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Abstract—In this paper, we present the concept of preinvex
functions on the co-ordinates on an invex set and establish some
triple integral inequalities of Hermite-Hadamard type for functions
whose third order partial derivatives in absolute value are preinvex
on the co-ordinates. The results presented here generalize the obtained
results in earlier works for functions whose triple order partial
derivatives in absolute value are convex on the co-ordinates on a
rectangular box in R3.
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I. INTRODUCTION

ET J be an nonempty interval of real numbers. A
function f : J — R is said to be convex on the interval
J, if the following inequality holds:

fz+ (1 —=Ny) <Af(z)+ (1 - Ny (1)

for every z,y € J and A\ € [0, 1]. If the reversed inequality
in (1) holds, then f is concave. One of the most famous
inequalities for convex functions is the Hermite-Hadamard
inequality. This double integral inequality states that if
f:+J — R is a convex function, then

f(“f’) < 1a/abf<x)da:§ N XT0 -

where J C R is an nonempty interval and a,b belong to
J with a < b. Both inequalities in (2) hold in the reversed
direction if f is a concave function. Over the last decade
the double Hermite-Hadamard integral inequality (2) has been
extended, refined and generalized using novel and innovative
techniques (see for example [5], [8], [17], [22], [31], [32] and
the references therein). A significant class of convex sets is
that of invex sets introduced by Mohan et al. [16]. In [28],
the authors introduced the concept of preinvex functions as a
generalization of convex functions.

We recall the following definitions which are well known in
literature: Let K be a nonempty and closed subset of R™ and
let f: K — Randn: K x K — R" be continuous functions.
In [16], the concept of invex sets was introduced as follows:

Definition 1. (invex set) The set K is said to be invex with
respect to the mapping 7(.,.), if

x+tn(y,x) € K,
for every z,y € K and ¢ € [0,1].
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Notice that every convex set is invex with respect to the
mapping 7(x,y) = x — y, but there exist invex sets which are
not convex (see for example [1] and [16]).

Definition 2. (preinvex function) The function f : K — R is
said to be preinvex on K with respect to the mapping 7(.,.),
if

fluttn(v,u)) < (1 =) f(u) +f(v),
for every u,v € K and ¢ € [0,1].

It is trivial that every convex function is preinvex with
respect to the mapping 7(.,.), but there exist preinvex
functions which are not convex, (see for example [22]).
Recently, several Hermite-Hadamard type inequalities have
been obtained for preinvex functions (see [11], [18]).

Let A =: [a,b] x [c,d] C R? be a bidimensional interval
with ¢ < b and ¢ < d. A mapping f : A — R is convex on
the rectangle A from the plane R2, if

fAz+(1=X)z, Ay+(1=Nw) < Af(z,y)+ (1= f(zw),

holds for every (z,y), (z,w) € A and X € [0, 1].

In [6], Dragomir introduced the concept of convex functions
on the co-ordinates on the rectangle A as follows: A mapping
f A — R is said to be convex on the co-ordinates on the
rectangle A if the partial mappings

fy i la, 0] = R, fy(u) = flu,y)
and

fa [Cvd] - R, .f.r(v) = f(:v,v)

are convex where defined for all = € [a, )],y € ¢, d].

In [12], the authors presented a formal definition for
co-ordinated convex functions in following form: A mapping
f A — R is said to be convex on the co-ordinates on the
rectangle A, if

fx+ (1 =8y, su+ (1—s)w)
<tsf(z,u)+t(1—s)f(z,w)
+s(I=8)f(y,u) + A =1)(1 = 5)f(y,w),

holds for every (z,u),(y,w) € A and t,s € [0,1]. Clearly,
every convex function on the rectangle A is convex on the
co-ordinates on the rectangle A, but converse may not be true
(see for example [6]). For several recent results concerning
Hermite-Hadamard type inequalities for functions that satisfy
different classes of convexity on the co-ordinates on the
rectangle A from the plane R2, we refer the interested reader
to [2], [6], [10], [12]-[14], [21], [23]-[26]. Let K; and K>
be two nonempty subsets of R™ and let n; : K1 x K3 — R"
and 72 : K9 x K9 — R”™ be two continuous functions. The
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concept of preinvex functions on K; X K5 and co-ordinated
preinvex functions on K; x Ky were introduced by [15] as
follows:

