Search results for: random effects model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10053

Search results for: random effects model

9213 A Novel Model for Simultaneously Minimising Costs and Risks in Just-in-Time Systems Using Multi-Backup Suppliers: Part 2- Results

Authors: Faraj El Dabee, Romeo Marian, Yousef Amer

Abstract:

This paper implements the inventory model developed in the first part of this paper in a simplified problem to simultaneously reduce costs and risks in JIT systems. This model is developed to ascertain an optimal ordering strategy for procuring raw materials by using regular multi-external and local backup suppliers to reduce the total cost of the products, and at the same time to reduce the risks arising from this cost reduction within production systems. A comparison between the cost of using the JIT system and using the proposed inventory model shows the superiority of the use of the inventory model.

Keywords: Lean manufacturing, Just-in-Time (JIT), production system, cost-risk reduction, inventory model, eternal supplier, local backup supplier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
9212 Virtual 3D Environments for Image-Based Navigation Algorithms

Authors: V. B. Bastos, M. P. Lima, P. R. G. Kurka

Abstract:

This paper applies to the creation of virtual 3D environments for the study and development of mobile robot image based navigation algorithms and techniques, which need to operate robustly and efficiently. The test of these algorithms can be performed in a physical way, from conducting experiments on a prototype, or by numerical simulations. Current simulation platforms for robotic applications do not have flexible and updated models for image rendering, being unable to reproduce complex light effects and materials. Thus, it is necessary to create a test platform that integrates sophisticated simulated applications of real environments for navigation, with data and image processing. This work proposes the development of a high-level platform for building 3D model’s environments and the test of image-based navigation algorithms for mobile robots. Techniques were used for applying texture and lighting effects in order to accurately represent the generation of rendered images regarding the real world version. The application will integrate image processing scripts, trajectory control, dynamic modeling and simulation techniques for physics representation and picture rendering with the open source 3D creation suite - Blender.

Keywords: Simulation, visual navigation, mobile robot, data visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1049
9211 Increasing the System Availability of Data Centers by Using Virtualization Technologies

Authors: Chris Ewe, Naoum Jamous, Holger Schrödl

Abstract:

Like most entrepreneurs, data center operators pursue goals such as profit-maximization, improvement of the company’s reputation or basically to exist on the market. Part of those aims is to guarantee a given quality of service. Quality characteristics are specified in a contract called the service level agreement. Central part of this agreement is non-functional properties of an IT service. The system availability is one of the most important properties as it will be shown in this paper. To comply with availability requirements, data center operators can use virtualization technologies. A clear model to assess the effect of virtualization functions on the parts of a data center in relation to the system availability is still missing. This paper aims to introduce a basic model that shows these connections, and consider if the identified effects are positive or negative. Thus, this work also points out possible disadvantages of the technology. In consequence, the paper shows opportunities as well as risks of data center virtualization in relation to system availability.

Keywords: Availability, cloud computing IT service, quality of service, service level agreement, virtualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 993
9210 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals

Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty

Abstract:

A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient, but not the magnitude. A neural network with two hidden layers was then used to learn the coefficient magnitudes, along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.

Keywords: Quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188
9209 Evaluation of the Impact of Dataset Characteristics for Classification Problems in Biological Applications

Authors: Kanthida Kusonmano, Michael Netzer, Bernhard Pfeifer, Christian Baumgartner, Klaus R. Liedl, Armin Graber

Abstract:

Availability of high dimensional biological datasets such as from gene expression, proteomic, and metabolic experiments can be leveraged for the diagnosis and prognosis of diseases. Many classification methods in this area have been studied to predict disease states and separate between predefined classes such as patients with a special disease versus healthy controls. However, most of the existing research only focuses on a specific dataset. There is a lack of generic comparison between classifiers, which might provide a guideline for biologists or bioinformaticians to select the proper algorithm for new datasets. In this study, we compare the performance of popular classifiers, which are Support Vector Machine (SVM), Logistic Regression, k-Nearest Neighbor (k-NN), Naive Bayes, Decision Tree, and Random Forest based on mock datasets. We mimic common biological scenarios simulating various proportions of real discriminating biomarkers and different effect sizes thereof. The result shows that SVM performs quite stable and reaches a higher AUC compared to other methods. This may be explained due to the ability of SVM to minimize the probability of error. Moreover, Decision Tree with its good applicability for diagnosis and prognosis shows good performance in our experimental setup. Logistic Regression and Random Forest, however, strongly depend on the ratio of discriminators and perform better when having a higher number of discriminators.

