
 

  

Abstract—This work focuses on analysis of classical heat 

transfer equation regularized with Maxwell-Cattaneo transfer law. 

Computer simulations are performed in MATLAB environment. 

Numerical experiments are first developed on classical Fourier 

equation, then Maxwell-Cattaneo law is considered. Corresponding 

equation is regularized with a balancing diffusion term to stabilize 

discretizing scheme with adjusted time and space numerical steps. 

Several cases including a convective term in model equations are 

discussed, and results are given. It is shown that limiting conditions 

on regularizing parameters have to be satisfied in convective case for 

Maxwell-Cattaneo regularization to give physically acceptable 

solutions. In all valid cases, uniform convergence to solution of initial 

heat equation with Fourier law is observed, even in nonlinear case.   

 

Keywords—Maxwell-Cattaneo heat transfers equations, fourier 

law, heat conduction, numerical solution.  

I. INTRODUCTION 

HE intention in this paper is to use Maxwell-Cattaneo law 

instead of usual Fourier law in heat equation and to 

numerically show whether in this way heat equation can be 

regularized with respect to classical one [1]. Linear Fourier 

law writes 

 � � � � ���	 
         (1) 

 

where K > 0 is the conduction parameter [2]. Fourier law 

induces a parabolic equation for temperature field θ. Any 

initial disturbance in a material body is propagated instantly 

due to parabolic nature of the equation [3]. To eliminate this 

unphysical feature, Maxwell-Cattaneo law is one of various 

modifications of Fourier law and takes in simplest case the 

form 

 �1   τ���� �  � ���	�
�      (2) 

 

τ > 0 represents the thermal relaxation time which must be 

very small (of the order of picoseconds for most metals), τ∂tq  

is the thermal inertia which avoids the phenomenon of infinite 

propagation [4]-[6]. Liquid material parameters will be used 

for numerical resolution, as for gaseous materials and most 

solids the solutions seem unrealistic [7]. The analysis is built 
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on the principle of singular equations [8]. It means that out of 

each new equation, the previous equation can be recovered 

when the added correction terms are going to zero. It is 

intended here to discuss in what respect the solutions of 

modified equations are themselves converging to ‘’simple’’ 

solutions obtained when added correction terms are zero. It 

will be numerically shown that, despite very uniform 

convergence, there exists parameter domain where solutions 

can have unphysical transient. This implies that regularizing 

Maxwell-Cattaneo scheme does not create new spurious 

solutions provided new regularizing parameters are correctly 

adjusted. 

II.  NUMERICAL RESOLUTION OF MAXWELL-CATTANEO 

EQUATION WITH FLUX DIFFUSION TERM  

To numerically solve heat equation with modified flux 

conduction (2), it is necessary to add a new corrective term � ���� representing flux diffusion term in order to make 
discretizing process asymptotically stable. The new equation 

also allows a more realistic approach. Therefore, the Maxwell-

Cattaneo equation with flux diffusion has been digitized. 

 ���
 � ���                              ����� � �∆�� � �� � ��
�      (3) 

 

This system can be written as: 
  ����
   ��
 � ����
 � ��������
� � 0   (4) 
 

Classical approximations for the finite difference method 

are used 
 ��
 �  ���  �
���� � 
���          (5) ���
 �  ���²  �
���� � 2
��  
�"�� �        (6)  ���
 �  ���# �
���� � 2
��  
��"��        (7) 

 
������
� �  �����# �
���� � 2
��  
�"��                                       �
����"�  2
��"� � 
�"��"��          (8) 

 

Then (4) becomes: 

 

 

���� �  $�%&'�� . 
����  �'��"�$"�%&'�� . 
��  $�%&'�� . 
�"��       
                        � $'�� . 
����"�  �%&"''�� . 
��"� �  $'�� . 
�"��"�    (9) 
 

with  ) � ��/	+², , � �/	- , � � 	-/	+².  
�� is the value of temperature at point (i ; j ; i is varying from 
1 to N, according to the x coordinate on the interval [a;b] and j 

is varying from 1 to M, according to the time t on the interval 
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[0;tmax]. There is an inconsistency in i−1 when i = 1 and in i+1 

when i = N, making it necessary to set boundary conditions at 

these points. 

Dirichlet’s boundary conditions: 

 
�-, �� � 
�-, /� �  0      (10) 
 

Neumann’s boundary conditions: 
 

 ���
�-, �� �  ���
�-, /� � 0        (11) 
 

Another inconsistency is in j−1 at initial time (t = 0) is also 

visible. It is therefore necessary to fix an initial condition at 

this time. Moreover, the temperature at time j+1 depends on 

temperature at time j, therefore the temperature has been set at 

the initial time t=0. For all studied models, initial temperature 

will be equal to a Gaussian on an interval [a,b]. 

