Search results for: Coupled Korteweg-de Vries(KdV) equation
1490 Laser Surface Hardening Considering Coupled Thermoelasticity using an Eulerian Formulations
Authors: Me. Sistaninia, G.H.Farrahi, Ma. Sistaninia
Abstract:
Thermoelastic temperature, displacement, and stress in heat transfer during laser surface hardening are solved in Eulerian formulation. In Eulerian formulations the heat flux is fixed in space and the workpiece is moved through a control volume. In the case of uniform velocity and uniform heat flux distribution, the Eulerian formulations leads to a steady-state problem, while the Lagrangian formulations remains transient. In Eulerian formulations the reduction to a steady-state problem increases the computational efficiency. In this study also an analytical solution is developed for an uncoupled transient heat conduction equation in which a plane slab is heated by a laser beam. The thermal result of the numerical model is compared with the result of this analytical model. Comparing the results shows numerical solution for uncoupled equations are in good agreement with the analytical solution.Keywords: Coupled thermoelasticity, Finite element, Laser surface hardening, Eulerian formulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15641489 One Some Effective Solutions of Stokes Axisymmetric Equation for a Viscous Fluid
Authors: N. Khatiashvili, K. Pirumova, D. Janjgava
Abstract:
The Stokes equation connected with the fluid flow over the axisymmetric bodies in a cylindrical area is considered. The equation is studied in a moving coordinate system with the appropriate boundary conditions. Effective formulas for the velocity components are obtained. The graphs of the velocity components and velocity profile are plotted.
Keywords: Stokes system, viscous fluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13021488 The Pell Equation x2 − (k2 − k)y2 = 2t
Authors: Ahmet Tekcan
Abstract:
Let k, t, d be arbitrary integers with k ≥ 2, t ≥ 0 and d = k2 - k. In the first section we give some preliminaries from Pell equations x2 - dy2 = 1 and x2 - dy2 = N, where N be any fixed positive integer. In the second section, we consider the integer solutions of Pell equations x2 - dy2 = 1 and x2 - dy2 = 2t. We give a method for the solutions of these equations. Further we derive recurrence relations on the solutions of these equationsKeywords: Pell equation, solutions of Pell equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14741487 Some Complexiton Type Solutions of the (3+1)-Dimensional Jimbo-Miwa Equation
Authors: Mohammad Taghi Darvishi, Mohammad Najafi
Abstract:
By means of the extended homoclinic test approach (shortly EHTA) with the aid of a symbolic computation system such as Maple, some complexiton type solutions for the (3+1)-dimensional Jimbo-Miwa equation are presented.
Keywords: Jimbo-Miwa equation, painleve analysis, Hirota's bilinear form, computerized symbolic computation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18941486 A Fully Implicit Finite-Difference Solution to One Dimensional Coupled Nonlinear Burgers’ Equations
Authors: Vineet K. Srivastava, Mukesh K. Awasthi, Mohammad Tamsir
Abstract:
A fully implicit finite-difference method has been proposed for the numerical solutions of one dimensional coupled nonlinear Burgers’ equations on the uniform mesh points. The method forms a system of nonlinear difference equations which is to be solved at each iteration. Newton’s iterative method has been implemented to solve this nonlinear assembled system of equations. The linear system has been solved by Gauss elimination method with partial pivoting algorithm at each iteration of Newton’s method. Three test examples have been carried out to illustrate the accuracy of the method. Computed solutions obtained by proposed scheme have been compared with analytical solutions and those already available in the literature by finding L2 and L∞ errors.
