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Abstract—We consider the problem of stabilization of an unstable
heat equation in a 2-D, 3-D and generally n-D domain by deriving a
generalized backstepping boundary control design methodology. To
stabilize the systems, we design boundary backstepping controllers
inspired by the 1-D unstable heat equation stabilization procedure.
We assume that one side of the boundary is hinged and the other
side is controlled for each direction of the domain. Thus, controllers
act on two boundaries for 2-D domain, three boundaries for 3-D
domain and ”n” boundaries for n-D domain. The main idea of the
design is to derive ”n” controllers for each of the dimensions by
using ”n” kernel functions. Thus, we obtain ”n” controllers for the
”n” dimensional case. We use a transformation to change the system
into an exponentially stable ”n” dimensional heat equation. The
transformation used in this paper is a generalized Volterra/Fredholm
type with ”n” kernel functions for n-D domain instead of the one
kernel function of 1-D design.

Keywords—Backstepping, boundary control, 2-D, 3-D, n-D heat
equation, distributed parameter systems.

I. INTRODUCTION

WE consider a problem of stabilization of two, three and
in generally ”n” dimensional unstable heat equation,

which is controlled from one end and rigid from the other
end for all dimensions. Thus, we get ”n” controllers for
”n” dimensional case. The backstepping boundary control
has been successful in one dimensional Partial differential
equations(PDEs). Many studies are conducted the control
of one-dimensional heat PDEs in recent years. In [1],
backstepping controller designs are obtained for four different
case of unstable heat equations in one dimensional case.
In [1]–[5], many control designs are defined for different
PDE models in one dimensional domain[6]. In [7], another
approach for ordinary differential equations with actuator
delay is achieved by modeling time delay by a first-order
hyperbolic PDE. In [8], an explicit feedback law is presented
for a multi-input LTI system which compensates the wave
PDE dynamics in its input and stabilizes the overall system
by using the backstepping method for PDEs. Many more
studies such as [9]–[20] can be useful in this area. However,
as far as the author can find out no studies concerned of the
boundary control of PDEs in 2 and more dimensional case by
using this approach. In only [3], in two dimensional domain,
another approach can be seen by using an estimator. Inspired
by these control design methodologies of one dimensional
case, this study has control designs by using transformations
and stability analysis by using Lyapunov method for two,
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three and ”n” dimensional unstable heat equations. Hence
the paper includes an expanded case of the studies for
the boundary backstepping control of one dimensional heat
equations. By deriving the backstepping method in more than
one dimensional cases, it is promising to use this method for
distributed time delay systems for further studies. Since there
are many studies on this topic such as [8], [13]. However, this
topic should be tackled in further study.
We consider an unstable reaction-advection-diffusion system
given by

vt(x∗,y∗, t) = μ [vx∗x∗(x∗,y∗, t)+ vy∗y∗(x∗,y∗, t)]
+avx∗(x∗,y∗, t)+bvy∗(x∗,y∗, t)+dv(x∗,y∗, t), (1)

v(x∗,0, t) = v(0,y∗, t) = 0, (2)
v(1,y∗, t) =V1(y∗, t), (3)
v(x∗,1, t) =V2(x∗, t), (4)

where a, b, and d are positive constants. Defining another
function as u(x∗,y∗, t) = v(x∗,y∗, t)e

a
2μ x∗+ b

2μ y∗ and changing
variables as x =

√μx∗, and y =
√μy∗ the system (1)–(4) gets

into another system as follows. With an assumption as μ = 1,
the investigated original system is given by

ut(x,y, t) = uxx(x,y, t)+uyy(x,y, t)+λu(x,y, t), (5)

u(x,0, t) = u(0,y, t) = 0, (6)

u(
√

μ = 1,y, t) =U1(y, t), (7)

u(x,
√

μ = 1, t) =U2(x, t), (8)