Definition 3. Let K x K5 be an invex set with respect to the
mappings 71 (.,.) and 72(.,.). We say that f : K3 x Ko =+ R
is a preinvex function, if

f(u "‘”71(957“)7” +t7]2(y,1))) < (1 - t)f(amy) + tf(uav)a
for all (z,y), (u,v) € K1 x Ky and ¢ € [0, 1].

Definition 4. Let K x K be an invex set with respect to the
mappings 71 (.,.) and n2(.,.). We say that f : K1 X Ko — Ris
a preinvex function on the co-ordinates, if the partial mappings

fy : Kl %Rafy(u) = f(uay)
and

fo i1 Ko =R, fw(v) = f(:L',”U)

are preinvex with respect to the mappings 7; and 179
respectively for every y € Ky and x € K.

Clearly, any convex function on the co-ordinates is
preinvex on the co-ordinates. Furthermore, there exist preinvex
functions on the co-ordinates which are not convex on
the co-ordinates (see for example [15]). In the same
article, the authors established several Hermite-Hadamard
type inequalities for functions whose second order partial
derivatives in absolute value are preinvex on the co-ordinates.
In [27], the authors defined convex functions and co-ordinated
convex functions on a rectangular box € := [a,b] X [¢,d] X
[e, f] in R? as follows:

Definition 5. The mapping f : 2 — R is a convex function
on the rectangular box (2, if
FAz+ (1 =Xz y+ (1 = XNw, du+ (1 —A)v)
S A (@ y,u) + (1= A)f(z,w,0),
for all (z,y,u), (z,w,v) € Q and X € [0,1].
Definition 6. We say that f :  — R is a convex function

on the co-ordinates on (2 if for every (z,y, z) € Q, the partial
mappings,

foiled X e, fl =R, fo(v,w) = f(z,0,w), € [a,b];
f’y : [avb] X [eaf] —>]R7 fy(u7w) = f(uvy’w)7 Y€ [C’d];

and
foila b x [e,d] = R, fa(u,v) = f(u,v,2), 2 €le, f]
are convex.

In [27], the authors established the Hermite-Hadamard type
inequality for co-ordinated convex functions on a rectangular
box in R3.

The aim of this paper is to introduce the concept of
co-ordinated preinvex functions defined on an open invex set
and to establish some inequalities of Hermite-Hadamard type
for functions whose third order partial derivatives in absolute
value are preinvex on the co-ordinates. The presented results
generalize the obtained results in earlier works for functions
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whose third order partial derivatives in absolute value are
convex on the co-ordinates on a rectangular box in R3. Main
aim of the present paper is to obtain several inequalities to
functions that defined on an invex set of R? and they generalize
the obtained results to functions that defined on an invex set
of R,

II. MAIN RESULTS

The goal of this paper is to introduce the notion co-ordinated
preinvex functions on an open invex set which is a
generalization of the notion co-ordinated convex functions on
a rectangular box in R3 given in Definition6 and to establish
some inequalities of Hermite-Hadamard type for these class
functions.

Throughout this paper, let K;, Ko and K3 be three
nonempty subsets of R"™, let n; : K; x K1 — R", 9 :
Ky x K9 — R™ and n3 : K3 x K3 — R"™ be three continuous
functions and let I' = K x K5 x K3.

Definition 7. We say that I' is an invex set with respect to
the mappings 71 (.,.), n2(.,.) and ns(.,.), if

(’LL +t771($7u)7v + tng(y,v),w “'“72(%“’)) er
for all (z,y,2), (u,v,w) € I and t € [0, 1].