Keywords: Burgers’ equation, Implicit Finite-difference method, Newton’s method, Gauss elimination with partial pivoting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59421485 An Expansion Method for Schrödinger Equation of Quantum Billiards with Arbitrary Shapes
Authors: İnci M. Erhan
Abstract:
A numerical method for solving the time-independent Schrödinger equation of a particle moving freely in a three-dimensional axisymmetric region is developed. The boundary of the region is defined by an arbitrary analytic function. The method uses a coordinate transformation and an expansion in eigenfunctions. The effectiveness is checked and confirmed by applying the method to a particular example, which is a prolate spheroid.Keywords: Bessel functions, Eigenfunction expansion, Quantum billiard, Schrödinger equation, Spherical harmonics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52141484 Explicit Solutions and Stability of Linear Differential Equations with multiple Delays
Authors: Felix Che Shu
Abstract:
We give an explicit formula for the general solution of a one dimensional linear delay differential equation with multiple delays, which are integer multiples of the smallest delay. For an equation of this class with two delays, we derive two equations with single delays, whose stability is sufficient for the stability of the equation with two delays. This presents a new approach to the study of the stability of such systems. This approach avoids requirement of the knowledge of the location of the characteristic roots of the equation with multiple delays which are generally more difficult to determine, compared to the location of the characteristic roots of equations with a single delay.
Keywords: Delay Differential Equation, Explicit Solution, Exponential Stability, Lyapunov Exponents, Multiple Delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14911483 Reliability Analysis of P-I Diagram Formula for RC Column Subjected to Blast Load
Authors: Masoud Abedini, Azrul A. Mutalib, Shahrizan Baharom, Hong Hao
Abstract:
This study was conducted published to investigate there liability of the equation pressure-impulse (PI) reinforced concrete column inprevious studies. Equation involves three different levels of damage criteria known as D =0. 2, D =0. 5 and D =0. 8.The damage criteria known as a minor when 0-0.2, 0.2-0.5is known as moderate damage, high damage known as 0.5-0.8, and 0.8-1 of the structure is considered a failure. In this study, two types of reliability analyzes conducted. First, using pressure-impulse equation with different parameters. The parameters involved are the concrete strength, depth, width, and height column, the ratio of longitudinal reinforcement and transverse reinforcement ratio. In the first analysis of the reliability of this new equation is derived to improve the previous equations. The second reliability analysis involves three types of columns used to derive the PI curve diagram using the derived equation to compare with the equation derived from other researchers and graph minimum standoff versus weapon yield Federal Emergency Management Agency (FEMA). The results showed that the derived equation is more accurate with FEMA standards than previous researchers.
Keywords: Blast load, RC column, P-I curve, Analytical formulae, Standard FEMA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29121482 Adomian Decomposition Method Associated with Boole-s Integration Rule for Goursat Problem
Authors: Mohd Agos Salim Nasir, Ros Fadilah Deraman, Siti Salmah Yasiran
Abstract:
The Goursat partial differential equation arises in linear and non linear partial differential equations with mixed derivatives. This equation is a second order hyperbolic partial differential equation which occurs in various fields of study such as in engineering, physics, and applied mathematics. There are many approaches that have been suggested to approximate the solution of the Goursat partial differential equation. However, all of the suggested methods traditionally focused on numerical differentiation approaches including forward and central differences in deriving the scheme. An innovation has been done in deriving the Goursat partial differential equation scheme which involves numerical integration techniques. In this paper we have developed a new scheme to solve the Goursat partial differential equation based on the Adomian decomposition (ADM) and associated with Boole-s integration rule to approximate the integration terms. The new scheme can easily be applied to many linear and non linear Goursat partial differential equations and is capable to reduce the size of computational work. The accuracy of the results reveals the advantage of this new scheme over existing numerical method.Keywords: Goursat problem, partial differential equation, Adomian decomposition method, Boole's integration rule.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18561481 Exp-Function Method for Finding Some Exact Solutions of Rosenau Kawahara and Rosenau Korteweg-de Vries Equations
Authors: Ehsan Mahdavi
Abstract:
In this paper, we apply the Exp-function method to Rosenau-Kawahara and Rosenau-KdV equations. Rosenau-Kawahara equation is the combination of the Rosenau and standard Kawahara equations and Rosenau-KdV equation is the combination of the Rosenau and standard KdV equations. These equations are nonlinear partial differential equations (NPDE) which play an important role in mathematical physics. Exp-function method is easy, succinct and powerful to implement to nonlinear partial differential equations arising in mathematical physics. We mainly try to present an application of Exp-function method and offer solutions for common errors wich occur during some of the recent works.