 
�- � 0, +� �  01"23�"4.5�6�7�#89
      (12) 

A. Figures 
 

 

Fig. 1 (a) The beginning of the simulation involving the three 

equations (heat, wave, Maxwell-Cattaneo) at the Neumann’s 

conditions,  (b) Middle of the simulation, (c) End of the simulation t 

= tmax  

K = 0.75, τ = 0.2, σ = 0.1  

B. Interpretations 

As expected, simulations show that thermal conductivity K 

has an impact on heat propagation velocity. Moreover, as seen 

on Figs. 1 (a), (b), (c), thermal relaxation time τ influences the 

number of curve oscillations and impacts heat propagation 

velocity. Indeed, when τ tends to 0, the results of Fourier 

equation are recovered. As seen from Fig. 1 (b), temperature 

stabilizes uniformly faster with (parabolic) heat equation than 

with (hyperbolic) wave equation and Maxwell-Cattaneo 

equation. Temperature diffuses less rapidly for Maxwell-

Cattaneo simulation, which is realistic as heat does not 

propagate with an infinite speed. In addition, the diffusive 

term σσσσ damps the oscillations created by thermal relaxation 
time :, which allows Maxwell-Cattaneo model to get closer to 
physical reality. When σ tends to 0, Maxwell-Cattaneo 
simulation approximates the wave equation. When τ tends to 

0, the simulation approximates Fourier heat equation. At the 

end of simulation, the temperature stabilizes uniformly toward 

a mean value θ = 0.5, a value directly depending on space 

interval. It is observed that on the interval [0;t], the heat does 

not propagate in the same way depending on the models. It is 

only during time interval [t;tmax] that asymptotic convergence 

toward an average value θ  is observed in all models. Fourier 
heat equation is therefore a singular limit of a regular 

equation. 

III. NUMERICAL RESOLUTION OF NONLINEAR MAXWELL-

CATTANEO EQUATION  

Here Maxwell-Cattaneo heat transfer equation is considered 

for nonlinear Fourier law. Namely the system takes the form: 

 

;��
 � ���                                 ����� � �∆�� � �� � �<�
�<�
� �  �
  μ
|
|?              �      (13) 

 

f(θ) is assumed to be monotone, K > 0, µ > 0 and β ∈ [1;2].  
This system can be written as,  

 ����
   ��
 �  ��������
� � ����
 � μ���
|
|? � 0  (14) 
 

As for previous case (9), the numerical study of this one 

dimension model requires to discretize the partial derivatives 

with finite difference method. 

 

 


���� � $�%&'�� . 
����   @&'�� . 
���� . A
���� A?                  
       �'��"�$"�%&'�� . 
�� � �@&'�� . 
�� . A
��A?    

      $�%&'�� . 
�"��   @&'�� . 
�"�� . A
�"�� A? 
                   � $'�� . 
����"�  �$"''�� . 
��"� � $'�� . 
�"��"� 

        (15) 

 

As before, the initial condition is set at t = 0 for 
��"�
, and 

the boundary conditions at i = 1 and i = N for 
�"��
 and 
����

. 
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A. Figures 

 

Fig. 2 (a) Simulation of Maxwell-Cattaneo equation with and without 

(µ=0) nonlinear function, (b) simulation at time t = t1 (0 < t1 < tmax) 

when the non linear equation are stabilized. 

B. Interpretations 

With nonlinear diffusion function, the heat diffuses and 

stabilizes faster at an average temperature θ different from 0.5 

as seen on Figs. 1 (c) and 2 (b), respectively corresponding to 

converging time for linear and nonlinear Maxwell-Cattaneo 

laws. The value of µ has an impact on heat propagation 

velocity; mainly the larger µ is, the faster the heat diffuses. 

Like diffusive term σ, the value of µ affects the oscillations 

created by thermal relaxation time τ by damping them. When 

µ tends to 0, the results of linear Maxwell-Cattaneo equation 

are recovered. 

IV. NUMERICAL RESOLUTION OF MAXWELL-CATTANEO 

EQUATION WITH CONVECTIVE TERM 

For completion and as it may often occur in industrial 

applications, a convective effect has been added to Maxwell-

Cattaneo equation in the form of a first order space derivative 

term corresponding to a displacement of supporting fluid 

medium 

 ���
  B��
 � ����                         ����� � ������ � �� � ��<�
�    �    (16) 

 

where v is liquid velocity.  

