger Equation, Lie Classical Method, Exact Solutions

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1087850

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4542

References:


[1] S. Lie, U¨ ber die integration durch bestimmte integrale von einer klasse linear partieller differentialgleichungen, Arch. Math., vol. 6, 1881, pp. 328-368.
[2] P. J. Olver, Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, Springer-Verlag, New York, 1986.
[3] L.V. Ovsiannikov, Group Properties of Differential Equations, Nauka, Novosibirsk (in Russian), 1962.
[4] G.W. Bluman, J.D. Cole, Similarity Methods for Differential Equations, Springer-Verlag, New York, 1974.
[5] O.P. Bhutani, N.L. Sharma, On the similarity solutions of the generalized Boussinesq equation in hydrology via transformation groups, Int. J. Engng. Sci., vol. 19, 1981, pp. 779-790.
[6] N. Goyal, R.K. Gupta, Symmetries and exact solutions of the nondiadonal Einstein-Rosen metrices, Phys. Scr., vol. 85, 2012, pp. 015004-015009.
[7] M.S. Bruz´on, M.L. Gandarias, Classical and nonclassical symmetries for the Krichever-Novikov equation, Theor. Math. Phys., vol. 168, 2011, pp. 875-885.
[8] R.K. Gupta, K. Singh, Symmetry analysis and some exact solutions of cylindrically symmetric null fields in General Relativity, Commun. Nonlinear Sci. Numer. Simul., vol. 16, 2011, pp. 4189-4196.
[9] B. Guo, Global solution for some problem of a class of equations in interaction of complex Schr¨odinger field and real Klein-Gordon field, Sci. China Series A, vol. 2, 1982, pp. 97-107.
[10] B. Guo, C. Miao, Global existence and asymptotic behavior of the solution for the Klein-Gordon-Schr¨odinger equations, Sci. China, Series A., vol. 25, 1995, pp. 705-714.
[11] J. Xia, S. Han, M. Wang, The exact solitary wave solution for the Klein-Gordon-Schr¨odinger equations, Appl. Math. Mech., vol. 23, 2002, pp. 58-64.
[12] L. Zhang, Q. Chang, Convergence and stability of a conservative finite difference scheme for a class of equation system in interaction of complex Schr¨odinger field and real Klein-Gordon field, Num. Math. J. Chin. Univ., vol. 4, 2000, pp. 362-370.
[13] L. Zhang, Convergence of a conservative difference scheme for a class of Klein-Gordon-Schr¨odinger equations in one space dimension, Appl. Math. Comput., vol. 163, 2005, pp. 343-355.
[14] L. Kong, R. Liu, Z. Xu, Numerical simulation of interaction between Schrdinger field and Klein-Gordon field by multisymplectic method, Appl. Math. Comput., vol. 181, 2006, pp. 342-350.
[15] S.S. Ray, An application of the modified decomposition method for the solution of the coupled Klein-Gordon-Schr¨odinger equation, Commun. Nonlinear Sci. Numer. Simul., vol. 13, 2008, pp. 1311-1317.
[16] Q. Wang, Theoretical issue of controlling nucleus in Klein-Gordon-Schr¨odinger dynamics with perturbation in control field, Appl. Math. Comput., vol. 206, 2008, pp. 276-289.
[17] S. Wang, L. Zhang, A class of conservative orthogonal spline collocation schemes for solving coupled Klein-Gordon-Schr¨odinger equations, Appl. Math. Comput., vol. 203, 2008, pp. 799-812.
[18] Y. Wang, D. Xia, Generalized solitary wave solutions for the Klein-Gordon-Schr¨odinger equations, Comp. Math. Appl., vol. 58, 2009, pp. 2300-2306.
[19] A. Darwish, E.G. Fan, A series of new explicit exact solutions for the coupled Klein-Gordon-Schr¨odinger equations, Chaos, Solitons and Fractals, vol. 20, 2004, pp. 609-617.
[20] S. Liu, Z. Fu, S. Liu, Z. Wang, The periodic solutions for a class of coupled nonlinear Klein-Gordon equations, Phys. Lett. A, vol. 323, 2004, pp. 415-420.
[21] A. Biswas, H. Triki, 1-Soliton solution of the Klein-Gordon-Schr¨odingers equation with power law nonlinearity, Appl. Math. Comp., vol. 217, 2010, pp. 3869-3874.
[22] A. Bansal, R.K. Gupta, Modified (G/G)-expansion method for finding exact wave solutions of the coupled Klein-Gordon-Schr¨odinger equation, Math. Meth. Appl. Sci., vol. 35, 2012, pp. 1375-1387.