Keywords: Exp-function method, Rosenau Kawahara equation, Rosenau Korteweg-de Vries equation, nonlinear partial differential equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20581480 A Parametric Study on Lateral Torsional Buckling of European IPN and IPE Cantilevers
Authors: H. Ozbasaran
Abstract:
IPN and IPE sections, which are commonly used European I shapes, are widely used in steel structures as cantilever beams to support overhangs. A considerable number of studies exist on calculating lateral torsional buckling load of I sections. However, most of them provide series solutions or complex closed-form equations. In this paper, a simple equation is presented to calculate lateral torsional buckling load of IPN and IPE section cantilever beams. First, differential equation of lateral torsional buckling is solved numerically for various loading cases. Then a parametric study is conducted on results to present an equation for lateral torsional buckling load of European IPN and IPE beams. Finally, results obtained by presented equation are compared to differential equation solutions and finite element model results. ABAQUS software is utilized to generate finite element models of beams. It is seen that the results obtained from presented equation coincide with differential equation solutions and ABAQUS software results. It can be suggested that presented formula can be safely used to calculate critical lateral torsional buckling load of European IPN and IPE section cantilevers.
Keywords: Cantilever, IPN, IPE, lateral torsional buckling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43101479 An Expectation of the Rate of Inflation According to Inflation-Unemployment Interaction in Croatia
Authors: Zdravka Aljinović, Snježana Pivac, Boško Šego
Abstract:
According to the interaction of inflation and unemployment, expectation of the rate of inflation in Croatia is estimated. The interaction between inflation and unemployment is shown by model based on three first-order differential i.e. difference equations: Phillips relation, adaptive expectations equation and monetary-policy equation. The resulting equation is second order differential i.e. difference equation which describes the time path of inflation. The data of the rate of inflation and the rate of unemployment are used for parameters estimation. On the basis of the estimated time paths, the stability and convergence analysis is done for the rate of inflation.Keywords: Differencing, inflation, time path, unemployment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16131478 Simulink Approach to Solve Fuzzy Differential Equation under Generalized Differentiability
Authors: N. Kumaresan , J. Kavikumar, Kuru Ratnavelu
Abstract:
In this paper, solution of fuzzy differential equation under general differentiability is obtained by simulink. The simulink solution is equivalent or very close to the exact solution of the problem. Accuracy of the simulink solution to this problem is qualitatively better. An illustrative numerical example is presented for the proposed method.Keywords: Fuzzy differential equation, Generalized differentiability, H-difference and Simulink.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24341477 Dense Chaos in Coupled Map Lattices
Authors: Tianxiu Lu, Peiyong Zhu
Abstract:
This paper is mainly concerned with a kind of coupled map lattices (CMLs). New definitions of dense δ-chaos and dense chaos (which is a special case of dense δ-chaos with δ = 0) in discrete spatiotemporal systems are given and sufficient conditions for these systems to be densely chaotic or densely δ-chaotic are derived.
Keywords: Discrete spatiotemporal systems, coupled map lattices, dense δ-chaos, Li-Yorke pairs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16521476 Maxwell-Cattaneo Regularization of Heat Equation
Authors: F. Ekoue, A. Fouache d'Halloy, D. Gigon, G Plantamp, E. Zajdman
Abstract:
This work focuses on analysis of classical heat transfer equation regularized with Maxwell-Cattaneo transfer law. Computer simulations are performed in MATLAB environment. Numerical experiments are first developed on classical Fourier equation, then Maxwell-Cattaneo law is considered. Corresponding equation is regularized with a balancing diffusion term to stabilize discretizing scheme with adjusted time and space numerical steps. Several cases including a convective term in model equations are discussed, and results are given. It is shown that limiting conditions on regularizing parameters have to be satisfied in convective case for Maxwell-Cattaneo regularization to give physically acceptable solutions. In all valid cases, uniform convergence to solution of initial heat equation with Fourier law is observed, even in nonlinear case.