Keywords: Classification, High dimensional data, Machine learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2384
9208 Multinomial Dirichlet Gaussian Process Model for Classification of Multidimensional Data

Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park

Abstract:

We present probabilistic multinomial Dirichlet classification model for multidimensional data and Gaussian process priors. Here, we have considered efficient computational method that can be used to obtain the approximate posteriors for latent variables and parameters needed to define the multiclass Gaussian process classification model. We first investigated the process of inducing a posterior distribution for various parameters and latent function by using the variational Bayesian approximations and important sampling method, and next we derived a predictive distribution of latent function needed to classify new samples. The proposed model is applied to classify the synthetic multivariate dataset in order to verify the performance of our model. Experiment result shows that our model is more accurate than the other approximation methods.

Keywords: Multinomial dirichlet classification model, Gaussian process priors, variational Bayesian approximation, Importance sampling, approximate posterior distribution, Marginal likelihood evidence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
9207 Short Time Identification of Feed Drive Systems using Nonlinear Least Squares Method

Authors: M.G.A. Nassef, Linghan Li, C. Schenck, B. Kuhfuss

Abstract:

Design and modeling of nonlinear systems require the knowledge of all inside acting parameters and effects. An empirical alternative is to identify the system-s transfer function from input and output data as a black box model. This paper presents a procedure using least squares algorithm for the identification of a feed drive system coefficients in time domain using a reduced model based on windowed input and output data. The command and response of the axis are first measured in the first 4 ms, and then least squares are applied to predict the transfer function coefficients for this displacement segment. From the identified coefficients, the next command response segments are estimated. The obtained results reveal a considerable potential of least squares method to identify the system-s time-based coefficients and predict accurately the command response as compared to measurements.

Keywords: feed drive systems, least squares algorithm, onlineparameter identification, short time window

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2096
9206 Research on Hypermediated Images in Asian Films

Authors: Somi Nah, Timothy Yoonsuk Lee, Jinhwan Yu

Abstract:

In films, visual effects have played the role of expressing realities more realistically or describing imaginations as if they are real. Such images are immediated images representing realism, and the logic of immediation for the reality of images has been perceived dominant in visual effects. In order for immediation to have an identity as immediation, there should be the opposite concept hypermediation. In the mid 2000s, hypermediated images were settled as a code of mass culture in Asia. Thus, among Asian films highly popular in those days, this study selected five displaying hypermediated images – 2 Korean, 2 Japanese, and 1 Thailand movies – and examined the semiotic meanings of such images using Roland Barthes- directional and implicated meaning analysis and Metz-s paradigmatic analysis method, focusing on how hypermediated images work in the general context of the films, how they are associated with spaces, and what meanings they try to carry.

Keywords: Asian Films, Hypermediated Images, Semiotics, Visual Effects

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1710
9205 Rheological Modeling for Production of High Quality Polymeric

Authors: H.Hosseini, A.A. Azemati

Abstract:

The fundamental defect inherent to the thermoforming technology is wall-thickness variation of the products due to inadequate thermal processing during production of polymer. A nonlinear viscoelastic rheological model is implemented for developing the process model. This model describes deformation process of a sheet in thermoforming process. Because of relaxation pause after plug-assist stage and also implementation of two stage thermoforming process have minor wall-thickness variation and consequently better mechanical properties of polymeric articles. For model validation, a comparative analysis of the theoretical and experimental data is presented.