where λ = d −
(

a2+b2

4μ

)
, which is assumed as a positive

constant in this study, and makes the system unstable. U1(y, t)
and U2(x, t) are the controllers, which maps the system (5)–(8)
into an exponentially stable system. Fistly, this study presents
control designs for the systems (1)–(4), and (5)–(8). Secondly,
in three and ”n” dimensional domains with similar definitions
for heat equation as two dimensional case. Also, the stability
analyses of the target systems in all domains are tackled in
this study.
The paper is organized as follows. In Section II, control
designs and transformations for the two dimensional unstable
heat equation are obtained. Two controllers for two dimensions
are given explicitly. Section III presents the control design
and transformations for the unstable heat equation in three
dimensional domain. In Section IV, the general case boundary
backstepping controllers can be seen for ”nD” unstable heat
equation. Stability analysis of 2D, 3D, and nD target systems
are given in Section V by using the Lyapunov methodology
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which shows the target systems are exponentially stable. In
Section VI, the inverse transformations are given for the used
transformations used in previous sections for all investigated
systems.

II. BACKSTEPPING DESIGN FOR 2-D UNSTABLE HEAT
EQUATION

To get a stable system from (5)-(8), we use the
transformation

w(x,y, t) = u(x,y, t)−
∫ x

0
k(x,ξ )u(ξ ,y, t)dξ

−
∫ y

0
l(y,η)u(x,η , t)dη , (9)

where the gains k(x,ξ ), and l(y,η) are to be determined
in this section. Compared with the transformations for one
dimensional PDEs, there is only one additional term in (9)–the
third term in (9). Because of the increasing of the dimensions,
we need this term and it is in fact the main conceptual
novelty of the paper, different then the other approach [3].
Our approach is to map the system (5)-(8) into the following
target system

wt(x,y, t) = wxx(x,y, t)+wyy(x,y, t), (10)
w(x,0, t) = w(0,y, t) = 0, (11)
w(x,1, t) = w(1,y, t) = 0, (12)

which is exponentially stable and proved in Section V. In [4],
the stabilization analysis of the system (10)-(12) is tackled
in one dimensional domain. By using the transformation
(9) we define the derivative of transformation by time. By
applying integration by parts two times and using the boundary
conditions, the derivative of transformation by time is given
by

wt(x,y, t) = uxx(x,y, t)+uyy(x,y, t)+λu(x,y, t)

−k(x,x)ux(x,y, t)+ k(x,0)ux(0,y, t)

+kξ (x,x)u(x,y, t)−
∫ x

0
kξ ξ (x,ξ )u(ξ ,y, t)dξ

−
∫ x

0
k(x,ξ ) [uyy(ξ ,y, t)+λu(ξ ,y, t)]dξ

−l(y,y)uy(x,y, t)+ l(y,0)uy(x,0, t)

+lη(y,y)u(x,y, t)−
∫ y

0
lηη(y,η)u(x,η , t)dη

−
∫ y

0
l(y,η) [uxx(x,η , t)+λu(x,η , t)]dη (13)

Similarly, by using (9), we define the second derivative
of the transformation by dimension x by applying Leibnitz
differentiation rule as

wxx(x,y, t) = uxx(x,y, t)− d
dx

[k(x,x)]u(x,y, t)

−k(x,x)ux(x,y, t)− kx(x,x)u(x,y, t)

−
∫ x

0
kxx(x,ξ )u(ξ ,y, t)dξ

−
∫ y

0
l(y,η)uxx(x,η , t)dη , (14)

and by the dimension y as

wyy(x,y, t) = uyy(x,y, t)−
∫ x

0
k(x,ξ )uyy(ξ ,y, t)dξ

− d
dy

[l(y,y)]u(x,y, t)− l(y,y)uy(x,y, t)

−ly(y,y)u(x,y, t)−
∫ y

0
lyy(y,η)u(x,η , t)dη . (15)

With the help of (10), and the boundary conditions of the
original system (5)–(8), along the solutions of (13), (14), (15);
(10) is given by

u(x,y, t)
[
λ +2

d
dx

[k(x,x)]+2
d
dy

[l(y,y)]
]

+ux(0,y, t)k(x,0)+uy(x,0, t)l(y,0)

+
∫ x

0
u(ξ ,y, t)

[
kxx − kξ ξ − k(x,ξ )λ

]
dξ

+
∫ y

0
u(x,ξ , t)