Definition 8. Let I' is an invex set with respect to the
mappings 71 (.,.), n2(.,.) and n3(.,.). We say that f: ' - R
is a preinvex function on I', if

Jlutm(z,u),v+tn(y,v),w + tn(z,w))
< A=) f(@,y,2) +tf(u,0,w)
for all (z,y,2), (u,v,w) € T and t € [0, 1].

Definition 9. Let I' is an invex set with respect to the
mappings 71 (.,.), 72(.,.) and n3(.,.). We say that f : ' = R
is a preinvex function on the co-ordinates, if the partial
mappings

fz K o x Ko — Rafz(uav) = f(uvvvz)v
fy K1 x K3 = R, fy(u,w) = f(u,y,w)

and
fm : KQ X KS — R7 f.T(an) = f(%,U,IU)

are preinvex with respect to the mappings 71 (., .), n2(.,.) and
n3(., .), respectively, for every z € K3, y € K2 and x € K.

Lemma 1. Every preinvex mapping f : I' — R is co-ordinated
preinvex on I'.

Proof: Let f : I' — R is preinvex on I'. Defining the
partial mappings as follows:

fo i Ko X K3 %vax(yvz) = f(%ywz)’x € Ki;
fy : Kl X K3 —)R,fy(x,Z) = f(l',y,Z),y S K27

fz : Kl X K2 %vaZ(xvy) = f(x,y,z),z € K3~
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Let ¢ € [0,1] and (z1,22),(v1,y2) € K x Ks. The
preinvexity of f on I follows that

fo (yn +tm(z1,91), y2 + tna (w2, 42))

= flz,y1 +tm(w1,91),y2 +tn2(x2,92))

= fle+tm(z,z), 1 +tn(z1,91), y2 + tn2(x2, y2))
(I —=t)f(x,x1,22) +tf(2,y1,92)

(1 =t) fa(z1,22) + tfu (Y1, y2)-

IN

Thus, the mapping f, is a preinvex function. The preinvexity
of functions f, and f, can be proved in a similar way. ]

Note that every co-ordinated convex function is co-ordinated
preinvex; however, the converse is not generally true. See the
following example:

Example 1. Consider the function f : I' — R defined by
f(u,v,w) = —Ju||v||w|. The function f is not co-ordinated
convex, but it is clear that the function f is co-ordinated
preinvex with respect to the mappings 71, 12 and 73 defined
as follows:

u—2z, u,z>0oru,z<0
nl(u’z) = .
z —u, otherwise,
v =Y, ’U7y200rv7y§0
n2(v,y) = .
y —v, otherwise
and
w—x, w,x>0o0rw,x<0
n3(w,z) = ) .
r —w, otherwise.

To obtain us main results, we need to prove the following
new lemma:

Lemma 2. Let I' C R3 be an open invex set with respect to
the mappings 71(.,.), n2(.,.) and n3(.,.). If f: " — R be a
mapping having third partial derivatives and

o*f
dtdsoh

where

A= é[f(a +m(b,a),c+n2(d, c),e+n3(f,e))

+ fla,c+ma(d, c),e +m3(f,€))
+ fla+m(b,a),c,e+ns(fe))
+ fla,c,e+n3(f,€)) + fla+m(b,a), c+m2(d, c), e)
+f(aac+n2(dvc)v ) (a+771( ) c,e)+f(a,c,e) )
1 e+ns(f.e)
Beprs [ Hesmbactmdo).2)

+ fla,c+n2(d,e), z) + fla+ m(b,a),c,z) + f(a,c,z)dz

1 c+n2(d,c)

+m/c fla+m(ba),y,e+n3(f,e))

+ fla,y,e+n3(f,€)) + fla+m(b,a),ye) + f(a,y,e)dy
1 atn (b,a)

—l—m/a flz,c+n2(d,c),e+n3(f,e))

+ f(x,c,e +n3(f,e) + f(z,c+na2(d, ), €) + f(z, ¢ e)dx

and
1

- 2ma(d, o)ns(fe)
etnz(f.e) petnz(dc)
/ f(a+n1(b7a)7yvz)+f(aayvz)dydz

211 (b, a)nB(fv e)

J’_

etns(f.e) patni(b,a)
/ / f(l‘,C-'-’l]g(d,C),
J’_

z) + f(z, ¢, z)dzxdz

211 (b, (l)ﬁg(d c)
ctns(d,c)  patni(ba)
/ F(@,y.e +ma(f, ) + f(z,y,e)dady.