Keywords: High-quality polymeric article, Thermal Processing, Rheological model, Minor wall-thickness variation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
9204 Business Model Topology in Emerging Business Ecosystem

Authors: Olga Novikova, Timo Vuori

Abstract:

This paper describes topology of business models in market ecosystem of the emerging electric mobility industry. The business model topology shows that firm-s participation in the ecosystem is associated with different requirements on resources and capabilities, and different levels of risk. Business model concept is used together with concepts of networked value creation and shows that firms can achieve higher levels of sustainable advantage by cooperation, not competition. Hybrid business models provide companies a viable alternative possibility for participation in the market ecosystem.

Keywords: Business model, ecosystem, topology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2648
9203 Dynamics of Nutrients Pool in the Baltic Sea Using the Ecosystem Model 3D-CEMBS

Authors: L. Dzierzbicka-Głowacka, M. Janecki

Abstract:

Seasonal variability of nutrients concentration in the Baltic Sea using the 3D ecosystem numerical model 3D-CEMBS has been investigated. Additionally this study shows horizontal and vertical distribution of nutrients in the Baltic Sea. Model domain is an extended Baltic Sea area divided into 600x640 horizontal grid cells. Aside from standard hydrodynamic parameters 3D-CEMBS produces modeled ecological variables such as: three types of phytoplankton, two detrital classes, dissolved oxygen and the nutrients (nitrate, ammonium, phosphate and silicate). The presented model allows prediction of parameters that describe distribution of nutrients concentration and phytoplankton biomass. 3D-CEMBS can be used to study the effect of different hydrodynamic and biogeochemical processes on distributions of these variables in a larger scale.

Keywords: ecosystem model, nutrients, Baltic Sea

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2483
9202 A Sustainable Design Model by Integrated Evaluation of Closed-loop Design and Supply Chain Using a Mathematical Model

Authors: Yuan-Jye Tseng, Yi-Shiuan Chen

Abstract:

The paper presented a sustainable design model for integrated evaluation of the design and supply chain of a product for the sustainable objectives. To design a product, there can be alternative ways to assign the detailed specifications to fulfill the same design objectives. In the design alternative cases, different material and manufacturing processes with various supply chain activities may be required for the production. Therefore, it is required to evaluate the different design cases based on the sustainable objectives. In this research, a closed-loop design model is developed by integrating the forward design model and reverse design model. From the supply chain point of view, the decisions in the forward design model are connected with the forward supply chain. The decisions in the reverse design model are connected with the reverse supply chain considering the sustainable objectives. The purpose of this research is to develop a mathematical model for analyzing the design cases by integrated evaluating the criteria in the closed-loop design and the closed-loop supply chain. The decision variables are built to represent the design cases of the forward design and reverse design. The cost parameters in a forward design include the costs of material and manufacturing processes. The cost parameters in a reverse design include the costs of recycling, disassembly, reusing, remanufacturing, and disposing. The mathematical model is formulated to minimize the total cost under the design constraints. In practical applications, the decisions of the mathematical model can be used for selecting a design case for the purpose of sustainable design of a product. An example product is demonstrated in the paper. The test result shows that the sustainable design model is useful for integrated evaluation of the design and the supply chain to achieve the sustainable objectives.

Keywords: Closed-loop design, closed-loop supply chain, design evaluation, mathematical model, supply chain management, sustainable design model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
9201 Appraisal of Relativistic Effects on GNSS Receiver Positioning

Authors: I. Yakubu, Y. Y. Ziggah, E. A. Gyamera

Abstract:

The Global Navigation Satellite System (GNSS) started with the launch of the United State Department of Defense Global Positioning System (GPS). GNSS systems has grown over the years to include: GLONASS (Russia); Galileo (European Union); BeiDou (China). Any GNSS architecture consists of three major segments: Space, Control and User Segments. Errors such as; multipath, ionospheric and tropospheric effects, satellite clocks, receiver noise and orbit errors (relativity effect) have significant effects on GNSS positioning. To obtain centimeter level accuracy, the impacts of the relative motion of the satellites and earth need to be taken into account. This paper discusses the relevance of the theory of relativity as a source of error for GNSS receivers for position fix based on available relevant literature. Review of relevant literature reveals that due to relativity; Time dilation, Gravitational frequency shift and Sagnac effect cause significant influence on the use of GNSS receivers for positioning by an error range of ± 2.5 m based on pseudo-range computation.