[
lyy − lξ ξ − l(y,ξ )λ

]
dξ = 0, (16)

where in order to equalize (16) to zero we choose

2
d
dx

[k(x,x)]+2
d
dy

[l(y,y)] =−λ , (17)

where the summation of a function of x and a function of y is
equal to a constant. So both of the terms have to be constant.
Let’s take one of them − c

2 , where c is a positive definite
constant, and choose the following two partial differential
equations systems to equalize the equation to zero as

lyy(y,η)− lηη(y,η) = λ l(y,η), (18)

l(y,y) = −λ − c
2

y, (19)

l(y,0) = 0, (20)

and the solution of this system is given in [2] as

l(y,η) =−(λ − c)η
I1

[√
λ (y2 −η2)

]
√

λ (y2 −η2)
. (21)

Similarly;

kxx(x,ξ )− kξ ξ (x,ξ ) = λk(x,ξ ), (22)

k(x,x) = − c
2

x, (23)

k(x,0) = 0, (24)

where the solution of this system is given in [2] as

k(x,ξ ) =−cξ
I1

[√
λ (x2 −ξ 2)

]
√

λ (x2 −ξ 2)
. (25)

By using the boundary conditions of the system (10)–(12), and
the system (5)–(8), the controllers of the system (5)–(8) are
given by

U1(y, t) =
∫ 1

0
k(1,ξ )u(ξ ,y, t)dξ

+
∫ y

0
l(y,η)u(1,η , t)dη , (26)
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and

U2(x, t) =
∫ x

0
k(x,ξ )u(ξ ,1, t)dξ

+
∫ 1

0
l(1,η)u(x,η , t)dη , (27)

where the Kernel functions of the system are defined. Thus, if
these controllers applied for the unstable system (5)–(8), the
system will behave as an exponentially stable system given in
(10)–(12), where its stability analysis is given in Section (V).
An the controllers for the system (1)–(4) are defined as

V1(y∗, t) =
∫ √μ

0
k(
√

μ,ξ )v(ξ ,y∗, t)e
a

2μ ξ+ b
2μ y∗dξ

+
∫ y∗

0
l(y∗,η)v(

√
μ ,η , t)e

a
2
√μ + b

2μ η dη , (28)

and

V2(x∗, t) =
∫ x∗

0
k(x∗,ξ )v(ξ ,

√
μ , t)e

a
2μ ξ+ b

2
√μ dξ

+
∫ √μ

0
l(
√

μ ,η)u(x∗,η , t)e
a

2
√μ + b

2μ η dη . (29)

In the next section a similar design methodology is given in
three dimensional domain for unstable heat equation.

III. BACKSTEPPING DESIGN FOR 3-D UNSTABLE HEAT
EQUATION

We consider a general unstable 3-D heat equation given by

vt(x∗,y∗,z∗, t) = vx∗x∗(x∗,y∗,z∗, t)+ vy∗y∗(x∗,y∗,z∗, t)
+vz∗z∗(x∗,y∗,z∗, t)+αvx∗(x∗,y∗,z∗, t)
+βvy∗(x∗,y∗,z∗, t)+ γvz∗(x∗,y∗,z∗, t)

+dv(x∗,y∗,z∗, t), (30)
v(0,y∗,z∗, t) = v(x∗,0,z∗, t) = v(x∗,y∗,0, t) = 0, (31)

v(1,y∗,z∗, t) =V1(y∗,z∗, t), (32)
v(x∗,1,z∗, t) =V2(x∗,z∗, t), (33)
v(x∗,y∗,1, t) =V3(x∗,y∗, t). (34)

By making similar changes of variables as in two
dimensional design and defining the function u(x∗,y∗,z∗, t) =
v(x∗,y∗,z∗, t)e

α
2μ x∗+ β

2μ y∗+ γ
2μ z∗ , and the variables x = x∗, y = y∗,

and z = z∗, and taking
√μ = 1

ut(x,y,z, t) = uxx(x,y,z, t)+uyy(x,y,z, t)

+uzz(x,y,z, t)+λu(x,y,z, t), (35)
u(0,y,z, t) = u(x,0,z, t) = u(x,y,0, t) = 0, (36)

u(
√

μ = 1,y,z, t) =U1(y,z, t), (37)
u(x,

√
μ = 1,z, t) =U2(x,z, t), (38)

u(x,y,
√

μ = 1, t) =U3(x,y, t). (39)