Proof: In order to prove (3), we set

I = /1(1_%) & f(a+ tm (b, a),

By integration by parts with respect to ¢ over the interval

c+sna(d,c), e+ hnz(f, ))
JtdsOh

€ L([a,a +tni(b, a)] x [c, ¢+ sn2(d, ¢)] x [e, e + hns(f, 6)]) [0, 1], one can obtain

with 71 (b, a) > 0, n2(d, ¢) > 0 and n3(f,e) > 0, where a,b €
Ky, ¢,d € Ky and e, f € Ks. Then one has the following
equality:

m(b,a)ne(d s fie) [* [
8 : /0/0/0(1—%)(1—25)(1_22)

agf(a + t771 (ba a/)a c+ 8772(d7 C)7 e+ h773(f7 6))
dtdsoh

1 atni(b,a)  retna(die)  retns(f.e)
B m (ba a)T]Z(d7 C)’]3(f7 6) L /(’ L
f(x,y, 2)dzdydx — A+ B — C,

dtdsdh
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o 32f(a+t771(baa)’0+3772(d>c)7€+h773(f7€))
Li=Q-21) m (b, a)dsOh o
9*f(a+tni(b,a), c+ sna(d, c), e + hns(f, 6))

2
* m (b, a) /0 0s0h
_ _82f(a + 771(17: a’)v c+ 3772(d7 C)7 e+ hn?)(fv 8))
m (b, a)0sOh
_82f(aa c+ Sn2(d7 C)> e+ h773(f> 6))
m (b, a)dsoh

42 / 9 f(a+ (b, a), c + sna(d; ), €+h773(f:€))
m (b, a) ds0h
Putting I = fol(l — 25)I1ds. Therefore
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_ ! *62f(‘1+Wl(b»a)7c+3772(d70)76+h773(f7€))
L= /0 (1-2s) |: n1(b,a)0sOh
782]“(“’ c+ 3772(d7 C)7 e+ h773(f7 6))
11 (b, a)0sOh

2 /1 82f(a+t711(b7a)70+87)2(d7 C),€+ hn3(f7 e))dt ds
m (b, a) ‘

dsOh

Similarly, integrating by parts with respect to s over the
interval [0, 1], we have

Iz
o 1
— m(b,a)n2(d, c)
Of(a+mni(b,a),c+n2(d,c),e + hnz(f,e))
oh
4 0f(a,ctma(d o) e + hs(f )
Oh
4 0flatmba)cethns(fe))
oh
6f(u" C,€+h773(f, 6))
+ oh
2
m (bv a)”D (dv C)
/1 8f(a + 7]1(b, a)7c+ 5772(d7 C)7€ + hn3(fy 6))
0 oh
L 0@ et om(d c),e + hy(,0))
oh
+ /1 8f(a +t711(b7a)70+ 7]2(d»0)ve + hn3(f7 e))
0 oh
6f(a+t771(b a‘)?c e+ h773(f7 e))
Oh

4
T ama(do)
/1 /1 af(a+t771(b7 a)7C+SW2(d7 C),€+h773(f, 6))
o Jo Oh

= [}(1 — 2h) Iodh. So,

dsdt.