Keywords: GNSS, relativistic effects, pseudo-range, accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 388
9200 Nonlinear Finite Element Analysis of Composite Cantilever Beam with External Prestressing

Authors: R. I. Liban, N. Tayşi

Abstract:

This paper deals with a nonlinear finite element analysis to examine the behavior up to failure of cantilever composite steel-concrete beams which are prestressed externally. 'Pre-' means stressing the high strength external tendons in the steel beam section before the concrete slab is added. The composite beam contains a concrete slab which is connected together with steel I-beam by means of perfect shear connectors between the concrete slab and the steel beam which is subjected to static loading. A finite element analysis will be done to study the effects of external prestressed tendons on the composite steel-concrete beams by locating the tendons in different locations (profiles). ANSYS version 12.1 computer program is being used to analyze the represented three-dimensional model of the cantilever composite beam. This model gives all these outputs, mainly load-displacement behavior of the cantilever end and in the middle span of the simple support part.

Keywords: Composite steel-concrete beams, external prestressing, finite element analysis, ANSYS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1416
9199 Slip Suppression of Electric Vehicles using Model Predictive PID Controller

Authors: Tohru Kawabe

Abstract:

In this paper, a new model predictive PID controller design method for the slip suppression control of EVs (electric vehicles) is proposed. The proposed method aims to improve the maneuverability and the stability of EVs by controlling the wheel slip ratio. The optimal control gains of PID framework are derived by the model predictive control (MPC) algorithm. There also include numerical simulation results to demonstrate the effectiveness of the method.

Keywords: Model Predictive Control, PID controller, Electric Vehicle, Slip suppression

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2577
9198 Electricity Power Planning: the Role of Wind Energy

Authors: Paula Ferreira, Madalena Araújo, M.E.J. O’Kelly

Abstract:

Combining energy efficiency with renewable energy sources constitutes a key strategy for a sustainable future. The wind power sector stands out as a fundamental element for the achievement of the European renewable objectives and Portugal is no exception to the increase of the wind energy for the electricity generation. This work proposes an optimization model for the long range electricity power planning in a system similar to the Portuguese one, where the expected impacts of the increasing installed wind power on the operating performance of thermal power plants are taken into account. The main results indicate that the increasing penetration of wind power in the electricity system will have significant effects on the combined cycle gas power plants operation and on the theoretically expected cost reduction and environmental gains. This research demonstrated the need to address the impact that energy sources with variable output may have, not only on the short-term operational planning, but especially on the medium to long range planning activities, in order to meet the strategic objectives for the energy sector.

Keywords: Wind power, electricity planning model, cost, emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608
9197 Analytical Study of Sedimentation Formation in Lined Canals using the SHARC Software- A Case Study of the Western Intake Structure in Dez Diversion Weir in Dezful, Iran

Authors: A.H. Sajedipoor, N. Hedayat, M. Mashal

Abstract:

Sedimentation is a hydraulic phenomenon that is emerging as a serious challenge in river engineering. When the flow reaches a certain state that gather potential energy, it shifts the sediment load along channel bed. The transport of such materials can be in the form of suspended and bed loads. The movement of these along the river course and channels and the ways in which this could influence the water intakes is considered as the major challenges for sustainable O&M of hydraulic structures. This could be very serious in arid and semi-arid regions like Iran, where inappropriate watershed management could lead to shifting a great deal of sediments into the reservoirs and irrigation systems. This paper aims to investigate sedimentation in the Western Canal of Dez Diversion Weir in Iran, identifying factors which influence the process and provide ways in which to mitigate its detrimental effects by using the SHARC Software. For the purpose of this paper, data from the Dezful water authority and Dezful Hydrometric Station pertinent to a river course of about 6 Km were used. Results estimated sand and silt bed loads concentrations to be 193 ppm and 827ppm respectively. Given the available data on average annual bed loads and average suspended sediment loads of 165ppm and 837ppm, there was a significant statistical difference (16%) between the sand grains, whereas no significant difference (1.2%) was find in the silt grain sizes. One explanation for such finding being that along the 6 Km river course there was considerable meandering effects which explains recent shift in the hydraulic behavior along the stream course under investigation. The sand concentration in downstream relative to present state of the canal showed a steep descending curve. Sediment trapping on the other hand indicated a steep ascending curve. These occurred because the diversion weir was not considered in the simulation model.