By using the transformation

w(x,y,z, t) = u(x,y,z, t)−
∫ x

0
k(x,ξ )u(ξ ,y,z, t)dξ

−
∫ y

0
l(y,η)u(x,η ,z, t)dη −

∫ z

0
s(z,ζ )u(x,y,ζ , t)dζ , (40)

where the gains k(x,ξ ), l(y,η), and s(z,ζ ) are to be
determined. Compared with the transformations for one

dimensional PDEs, there are two additional term in (40)–the
third and fourth terms in (40). This transformation maps the
system (35)–(39) into the stable target system

wt(x,y,z, t) = wxx(x,y,z, t)+wyy(x,y,z, t)+wzz(x,y,z, t), (41)
w(0,y,z, t) = w(x,0,z, t) = w(x,y,0, t) = 0, (42)
w(1,y,z, t) = w(x,1,z, t) = w(x,y,1, t) = 0, (43)

where this system is exponentially stable and the the stability
analysis of this system is given in Section V. By making
similar calculations as in two dimensional design we get

u(x,y,z, t)
[
λ +2

d
dx

[k(x,x)]+2
d
dy

[l(y,y)]+2
d
dz

[s(z,z)]
]

+ux(0,y,z, t)k(x,0)+uy(x,0,z, t)l(y,0)+uz(x,y,0, t)s(z,0)

+
∫ x

0
u(ξ ,y,z, t)

[
kxx(x,ξ )− kξ ξ (x,ξ )− k(x,ξ )λ

]
dξ

+
∫ y

0
u(x,η ,z, t) [lyy(y,η)− lηη(y,η)− l(y,η)λ ]dη

+
∫ z

0
u(x,y,ζ , t)

[
szz(z,ζ )− sζζ (z,ζ )− s(z,ζ )λ

]
dζ = 0. (44)

In order to equalize (44) to zero, we choose each of term
equals zero.

2
d
dx

[k(x,x)]+2
d
dy

[l(y,y)]+2
d
dz

[s(z,z)] =−λ , (45)

where the summation of a function of x, a function of y and a
function of z is equal to a constant. So all of the terms have to
be constant. Assuming one of them equals − c1

2 and the other
one equals − c2

2 . So, the PDE for the Kernel function l(y,η)
is

lyy(y,η)− lηη(y,ξ ) = λ l(y,η), (46)

l(y,y) = −λ − c1 − c2

2
y, (47)

l(y,0) = 0, (48)

where c1 and c2 is arbitrary control parameters and the solution
of the PDE is given in [2]

l(y,η) =−(λ − c1 − c2)η
I1

[√
λ (y2 −η2)

]
√

λ (y2 −η2)
. (49)

Similarly, for the kernel function k(x,ξ )

kxx(x,ξ )− kξ ξ (x,ξ ) = λk(x,ξ ), (50)

k(x,x) = −c1

2
x, (51)

k(x,0) = 0, (52)

where the solution is given in [2]

k(x,ξ ) =−c1ξ
I1

[√
λ (x2 −ξ 2)

]
√

λ (x2 −ξ 2)
. (53)

Finally for the last Kernel function s(z,ζ ), the PDE is derived
as

szz(z,ζ )− sζζ (x,ξ ) = λ s(x,ζ ), (54)

s(x,x) = −c2

2
x, (55)

s(x,0) = 0, (56)
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and the solution is given in [2]

s(z,ζ ) =−c2ξ
I1

[√
λ (z2 −ζ 2)

]
√

λ (z2 −ζ 2)
. (57)

Now the controller can be obtained by using the transformation
(40) and plugging the determined gains and setting x = 1, y =
1, z = 1, consequently. The controllers of the system (35)-(39)
are given by

U1(y,z, t) =
∫ 1

0
k(1,ξ )u(ξ ,y,z, t)dξ

+
∫ y

0
l(y,η)u(1,η ,z, t)dη +

∫ z

0
s(z,ζ )u(1,y,ζ , t)dζ , (58)

U2(x,z, t) =
∫ x

0
k(x,ξ )u(ξ ,1,z, t)dξ

+
∫ 1

0
l(1,η)u(x,η ,z, t)dη +

∫ z

0
s(z,ζ )u(x,1,ζ , t)dζ , (59)