Finally, taking I3

1 1

- —on

s 02
[3f(a+Wl(bﬂ)chr772(d70)7e+h773(f7€))

oh
af(a C+772(d C)7€+h7]3(f,€))
Oh
3f(a+771(b a),c.e+ hnz(f,e)) +0f(a,c, €+h773(f76))]
oh

2
11 (b @y (d: o) fo-m

[/1 Of(a+mni(b,a),c+ sn2(d,c), e + hnz(f,e))

0 oh

af(a ¢+ sn2(d, c),e—&-hng(f,e))

Oh
df(a+tni(b,a),c+n2(d,c), e+ hns(f,e))

of 7

af(a+tm(b a) c.et+hns(f,e)) , ]

771(5 a)n2(d C)/ / /(1—2h

Of(a+tni(b,a),c+ sn2(d, c), e + hns(f,e))
Oh

dhdsdt.
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Again by integration by parts with respect to h over the
interval [0, 1], we obtain

I3

- —1

© (b, a)n2(d, e)ns(f€)

[f(a+m(b.a),c+ma(d,0) e+ (s, )

+ f(a,c+772(d, C),eJr 773(f7 6)) + f(a+ nl(bva)7cve+ 7]3(f’ 6))

+ f(a7 c e +773(f: e)) + f(a +771(b7 a)vc"" 772(d7 C)?e)

T fa et ma(d ), €) + flatm(ba),e,) + flae, o)
2

* 1 (b7 ‘1)772(d7 6)773(f7 e)

1

[ (rta me.).ctma(d.ch.e (1)

+ f(a,c+mn2(d,c), e + hnz(f,e))

+f(a+771(b,a),c,e+hng(f,e))

+ f(a, c,e+hn3(f,e))>dh

1
+ [ (ot mba).c+ smdo). e+ ns(f.0)

+f(avc+sn2(dv C),€+773(f, 6))
+ f(a +771(b7 a)vc+ ST/Q(d7 C)ve)

+ f(a,c+ sma(d,0), ) ) ds
1
+ [ (st m.) e mid.o).e+ ms.e)
+f(a+t771(b,a)70,€+773(f75))
+ fla+tni(b,a),c+n2(d,c),e) + fla+tni(b,a),c, e))dt]

4
m (b» a)nQ (d7 C)Ws(ﬁ e)

[/o1 /o1 (f(a +n1(b,a),c+ sn2(d, ¢), e + hns(f, )

+ f(a,c+ sn2(d,c),e + hns(f, e)))dsdh

1 1
+/0 /0 (f(ﬂ+tn1(bya),c+772(d,c),e+hng(f,e))
+f(a+tm(b,a),c,e+hn3(f,e)))dtdh

1 1
+/O /0 (f(a+t771(b,a),c+snz(d,c),e-g-ns(f,e))

+ fla+ tn(b,a),c+ sna(d o), ) ) deds|
N 8
n1(b, a)n2(d, c)ns(f,e)

11 el
/ / / fla+tni(bya),c+ sn2(d,c), e+ hns(f,e))dtdsdh.
o Jo Jo

Multiplying both sides of the inequality above by
w and utilizing the change of variables © =
a—i—tm(b a), y = c+ sn2(d,c) and z = e + hns(f,e)), we
get the desired result. |

Theorem 1. Let I' C R? be an open invex set with respect to
the mappings m(.,.), n2(.,.) and n3(.,.) and let f : T — R
be a mapping having third partial derivatives and ataSJ;h S
L{[a,a+tn(b,a)] X [c,c+sna(d, c)] x [e, e+ hns(f, )]) with
m(b,a) >0, n2(d, ¢) > 0 and n3(f,e) > 0, where a,b € K,
c,de Keande, f e Ks. If %‘ is a preinvex function on
the co-ordinates on 1, then one has the following inequality:
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1 1
‘ L Jlg/ / (1 — 2s)(1 — 2h)]
m (b7 a)772 (d7 C)n3(f7 6) 0 7o .
a+mn1 (b,a) c+n2(d,c) e+ns(f,e) « {/1(1 _ t)|1 _ 2t| ‘83]0(047 c+ 57]2(617 C)¢€ + h"73(f: e)) ' dt
[ e 0
a C e 1 63 b7 d7 ’ hi- :
f(x,y,z)dzdydfoJrBfC‘ +/0 #1 — 21 I( c+s?726(ta;)9he+ n3(f 5))‘dt}dsdh
b d : 1 1
< n1(b, a)nz2(d, c)ns(fe) 1 (1= 25)(1 — 2)|
64 X 4.Jo Jo
y {’ (a,00)| + ‘ TF (0 de) 9 f(a,c+ sn2(d, ¢), e + hng (/)
DtDs0h t0s0h x{ Sioson
o’ f |2+ sma(die)e + hma(,e))
+ ‘atasah ®, ’e)’ + ‘Btd an > )' ‘81&8 8h (a,¢, f)' 2(9t858h . ’}dsdh
oot |+ 5o e |+ [ 5oL 6| | L
otosoh otosoh otosoh =3 /0 (1 —2n)]
1 83f
1—s)1—2 ,c,e+ hns(f,
where A, B and C' are defined in Lemma 2. 8 {/ (=)l s|<’3t3 ah(a & e+ hns(fe))
Proof: Using Lemma 2, it follows that + ‘81&6 o (bye,e+hns(fye)) )
1 63
| . “ +/O s|1—25\(‘8t8 Siaear (@ d-e+hns(f.))
3
771(17:‘1)772(d,0)773(f,6) +‘ 0 f (b, d,e+hn3(f,e)) )ds}dh