Use of classical approximations for finite difference method 

gives here; 

 

CDE
DF ��� 3
���� � 
��8  G�� 3
�� � 
�"�� 8 � � ��� ���� � ��"�� �

� H ��� 3����� � ���8 � I��# 3����� � 2���  ��"�� 8J            
                                               � ������ � %�� �
�� � 
�"�� �

�   (17) 

K
CDD
E
DDF
���� � 11 � G���� 9 
��  G���� 
�"�� � ���� ���� � ��"�� � 

����� � LI����#�L���� �����  L�L���� 11 � �I���� 9 ���         
         LI����#�L���� ��"�� � %�����L���� 3
�� � 
�"�� 8

                        � @�����L���� 1
��A
��A? � 
�"�� A
�"�� A?9
�  (18) 

 

with 
µ�����L���� �
��|
��|? � 
�"�� |
�"�� |?� the nonlinear term, 

equal to zero if µ=0. 
�� is the value of temperature and ��� is the value of flux at 
point (i ; j) ; i is varying from 1 to N, according to the x 

coordinates on the interval [a;b] and j is varying from 1 to M, 

according to the time t on the interval [0;tmax]. 

Here again there are some inconsistencies in i−1 for i = 1 

and in i+1 for i = N for q and θ. It is therefore necessary to set 
new boundary conditions. 

 

� �4� � �M��� � 0  (Neumann)             (19) 

 

� 
4� � 
�� and  
M��� � 
M�                                (20) 
A. Figures 

 

Fig. 3 (a) Evolution of the simulation of linear and non-linear 

Maxwell-Catteneo’s equation with liquid velocity,  (b) Middle of the 

simulation, (c) End of the simulation t = tmax 

K = 1, τ = 0.3, σ = 0.4, µ = 2, β = 2, v = 10 
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B. Interpretations 

For a positive velocity v, the heat spreads from left to right 

attenuating itself over time, see Fig. 3. As in previous models, 

the heat stabilizes uniformly at an average temperature θ after a time tmax. During a time interval [t1 ;t2] ⊂ [0;tmax], a 

“hollow” is observed where the temperature is lower than its 

final value θ and, depending on the parameters, can reach 

negative values – which is physically impossible. So if 

Maxwell-Cattaneo law solves the paradox of infinite speed, it 

just generates another physical inconsistency requiring another 

analysis. The difficulty to fix the working parameter space is 

in the determination of exactly acceptable solutions. In very 

general terms, let H (θ,v,µ) = 0 the initial equation (here 

nonlinear convective heat equation with Fourier law). It has 

been proposed to regularize this equation into MC 

(σ,τ)∗H(θ,v,µµµµ) = 0, where MC(.,.) stands for Maxwell-
Cattaneo heat flux equation. Numerical discrete filter for 

resolution transforms in turn the equation into 

N(dt,dx)∗MC(σ,τ )∗H(θ,v) = 0, and despite numerical stability 

conditions are satisfied for soft convergence, solution θ = 

θ(t,x) of filtered regularized equation may be unphysical and 

constraints on parameters of filtering regularizing operators 

have to be set. Practically however, if negative temperature is 

inacceptable, it is not clear that the existence of a dip in the 

solution as shown on Fig. 3 middle is itself physically 

acceptable. So a necessary condition results from the condition 

θ(x,t) > 0 over the full space-time domain, and a sufficient one 

would be to impose that ∂xθ(x,t) > 0 in the same domain, 

which is difficult to derive analytically. As a remark already 

observed above, heat propagates faster with nonlinear 

Maxwell-Cattaneo model than with linear one. The observed 

“hollow” is slightly reduced with the non linear model – 

which confirms that µ is damping the oscillations.  

V. CONCLUSION 

The numerical analysis of a regularization process of usual 

heat equation with both time and space corrective terms V ��  
and � ��� has been discussed. The simulations are made very 
easy and workable in a modest MATLAB environment. They 

are showing that Maxwell-Cattaneo law solves the paradox of 

heat propagation infinite speed, but it may generate another 

physical inconsistency. Depending on the value of τ, 

temperature can become negative during heat propagation. 

Feasibility conditions on τ and σ have to be applied for 

avoiding this phenomenon. Mainly thermal relaxation time has 

to be very small and diffusive term σ has to be large enough to 

damp out the oscillations created by τ. In this case, it is 

generally observed that the solutions of considered equations 

with different parameters are all uniformly converging toward 

solutions with zero parameters, but time evolution is different. 

Aside thermal conductivity K of the medium, thermal 

relaxation time τ and diffusive term σ contribute to generate a 

finite heat propagation speed which also impacts heat time 

evolution. It is therefore necessary to impose conditions on 

time step dt (or on tmax) to make it possible to directly address 

an industrial problem with valid precautions guaranteeing 

correct limits of proposed regularization process. 
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