Keywords: SHARC model, sedimentation, Western canal, Dezdiversion weir

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642
9196 Development of Neural Network Prediction Model of Energy Consumption

Authors: Maryam Jamela Ismail, Rosdiazli Ibrahim, Idris Ismail

Abstract:

In the oil and gas industry, energy prediction can help the distributor and customer to forecast the outgoing and incoming gas through the pipeline. It will also help to eliminate any uncertainties in gas metering for billing purposes. The objective of this paper is to develop Neural Network Model for energy consumption and analyze the performance model. This paper provides a comprehensive review on published research on the energy consumption prediction which focuses on structures and the parameters used in developing Neural Network models. This paper is then focused on the parameter selection of the neural network prediction model development for energy consumption and analysis on the result. The most reliable model that gives the most accurate result is proposed for the prediction. The result shows that the proposed neural network energy prediction model is able to demonstrate an adequate performance with least Root Mean Square Error.

Keywords: Energy Prediction, Multilayer Feedforward, Levenberg-Marquardt, Root Mean Square Error (RMSE)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2643
9195 Ruin Probability for a Markovian Risk Model with Two-type Claims

Authors: Dongdong Zhang, Deran Zhang

Abstract:

In this paper, a Markovian risk model with two-type claims is considered. In such a risk model, the occurrences of the two type claims are described by two point processes {Ni(t), t ¸ 0}, i = 1, 2, where {Ni(t), t ¸ 0} is the number of jumps during the interval (0, t] for the Markov jump process {Xi(t), t ¸ 0} . The ruin probability ª(u) of a company facing such a risk model is mainly discussed. An integral equation satisfied by the ruin probability ª(u) is obtained and the bounds for the convergence rate of the ruin probability ª(u) are given by using key-renewal theorem.

Keywords: Risk model, ruin probability, Markov jump process, integral equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366
9194 Application of the Least Squares Method in the Adjustment of Chlorodifluoromethane (HCFC-142b) Regression Models

Authors: L. J. de Bessa Neto, V. S. Filho, J. V. Ferreira Nunes, G. C. Bergamo

Abstract:

There are many situations in which human activities have significant effects on the environment. Damage to the ozone layer is one of them. The objective of this work is to use the Least Squares Method, considering the linear, exponential, logarithmic, power and polynomial models of the second degree, to analyze through the coefficient of determination (R²), which model best fits the behavior of the chlorodifluoromethane (HCFC-142b) in parts per trillion between 1992 and 2018, as well as estimates of future concentrations between 5 and 10 periods, i.e. the concentration of this pollutant in the years 2023 and 2028 in each of the adjustments. A total of 809 observations of the concentration of HCFC-142b in one of the monitoring stations of gases precursors of the deterioration of the ozone layer during the period of time studied were selected and, using these data, the statistical software Excel was used for make the scatter plots of each of the adjustment models. With the development of the present study, it was observed that the logarithmic fit was the model that best fit the data set, since besides having a significant R² its adjusted curve was compatible with the natural trend curve of the phenomenon.