/a+n1(b,a) /c+n2(d,6) /€+n3(f,€) Otdsoh
1 1
- c ‘ - o [ 1a—2m)
16 Jo

f(x,y,z)dzdydfoJrBfC‘ 5
o°f
momdemfe) [* N < { | g o+ hn(7.0)
< /0 /0 /0 (1= 26)(1 — 28)(1 — 2)| Bt0s0h

8

E 83
85f(a + i (b7 a‘)7 C,+{S’72(d’ C)) e+ h773(f7 6)) ‘ dtdsdh. + Bt@s](;h ((17 d7 e+ hﬂ3(f7 e))
dtdsoh oy
+ 8tasah(b’c’e+hn3(f’6))
Putting 3 f
+ | 555 (b die + hna(f, )| Jdh
< = 1—2h 1—-nh
o / / / (@ = 26)(1 = 28)(1 — 20| < / 11— 2m)] x {( )Hdtd /e (@,c.0)
‘ (a+tni(b,a),c+ snz(d,c), e+ hns(f, e ))‘dtdsdh + atasah( @ )‘ ‘ata an %o )‘
Otdsoh ' 3 f
| Giasan &% ©) J+hx Hata o (@ ’f)’
3 i) d 07 b,d, dh
Using the preinvexity property of J&%‘fah‘ on the co-ordinates * 8t8 oh (a,d, f)] + atasah b, f)| + Atds ah( 5 }
on I" and utilizing the following facts: _ ‘ ‘ >’f ‘ >*f
- 64 { dtasdh( @O | Gasan 9| T | Bias dh(b @e)
f
1 3 +| oot + ot )| + | 52 L @)
/ (1= 4)1 — 2t)dt = / (1= 1)(1— 20)dt atasah OtdsOh 0tdsOh
0 0
1 1 + atasah(’ ’f)‘ ‘ata an ’f)‘}
—/ (1 —=t)(1—2t)dt = 1
1
2 Inserting .JJ; in (4), we obtain the desired result. This
completes the proof. |
d
an Theorem 2. Let I' be an open invex set with respect to the
. . mappings n1(.,.), n2(.,.) and ns3(.,.) and let f : I' — R
L 3
/ t[1 — 2t|dt = /2 t(1 — 2t)dt be a mapping having third partial derivatives and 76t%sjéh €
0 0 L([a,a+tn;(b,a)] x [c,c+sna2(d, ¢)] X [e,e+hns(f, e)]) with
f/ K1 — 2t)dt =+, mib.a) > 0. 15(d,c) > 0 and 15 (f,) > 0, where a,b & K,
a3
3 4 c,de Ko and e, f € K. If ‘% is a preinvex function
on the co-ordinates on I',q > 1, then one has the following
it follows that inequality:
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1
) n1(b, a)n2(d, c)ns(f, e)

atni(b,a) petna(de) petns(fe)
/ / / f(z,y, z)dzdydz
—A+B-C

n1(b,a)n2(d, c)ns(f,e) 1 ¥
: 8 * ((1 +p )

3 q
X {1(‘&8@5};}1(& @

(77f)

’ ItdsOh

3f q a3f
'ata an @ be)| + ’8&3 an (@
3
*[areo)] + [
0tdsoh Otos Bh
83f q o f q 1
b,d 4
* ’atasah( de) +‘8t856h )}
where %—l—% =1and A, B and C are defined in Lemma 6.