U3(x,y, t) =
∫ x

0
k(x,ξ )u(ξ ,y,1, t)dξ

+
∫ y

0
l(y,η)u(x,η ,1, t)dη +

∫ 1

0
s(1,ζ )u(x,y,ζ , t)dζ . (60)

Also the three adaptive controllers for the system (30)–(34) in
three dimensional case

V1(y∗,z∗, t) =
∫ √μ

0
k(
√

μ ,ξ )v(ξ ,y∗,z∗, t)e
α
2μ ξ+ β

2μ y∗+ γ
2μ z∗dξ

+
∫ y∗

0
l(y∗,η)v(

√
μ ,η ,z∗, t)e

α
2
√μ + β

2μ η+ γ
2μ z∗dη

+
∫ z∗

0
s(z∗,ζ )v(

√
μ,y∗,ζ , t)e

α
2
√μ + β

2μ y∗+ γ
2μ ζ dζ , (61)

V2(x∗,z∗, t) =
∫ x∗

0
k(x∗,ξ )v(ξ ,

√
μ ,z∗, t)e

α
2μ ξ+ β

2
√μ + γ

2μ z∗dξ

+
∫ √μ

0
l(
√

μ,η)v(x∗,η ,z∗, t)e
α
2μ x∗+ β

2μ η+ γ
2μ z∗dη

+
∫ z∗

0
s(z∗,ζ )v(x∗,

√
μ,ζ , t)e

α
2μ x∗+ β

2
√μ + γ

2μ ζ dζ , (62)

V3(x∗,y∗, t) =
∫ x∗

0
k(x∗,ξ )v(ξ ,y∗,

√
μ , t)e

α
2μ ξ+ β

2μ y∗+ γ
2
√μ dξ

+
∫ y∗

0
l(y∗,η)v(x∗,η ,

√
μ , t)e

α
2μ x∗+ β

2μ η+ γ
2
√μ dη

+
∫ √μ

0
s(
√

μ,ζ )v(x∗,y∗,ζ , t)e
α
2μ x∗+ β

2μ y∗+ γ
2μ ζ dζ . (63)

In next section the controllers for a general ”n” dimensional
unstable heat equation are defined.

IV. GENERAL CASE

Consider an ”n” dimensional unstable heat equation by
positive stiffness constant as

ut(x, t) =
n

∑
i=1

uxixi(x, t)+λu(x, t), (64)

u(0,xk, t) = 0, (65)
u(1,xk, t) =Ui(xk, t), (66)

where x = [x1x2x3...xn], xk = [x1x2x3...xi−1xi+1...xn], k =
{1,2..,n} \ {i}. By using the same methodology to map the

transformation

w(x, t) = u(x, t)−
n

∑
i=1

∫ xi

0
ki(xi,ξi)u(ξi,xk, t)dξi, (67)

which maps the system (64)–(66) into the following system

wt(x, t) =
n

∑
i=1

wxixi(x, t),w(0,xk, t) = 0,w(1,xk, t) = 0. (68)

The controllers for the system (64)–(66) are defined as

Ui(xk, t) =
∫ 1

0
ki(1,ξi)u(ξi,xk, t)dξi

+
n−1

∑
j=1

∫ x j

0
k j(1,xk)u(ξ j,xk, t)dξ j, (69)

where the Kernel functions are defined as

ki(xi,ξi) =−ciξi

I1

[√
λ
(
x2

i −ξ 2
i

)]
√

λ
(
x2

i −ξ 2
i

) , (70)

where ci are design parameters and chosen arbitrarily with the

constraint
i=n
∑

i=1
ci = λ .