Keywords: Maxwell-Cattaneo heat transfers equations, fourierlaw, heat conduction, numerical solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50591475 Algebraic Riccati Matrix Equation for Eigen- Decomposition of Special Structured Matrices; Applications in Structural Mechanics
Authors: Mahdi Nouri
Abstract:
In this paper Algebraic Riccati matrix equation is used for Eigen-decomposition of special structured matrices. This is achieved by similarity transformation and then using algebraic riccati matrix equation to triangulation of matrices. The process is decomposition of matrices into small and specially structured submatrices with low dimensions for fast and easy finding of Eigenpairs. Numerical and structural examples included showing the efficiency of present method.
Keywords: Riccati, matrix equation, eigenvalue problem, symmetric, bisymmetric, persymmetric, decomposition, canonical forms, Graphs theory, adjacency and Laplacian matrices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18061474 On the Positive Definite Solutions of Nonlinear Matrix Equation
Authors: Tian Baoguang, Liang Chunyan, Chen Nan
Abstract:
In this paper, the nonlinear matrix equation is investigated. Based on the fixed-point theory, the boundary and the existence of the solution with the case r>-δi are discussed. An algorithm that avoids matrix inversion with the case -1<-δi<0 is proposed.
Keywords: Nonlinear matrix equation, Positive definite solution, The maximal-minimal solution, Iterative method, Free-inversion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20011473 On Symmetry Analysis and Exact Wave Solutions of New Modified Novikov Equation
Authors: Anupma Bansal, R. K. Gupta
Abstract:
In this paper, we study a new modified Novikov equation for its classical and nonclassical symmetries and use the symmetries to reduce it to a nonlinear ordinary differential equation (ODE). With the aid of solutions of the nonlinear ODE by using the modified (G/G)-expansion method proposed recently, multiple exact traveling wave solutions are obtained and the traveling wave solutions are expressed by the hyperbolic functions, trigonometric functions and rational functions.
Keywords: New Modified Novikov Equation, Lie Classical Method, Nonclassical Method, Modified (G'/G)-Expansion Method, Traveling Wave Solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16251472 Position Vector of a Partially Null Curve Derived from a Vector Differential Equation
Authors: Süha Yılmaz, Emin Özyılmaz, Melih Turgut, Şuur Nizamoğlu
Abstract:
In this paper, position vector of a partially null unit speed curve with respect to standard frame of Minkowski space-time is studied. First, it is proven that position vector of every partially null unit speed curve satisfies a vector differential equation of fourth order. In terms of solution of the differential equation, position vector of a partially null unit speed curve is expressed.
Keywords: Frenet Equations, Partially Null Curves, Minkowski Space-time, Vector Differential Equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11601471 A Boundary Backstepping Control Design for 2-D, 3-D and N-D Heat Equation
Authors: Aziz Sezgin
Abstract:
We consider the problem of stabilization of an unstable heat equation in a 2-D, 3-D and generally n-D domain by deriving a generalized backstepping boundary control design methodology. To stabilize the systems, we design boundary backstepping controllers inspired by the 1-D unstable heat equation stabilization procedure. We assume that one side of the boundary is hinged and the other side is controlled for each direction of the domain. Thus, controllers act on two boundaries for 2-D domain, three boundaries for 3-D domain and ”n” boundaries for n-D domain. The main idea of the design is to derive ”n” controllers for each of the dimensions by using ”n” kernel functions. Thus, we obtain ”n” controllers for the ”n” dimensional case. We use a transformation to change the system into an exponentially stable ”n” dimensional heat equation. The transformation used in this paper is a generalized Volterra/Fredholm type with ”n” kernel functions for n-D domain instead of the one kernel function of 1-D design.Keywords: Backstepping, boundary control, 2-D, 3-D, n-D heat equation, distributed parameter systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16751470 Conformal Invariance in F (R, T) Gravity
Authors: Pyotr Tsyba, Olga Razina, Ertan Güdekli, Ratbay Myrzakulov
Abstract:
In this paper we consider the equation of motion for the F (R, T) gravity on their property of conformal invariance. It is shown that in the general case, such a theory is not conformal invariant. Studied special cases for the functions v and u in which can appear properties of the theory. Also we consider cosmological aspects F (R, T) theory of gravity, having considered particular case F (R, T) = μR+νT^2. Showed that in this case there is a nonlinear dependence of the parameter equation of state from time to time, which affects its evolution.