Proof: The well-known Holder integral inequality along
with Lemma 6, imply that

| ! ®)

m (b7 a)772 (d, C)’l’]3(f, 6)

/a+771(b,a) /C+n2(d,6) /6+773(f,6)
a c €

f(@,y, 2)dzdyde — A+ B — c(
< m a)nz(d s (f.e)

///\(1—%)(1—25)(1_%)‘

’ata Jc;h(a+tm(b a),c+sn2(d; c), e + hns (£, €))
m(b a 772(d c)nz(f,e)

(/ / / (1 = 26)( 1*23)(1*2h)|pdtdsdh>
<L

1

53 q 1

0*f(a+tmi(ba),c+sn2(d,c) e + hs(fre)) |* 0 9
dt0sOh

dtdsdh

3 =

Putting

33 f(a+tni(b,a),c+ sn2(d,c), e+ hns(f,
Otdsoh

L

dtdsdh.

6&%% , for ¢ > 1, on

Using the preinvexity property of ‘
the co-ordinates I', we get
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1,1 1 9 f \
J1 S/O / / (1—1) ‘C,%a oh (a,c+ sn2(d,c),e + hns(f,e))
83
+t 5t9s dh(b c+ sn2(d,c), e+ hns(f,e)) }dtdsdh

q
hn-
515 8h(a,c,e+ n3(f,e))

5/0/0/ (1-0)1-s)

3 q
+(1—1t)s ETo ah(a d,e+ hns(f,e))
+t(1—s) EYEN ah(b ¢, e+ hnz(f,e)) }

63
Biosan et hns(f,e)) dt}}dtdsdh

s/O/O/O (1—t)(1—s>(1—h>\m(a,ae>q

83
1-8)(1—s)h
SIS Pl
83}0 q
1-)s(1—h) =27 _(a,d
+ =050 | 0L (0, d0)
93 f
1—t)sh
= Dsh| G son
1 —s)(1—h
11— 5)( )mwh(,c,e) p!
1 — s)h
-9 ataah }
93 f a
s(1 —
1= ) | g (b)) )
+t h' 01 (bdf)‘ }}dtd dh
S S
91050
1 83 q an q 3f
- v d,
( 6t858h( ee) +‘8t658h(a’c’f) +‘ata ah(a e)
d,
+’8t838h(a ! ) ‘Btd oh ’8t8 oh
d3f q
9T 44
+‘atasah(’ e) +‘6t8 on > ’f)‘
That is,
1 q
< -
S <‘8t858h( “e )‘ ‘ata 8h( e f)
‘ata oh ‘ata on”
*an o]+
9t0s0h 91050
63f q
‘ +‘3t8 oh )

On the other hand, we have

111
1

///|1—2t|p|1—25\P|1—2h\"dtdsdh:73.

o Jo Jo (p+1)

(6)
Inserting J; and (6) in (5), we obtain the desired result, as
claimed. This completes the proof. |

Theorem 3. Let I' be an open invex set with respect to the
mappings n1(.,.), n2(.,.) and n3(.,.) and let f{ : T' — R
be a mapping having third partial derivatives and atasf(;h S
L{[a,a+tni(b,a)] x [c,c+sn2(d, c)] x [e,e+hns(f, )]) with
1 (b,a) >0, n2(d, ¢) > 0 and 7]3(f7 e) > 0, where a,b € K,

c,d € Ko and e, f € Ks. If‘ is a preinvex function

dtds@h
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on the co-ordinates on U for some fixed ¢ > 1, then we get

the following inequality

1
) n1(b,a)n2(d, c)ns(f,e)

/a+n1(b,a) /c+7rz(<l,C) /6+"13(f7e)
a c e

f(z,y, z)dzdyde — A+ B — C‘

< mba)n2(d, c)nz(f; )

: N9
: o (1
: 5)

q
64{ '8t838h(a’c’e) ‘am oh
q
'6t8 ar, (@ 4€) ‘ata on"
'81‘0 oh ‘ata oh
adf q 1
q
+'atasah(b’d7e)‘ ‘ata an > ’f)’ }

where A, B and C are defined by Lemma 2.