V. STABILITY ANALYSIS

A. In 2-D Domain

The system (10)–(12) is exponentially stable in L2. Consider
a Lyapunov Function

V =
1
2

∫ 1

0

∫ 1

0
w2(x,y, t)dxdy. (71)

Deriving the selected Lyapunov function by time

V̇ =
∫ 1

0

∫ 1

0
wwtdxdy =

∫ 1

0

∫ 1

0
w(wxx +wyy)dxdy

=
∫ 1

0

∫ 1

0
wwxxdxdy+

∫ 1

0

∫ 1

0
wwyydxdy

=
∫ 1

0

[
wwx|10 −

∫ 1

0
w2

xdx
]

dy+
∫ 1

0

[
wwy|10 −

∫ 1

0
w2

ydy
]

dx

=
∫ 1

0

[
−
∫ 1

0
w2

xdx
]

dy+
∫ 1

0

[
−
∫ 1

0
w2

ydy
]

dx, (72)

V̇ =−
∫ 1

0

∫ 1

0

[
w2

x +w2
y
]

dxdy. (73)

The time derivative of V shows that is bounded. But, it doesn’t
depends on w. Thus, it isn’t clear if V goes to zero or not.
Poincare’s Inequality[15]:

λ0

∫
Ω

f 2dx ≤
∫

Ω
|∇ f |2dx, (74)

where Ω is a bounded region in R
2 or R

3. f ∈C1(Ω), f = 0
on the boundary on Ω and λ0 is the smallest eigenvalue of the
problem

∇ f +λ f = 0 in Ω, (75)
f = 0 on ∂Ω. (76)
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Using (73) and Poincare’s Inequality along with the time
derivative of V , we get

V̇ =−
∫ 1

0

∫ 1

0

[
w2

x +w2
y
]

dxdy

⇒ V̇ ≤− 1
λ0

∫ 1

0

∫ 1

0
w2dxdy ≤− 2

λ0
V, (77)

where the smallest eigenvalue of (76) for two dimensional case
λ0 =

√
2π > 0.

B. In 3-D Domain

Similarly, with the help of the same Lyapunov function in
3D case, by using the same methodology it can be proved that
(41)–(43) is also exponentially stable is exponentially stable
in L2. Consider a Lyapunov Function

V =
1
2

∫ 1

0

∫ 1

0

∫ 1

0
w2(x,y,z, t)dxdydz. (78)

With making same calculations as in two dimensional domain
the time derivative of the selected Lyapunov function is

V̇ =−
∫ 1

0

∫ 1

0

∫ 1

0

[
w2

x +w2
y +w2

z
]

dxdydz. (79)

The time derivative of V shows that is bounded. But, it doesn’t
depends on w. Thus, it isn’t clear if V goes to zero or not. By
using similar methodology one can show that

V̇ ≤− 1
λ0

∫ 1

0

∫ 1

0

∫ 1

0
w2dxdydz ≤− 2

λ0
V, (80)

where λ0 =
√

3π > 0 and inequality (80) shows that (41)–(43)
is exponentially stable.

C. In N-D Domain

With the help of the same Lyapunov function in nD case,
by using the same approach it can be proved that (68) is
also exponentially stable. (68) is exponentially stable in L2.
Consider a Lyapunov Function

V =
1
2

∫ 1

0

∫ 1

0
...

∫ 1

0

∫ 1

0
w2(x, t)dx. (81)

With making same calculations as in two dimensional domain

V̇ =−
∫ 1

0

∫ 1

0
...

∫ 1

0

∫ 1

0

n

∑
i=1

xidx. (82)

By using similar methodology one can show that

V̇ ≤− 1
λ0

∫ 1

0

∫ 1

0
...

∫ 1

0

∫ 1

0
w2dx ≤− 2

λ0
V, (83)

where λ0 =
√

nπ , and this shows the system (68) is
exponentially stable.

VI. INVERSE TRANSFORMATIONS

A. In 2-D Domain

By using the following transformation to obtain the inverse
kernel functions for 2-D Heat Equation.

u(x,y, t) = w(x,y, t)+
∫ x

0
s(x,ξ )w(ξ ,y, t)dξ

+
∫ y

0
r(y,η)w(x,η , t)dη , (84)

Differentiating (84) with respect to time, by using integration
by part and (10), we get

ut(x,y, t) = wxx(x,y, t)+wyy(x,y, t)+ s(x,x)wx(x,y, t)

+
∫ x

0
s(x,ξ )wyy(ξ ,y, t)dξ − sξ (x,x)w(x,y, t)

−s(x,0)wx(0,y, t)+ r(y,y)wy(x,y, t)− rη(y,y)w(x,y, t)

