Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4

Search results for: Variational Iteration Method (VIM)

4 An Analytical Solution for Vibration of Elevator Cables with Small Bending Stiffness

Authors: R. Mirabdollah Yani, E. Darabi

Abstract:

Responses of the dynamical systems are highly affected by the natural frequencies and it has a huge impact on design and operation of high-rise and high-speed elevators. In the present paper, the variational iteration method (VIM) is employed to investigate better understanding the dynamics of elevator cable as a single-degree-of-freedom (SDOF) swing system. Comparisons made among the results of the proposed closed-form analytical solution, the traditional numerical iterative time integration solution, and the linearized governing equations confirm the accuracy and efficiency of the proposed approach. Furthermore, based on the results of the proposed closed-form solution, the linearization errors in calculating the natural frequencies in different cases are discussed.

Keywords: variational iteration method (VIM), cable vibration, closed-form solution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1967
3 Variational Iteration Method for Solving Systems of Linear Delay Differential Equations

Authors: Sara Barati, Karim Ivaz

Abstract:

In this paper, using a model transformation approach a system of linear delay differential equations (DDEs) with multiple delays is converted to a non-delayed initial value problem. The variational iteration method (VIM) is then applied to obtain the approximate analytical solutions. Numerical results are given for several examples involving scalar and second order systems. Comparisons with the classical fourth-order Runge-Kutta method (RK4) verify that this method is very effective and convenient.

Keywords: delay differential equations, variational iteration method, Runge-Kutta Method, multiple delays

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059
2 Analytical Solutions of Kortweg-de Vries(KdV) Equation

Authors: Foad Saadi, M. Jalali Azizpour, S.A. Zahedi

Abstract:

The objective of this paper is to present a comparative study of Homotopy Perturbation Method (HPM), Variational Iteration Method (VIM) and Homotopy Analysis Method (HAM) for the semi analytical solution of Kortweg-de Vries (KdV) type equation called KdV. The study have been highlighted the efficiency and capability of aforementioned methods in solving these nonlinear problems which has been arisen from a number of important physical phenomenon.

Keywords: KdV equation, variational iteration method (VIM), HomotopyPerturbation Method (HPM), Homotopy Analysis Method (HAM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818
1 Investigation of a Transition from Steady Convection to Chaos in Porous Media Using Piecewise Variational Iteration Method

Authors: Mohamed M. Mousa, Aidarkhan Kaltayev Shahwar F. Ragab

Abstract:

In this paper, a new dependable algorithm based on an adaptation of the standard variational iteration method (VIM) is used for analyzing the transition from steady convection to chaos for lowto-intermediate Rayleigh numbers convection in porous media. The solution trajectories show the transition from steady convection to chaos that occurs at a slightly subcritical value of Rayleigh number, the critical value being associated with the loss of linear stability of the steady convection solution. The VIM is treated as an algorithm in a sequence of intervals for finding accurate approximate solutions to the considered model and other dynamical systems. We shall call this technique as the piecewise VIM. Numerical comparisons between the piecewise VIM and the classical fourth-order Runge–Kutta (RK4) numerical solutions reveal that the proposed technique is a promising tool for the nonlinear chaotic and nonchaotic systems.

Keywords: Chaos, free convection, variational iteration method, Lorenz equations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1149