Keywords: Chlorodifluoromethane (HCFC-142b), ozone (O3), least squares method, regression models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827
9193 A Genetic-Neural-Network Modeling Approach for Self-Heating in GaN High Electron Mobility Transistors

Authors: Anwar Jarndal

Abstract:

In this paper, a genetic-neural-network (GNN) based large-signal model for GaN HEMTs is presented along with its parameters extraction procedure. The model is easy to construct and implement in CAD software and requires only DC and S-parameter measurements. An improved decomposition technique is used to model self-heating effect. Two GNN models are constructed to simulate isothermal drain current and power dissipation, respectively. The two model are then composed to simulate the drain current. The modeling procedure was applied to a packaged GaN-on-Si HEMT and the developed model is validated by comparing its large-signal simulation with measured data. A very good agreement between the simulation and measurement is obtained.

Keywords: GaN HEMT, computer-aided design & modeling, neural networks, genetic optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1659
9192 A 3D Approach for Extraction of the Coronaryartery and Quantification of the Stenosis

Authors: Mahdi Mazinani, S. D. Qanadli, Rahil Hosseini, Tim Ellis, Jamshid Dehmeshki

Abstract:

Segmentation and quantification of stenosis is an important task in assessing coronary artery disease. One of the main challenges is measuring the real diameter of curved vessels. Moreover, uncertainty in segmentation of different tissues in the narrow vessel is an important issue that affects accuracy. This paper proposes an algorithm to extract coronary arteries and measure the degree of stenosis. Markovian fuzzy clustering method is applied to model uncertainty arises from partial volume effect problem. The algorithm employs: segmentation, centreline extraction, estimation of orthogonal plane to centreline, measurement of the degree of stenosis. To evaluate the accuracy and reproducibility, the approach has been applied to a vascular phantom and the results are compared with real diameter. The results of 10 patient datasets have been visually judged by a qualified radiologist. The results reveal the superiority of the proposed method compared to the Conventional thresholding Method (CTM) on both datasets.

Keywords: 3D coronary artery tree extraction, segmentation, quantification, fuzzy clustering, and Markov random field

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582
9191 A Study of Mode Choice Model Improvement Considering Age Grouping

Authors: Young-Hyun Seo, Hyunwoo Park, Dong-Kyu Kim, Seung-Young Kho

Abstract:

The purpose of this study is providing an improved mode choice model considering parameters including age grouping of prime-aged and old age. In this study, 2010 Household Travel Survey data were used and improper samples were removed through the analysis. Chosen alternative, date of birth, mode, origin code, destination code, departure time, and arrival time are considered from Household Travel Survey. By preprocessing data, travel time, travel cost, mode, and ratio of people aged 45 to 55 years, 55 to 65 years and over 65 years were calculated. After the manipulation, the mode choice model was constructed using LIMDEP by maximum likelihood estimation. A significance test was conducted for nine parameters, three age groups for three modes. Then the test was conducted again for the mode choice model with significant parameters, travel cost variable and travel time variable. As a result of the model estimation, as the age increases, the preference for the car decreases and the preference for the bus increases. This study is meaningful in that the individual and households characteristics are applied to the aggregate model.

Keywords: Age grouping, aging, mode choice model, multinomial logit model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
9190 Seismic Performance of Reinforced Concrete Frames Infilled by Masonry Walls with Different Heights

Authors: Ji–Wook Mauk, Yu–Suk Kim, Hyung–Joon Kim

Abstract:

This study carried out comparative seismic performance of reinforced concrete frames infilled by masonry walls with different heights. Partial and fully infilled reinforced concrete frames were modeled for the research objectives and the analysis model for a bare reinforced concrete frame was also established for comparison. Non–linear static analyses for the studied frames were performed to investigate their structural behavior under extreme seismic loads and to find out their collapse mechanism. It was observed from analysis results that the strengths of the partial infilled reinforced concrete frames are increased and their ductilities are reduced, as infilled masonry walls are higher. Especially, reinforced concrete frames with higher partial infilled masonry walls would experience shear failures. Non–linear dynamic analyses using 10 earthquake records show that the bare and fully infilled reinforced concrete frame present stable collapse mechanism while the reinforced concrete frames with partially infilled masonry walls collapse in more brittle manner due to short-column effects.