−r(y,0)wy(x,0, t)+
∫ y

0
rηη(y,η)w(x,η , t)dη

+
∫ x

0
sξ ξ (x,ξ )w(ξ ,y, t)dξ +

∫ y

0
r(y,η)wxx(x,η , t)dη (85)

Similarly, differentiating twice with respect to x

uxx(x,y, t) = wxx(x,y, t)+
d
dx

[s(x,x)]w(x,y, t)

+s(x,x)wx(x,y, t)+ sx(x,x)w(x,y, t)

+
∫ x

0
sxx(x,ξ )w(ξ ,y, t)dξ +

∫ y

0
r(y,η)wxx(x,η , t)dη , (86)

and respect to the dimension y

uyy(x,y, t) = wyy(x,y, t)+
∫ x

0
s(x,ξ )uyy(ξ ,y, t)dξ

+
d
dy

[r(y,y)]w(x,y, t)+ s(y,y)wy(x,y, t)

+ry(y,y)w(x,y, t)+
∫ y

0
ryy(y,η)w(x,η , t)dη . (87)

With the help of (5), along the solutions and we follow the
same procedure. Thus we get the following conditions for the
kernel functions s(x,ξ ) and r(y,η)

ryy(y,η)− rηη(y,η) = −λ r(y,η), (88)

r(y,y) = −λ − ci

2
y, (89)

r(y,0) = 0, (90)

where ci is a positive control parameter and the solution of
this system is given in [2] as

r(y,η) =−(λ − ci)η
J1

[√
λ (y2 −η2)

]
√

λ (y2 −η2)
. (91)

Similarly;

sxx(x,ξ )− sξ ξ (x,ξ ) = −λ s(x,ξ ), (92)

s(x,x) = −ci

2
x, (93)

s(x,0) = 0, (94)

where the solution of this system is given in [2] as

s(x,ξ ) =−ciξ
J1

[√
λ (x2 −ξ 2)

]
√

λ (x2 −ξ 2)
. (95)
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B. In 3-D Domain

To define the inverse Kernel functions for the systems in 3
dimensional case, following transformation can be used.

u(x,y,z, t) = w(x,y,z, t)+
∫ x

0
s(x,ξ )w(ξ ,y,z, t)dξ

+
∫ y

0
r(y,η)w(x,η ,z, t)dη +

∫ z

0
p(y,η)w(x,y,ζ , t)dζ . (96)

By making the same calculations the Kernel can be obtained
as follows

s(x,ξ ) =−c1iξ
J1

[√
λ (x2 −ξ 2)

]
√

λ (x2 −ξ 2)
, (97)

r(y,η) =−c2iξ
J1

[√
λ (x2 −ξ 2)

]
√

λ (x2 −ξ 2)
, (98)

p(z,ζ ) =−(λ − c1i − c2i)ξ
J1

[√
λ (x2 −ξ 2)

]
√

λ (x2 −ξ 2)
, (99)

where c1i, and c2i are arbitrary parameters.

C. In N-D Domain

By using the transformation

u(x, t) = w(x, t)+
n

∑
i=1

∫ xi

0
ri(xi,ξi)u(ξi,xk, t), (100)

where the Kernel functions are defined as

ri(xi,ξi) =−ciξi

J1

[√
λ
(
x2

i −ξ 2
i

)]
√

λ
(
x2

i −ξ 2
i

) , (101)

where ci are design parameters and chosen arbitrarily with the

constraint
j=n
∑
j=1

c j = λ .

VII. CONCLUSIONS

This paper presents an expanded backstepping boundary
control design methodology for unstable heat equations in two,
three and ”n” dimensional cases, and their stability analysis
to reach an exponentially stable target systems. We introduce
new integral transformations and use them to obtain explicit
controllers for heat equations to map an unstable system into
an exponentially stable system by using ”n” controllers in
generally ”n” dimensional domain. At the end of the study
we define the controllers, the transformations, and the inverse
transformations used in design methodology. Finally, by using
this method one can define any other conrollers for different
cases of the heat equations in 2D, 3D or nD domain to reach an
exponentially stable system from an unstable system for more
than one dimensional systems, if he can obtain the system as
a heat equation with boundaries.
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