Proof: The well-known power-mean integral inequality
for triple integrals along with Lemma 2, conclude that

1
‘ m (b’ a)?]g (d7 6)773(f7 e)

/a+711(b,a> /(:+n2(d7(:) /‘e+713(f,e)

f(z,y,z)dzdyde — A+ B — C‘

< nl(b,a)ng(g,c)ns(ﬁe) /01/01/01

(1= 26)(1 — 28)(1 — 2h)|
‘ 83f(a + tnl(bva)7c + snz(d7c)v e+ h/l]3(f, e)) ’
0tdsOh
< m a)772(d o)na(f,e)

</ / / ‘(172t)(1723)(1*2h)\dtdsdh>
([ [ [ 1a=200-290-2m)

3P fla+tm(b,a), ¢+ sn2(d, c), e + hnz(f,
OtdsOh

(7

dtdsdh

1

! dtds dh)%

Taking

J1:/01/01/01|(172t)(172s)(172h)|

agf(a +tni(b,a), ¢+ sna(d; c), e + hns(f, e)) ¢
O0tdsOh

dtdsdh.

on the co-ordinates

By the preinvexity property of ‘ 6t65 5

on I', it is noted
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J1§/01/01/01\(1—2t)(1—25)(1—2h)|

3
x{1-1 ‘%(a,cﬂw(d, o), e+ hns(f,¢))

q

3f
0t0soh

g/ / / (1= 26)(1 — 25)(1 - 21)|

x{(1-1(1-s)

+t' (byc+ sn2(d, c), e+ hns( f,e))‘ }dtdsdh

(a,c,e+ hns(f,

8t8 E)h

+ (1 —t)s| ——(a,d, e+h773(f7€))

otos dh
q
+t(1—s)

9 f
bodeth
Biowon b e+ hna(f,

< [" [ [ 1= 20020020

(b, e, e+ hmz(f;e))

Otods Bh

+ts

q
{(1—t)<1—s)(1—h)\at8 ah(a,c,e)
1—-t)(1—3s)h
+a-Hd =9 ’ataah
q
1—t)s(1—h d 1—t)sh
(-0 )]awdh(a, ) +a—om| 2L
q
t(l — 1—h b,c t(1 —s)h
(1 - s)( )]Mah(,c,e) 1) \ataah
o
ts(1—h b, d, tsh bod, f)| Vdtdsdh
sl )8t68h( e s ‘81588}1( f)‘} )
3 q 3 3 q
:1(}8 @ce)| +|-27 (@a ‘ f(ade)
Dtosoh Btasoh otdsoh
63
b,
+‘dtasah ’8158 an ”) )ata oh
'6t8 an o )‘ ‘8&9 an b ’f)‘

The last equality follows using the following fact:

/01 /01 /01 [(1—2t)(1 — 25)(1 — 2h)|dtdsdh = é

Writing J; in (7), we get the desired result. Thus, the proof
is completed. |

Remark 1. For ¢ = 1, Theorem 3 reduce to Theorem 1. Thus,
Theorem 3 is a generalization of Theorem 1.

Remark 2. Since % < —L -+ therefore for p > 1, the
. . (p+1)» .
obtained estimation in Theorem 3 is better than the derived

estimation in Theorem 2.

Remark 3. In the obtained results, if we put 71 (b,a) = b—a,
n2(d,c) = d — c and n3(f,e) = f — e, then we obtain those
results proved in [3]. This shows that the results of this paper
are more general than those presented in [3].
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