Keywords: Conformally invariance, F (R, T) gravity, metric FRW, equation of motion, dark energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26311469 State Dependent Riccati Equation Based Roll Autopilot for 122mm Artillery Rocket
Authors: Muhammad Kashif Siddiq, Fang Jian Cheng, Yu Wen Bo
Abstract:
State-dependent Riccati equation based controllers are becoming increasingly popular because of having attractive properties like optimality, stability and robustness. This paper focuses on the design of a roll autopilot for a fin stabilized and canard controlled 122mm artillery rocket using state-dependent Riccati equation technique. Initial spin is imparted to rocket during launch and it quickly decays due to straight tail fins. After the spin phase, the roll orientation of rocket is brought to zero with the canard deflection commands generated by the roll autopilot. Roll autopilot has been developed by considering uncoupled roll, pitch and yaw channels. The canard actuator is modeled as a second-order nonlinear system. Elements of the state weighing matrix for Riccati equation have been chosen to be state dependent to exploit the design flexibility offered by the Riccati equation technique. Simulation results under varying conditions of flight demonstrate the wide operating range of the proposed autopilot.Keywords: Fin stabilized 122mm artillery rocket, Roll Autopilot, Six degree of freedom trajectory model, State-dependent Riccati equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31081468 State Estimation Based on Unscented Kalman Filter for Burgers’ Equation
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
Controlling the flow of fluids is a challenging problem that arises in many fields. Burgers’ equation is a fundamental equation for several flow phenomena such as traffic, shock waves, and turbulence. The optimal feedback control method, so-called model predictive control, has been proposed for Burgers’ equation. However, the model predictive control method is inapplicable to systems whose all state variables are not exactly known. In practical point of view, it is unusual that all the state variables of systems are exactly known, because the state variables of systems are measured through output sensors and limited parts of them can be only available. In fact, it is usual that flow velocities of fluid systems cannot be measured for all spatial domains. Hence, any practical feedback controller for fluid systems must incorporate some type of state estimator. To apply the model predictive control to the fluid systems described by Burgers’ equation, it is needed to establish a state estimation method for Burgers’ equation with limited measurable state variables. To this purpose, we apply unscented Kalman filter for estimating the state variables of fluid systems described by Burgers’ equation. The objective of this study is to establish a state estimation method based on unscented Kalman filter for Burgers’ equation. The effectiveness of the proposed method is verified by numerical simulations.Keywords: State estimation, fluid systems, observer systems, unscented Kalman filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7421467 Instability of a Nonlinear Differential Equation of Fifth Order with Variable Delay
Authors: Cemil Tunc
Abstract:
In this paper, we study the instability of the zero solution to a nonlinear differential equation with variable delay. By using the Lyapunov functional approach, some sufficient conditions for instability of the zero solution are obtained.
Keywords: Instability, Lyapunov-Krasovskii functional, delay differential equation, fifth order.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14531466 Numerical Solution of a Laminar Viscous Flow Boundary Layer Equation Using Uniform Haar Wavelet Quasi-linearization Method
Authors: Harpreet Kaur, Vinod Mishra, R. C. Mittal
Abstract:
In this paper, we have proposed a Haar wavelet quasilinearization method to solve the well known Blasius equation. The method is based on the uniform Haar wavelet operational matrix defined over the interval [0, 1]. In this method, we have proposed the transformation for converting the problem on a fixed computational domain. The Blasius equation arises in the various boundary layer problems of hydrodynamics and in fluid mechanics of laminar viscous flows. Quasi-linearization is iterative process but our proposed technique gives excellent numerical results with quasilinearization for solving nonlinear differential equations without any iteration on selecting collocation points by Haar wavelets. We have solved Blasius equation for 1≤α ≤ 2 and the numerical results are compared with the available results in literature. Finally, we conclude that proposed method is a promising tool for solving the well known nonlinear Blasius equation.
Keywords: Boundary layer Blasius equation, collocation points, quasi-linearization process, uniform haar wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32721465 New Fourth Order Explicit Group Method in the Solution of the Helmholtz Equation
Authors: Norhashidah Hj. Mohd Ali, Teng Wai Ping
Abstract:
In this paper, the formulation of a new group explicit method with a fourth order accuracy is described in solving the two dimensional Helmholtz equation. The formulation is based on the nine-point fourth order compact finite difference approximation formula. The complexity analysis of the developed scheme is also presented. Several numerical experiments were conducted to test the feasibility of the developed scheme. Comparisons with other existing schemes will be reported and discussed. Preliminary results indicate that this method is a viable alternative high accuracy solver to the Helmholtz equation.
Keywords: Explicit group method, finite difference, Helmholtz equation, five-point formula, nine-point formula.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20801464 A Modified Laplace Decomposition Algorithm Solution for Blasius’ Boundary Layer Equation of the Flat Plate in a Uniform Stream
Authors: M. A. Koroma, Z. Chuangyi, A. F., Kamara, A. M. H. Conteh
Abstract:
In this work, we apply the Modified Laplace decomposition algorithm in finding a numerical solution of Blasius’ boundary layer equation for the flat plate in a uniform stream. The series solution is found by first applying the Laplace transform to the differential equation and then decomposing the nonlinear term by the use of Adomian polynomials. The resulting series, which is exactly the same as that obtained by Weyl 1942a, was expressed as a rational function by the use of diagonal padé approximant.
Keywords: Modified Laplace decomposition algorithm, Boundary layer equation, Padé approximant, Numerical solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23731463 Analytical Solutions of Kortweg-de Vries(KdV) Equation
Authors: Foad Saadi, M. Jalali Azizpour, S.A. Zahedi
Abstract:
The objective of this paper is to present a comparative study of Homotopy Perturbation Method (HPM), Variational Iteration Method (VIM) and Homotopy Analysis Method (HAM) for the semi analytical solution of Kortweg-de Vries (KdV) type equation called KdV. The study have been highlighted the efficiency and capability of aforementioned methods in solving these nonlinear problems which has been arisen from a number of important physical phenomenon.Keywords: Variational Iteration Method (VIM), HomotopyPerturbation Method (HPM), Homotopy Analysis Method (HAM), KdV Equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23731462 The Dividend Payments for General Claim Size Distributions under Interest Rate
Authors: Li-Li Li, Jinghai Feng, Lixin Song
Abstract:
This paper evaluates the dividend payments for general claim size distributions in the presence of a dividend barrier. The surplus of a company is modeled using the classical risk process perturbed by diffusion, and in addition, it is assumed to accrue interest at a constant rate. After presenting the integro-differential equation with initial conditions that dividend payments satisfies, the paper derives a useful expression of the dividend payments by employing the theory of Volterra equation. Furthermore, the optimal value of dividend barrier is found. Finally, numerical examples illustrate the optimality of optimal dividend barrier and the effects of parameters on dividend payments.Keywords: Dividend payout, Integro-differential equation, Jumpdiffusion model, Volterra equation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17991461 Coupled Electromagnetic and Thermal Field Modeling of a Laboratory Busbar System
Authors: Tatyana R. Radeva, Ivan S. Yatchev, Dimitar N. Karastoyanov, Nikolay I. Stoimenov, Stanislav D. Gyoshev
Abstract:
The paper presents coupled electromagnetic and thermal field analysis of busbar system (of rectangular cross-section geometry) submitted to short circuit conditions. The laboratory model was validated against both analytical solution and experimental observations. The considered problem required the computation of the detailed distribution of the power losses and the heat transfer modes. In this electromagnetic and thermal analysis, different definitions of electric busbar heating were considered and compared. The busbar system is a three phase one and consists of aluminum, painted aluminum and copper busbar. The solution to the coupled field problem is obtained using the finite element method and the QuickField™ program. Experiments have been carried out using two different approaches and compared with computed results.
Keywords: Busbar system, coupled problems, finite element method, short-circuit currents.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2976