Keywords: Fully infilled RC frame, partially infilled RC frame, masonry wall, short–column effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2589
9189 Software Effort Estimation Using Soft Computing Techniques

Authors: Parvinder S. Sandhu, Porush Bassi, Amanpreet Singh Brar

Abstract:

Various models have been derived by studying large number of completed software projects from various organizations and applications to explore how project sizes mapped into project effort. But, still there is a need to prediction accuracy of the models. As Neuro-fuzzy based system is able to approximate the non-linear function with more precision. So, Neuro-Fuzzy system is used as a soft computing approach to generate model by formulating the relationship based on its training. In this paper, Neuro-Fuzzy technique is used for software estimation modeling of on NASA software project data and performance of the developed models are compared with the Halstead, Walston-Felix, Bailey-Basili and Doty Models mentioned in the literature.

Keywords: Effort Estimation, Neural-Fuzzy Model, Halstead Model, Walston-Felix Model, Bailey-Basili Model, Doty Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2076
9188 Trap Assisted Tunneling Model for Gate Current in Nano Scale MOSFET with High-K Gate Dielectrics

Authors: Ashwani K. Rana, Narottam Chand, Vinod Kapoor

Abstract:

This paper presents a new compact analytical model of the gate leakage current in high-k based nano scale MOSFET by assuming a two-step inelastic trap-assisted tunneling (ITAT) process as the conduction mechanism. This model is based on an inelastic trap-assisted tunneling (ITAT) mechanism combined with a semiempirical gate leakage current formulation in the BSIM 4 model. The gate tunneling currents have been calculated as a function of gate voltage for different gate dielectrics structures such as HfO2, Al2O3 and Si3N4 with EOT (equivalent oxide thickness) of 1.0 nm. The proposed model is compared and contrasted with santaurus simulation results to verify the accuracy of the model and excellent agreement is found between the analytical and simulated data. It is observed that proposed analytical model is suitable for different highk gate dielectrics simply by adjusting two fitting parameters. It was also shown that gate leakages reduced with the introduction of high-k gate dielectric in place of SiO2.

Keywords: Analytical model, High-k gate dielectrics, inelastic trap assisted tunneling, metal–oxide–semiconductor (MOS) devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3307
9187 The Theory and Practice of the State Model of Corporate Governance

Authors: Asaiel Alohaly

Abstract:

A theoretical framework for corporate governance is needed to bridge the gap between the corporate governance of private companies and State-Owned Enterprises (SOEs). The two dominant models, being shareholder and stakeholder, do not always address the specific requirements and challenges posed by ‘hybrid’ companies; namely, previously national bodies that have been privatised while the government retains significant control or holds a majority of shares. Thus, an exploratory theoretical study is needed to identify how ‘hybrid’ companies should be defined and why the state model should be acknowledged since it is the less conspicuous model in comparison with the shareholder and stakeholder models. This research focuses on the state model of corporate governance to understand the complex ownership, control pattern, goals, and corporate governance of these hybrid companies. The significance of this research lies in the fact that there is a limited available publication on the state model. This research argues for the state model, which proceeds from an understanding of the institutionally embedded characteristics of hybrid companies, where the government as a shareholder, is either a majority of the total shares, or has been granted power based on the rule of law; the company bylaws.

Keywords: Corporate governance, control, shareholders, state model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1302
9186 A NonLinear Observer of an Electrical Transformer: A Bond Graph Approach

Authors: Gilberto Gonzalez-A , Israel Nuñez

Abstract:

A bond graph model of an electrical transformer including the nonlinear saturation is presented. A nonlinear observer for the transformer based on multivariable circle criterion in the physical domain is proposed. In order to show the saturation and hysteresis effects on the electrical transformer, simulation results are obtained. Finally, the paper describes that convergence of the estimates to the true states is achieved.

Keywords: Bond graph, nonlinear observer, electrical transformer, nonlinear saturation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
9185 Effects of Biostimulant Application on Quali-Quantitative Characteristics of Cauliflower, Pepper and Fennel Crops under Organic and Conventional Fertilization

Authors: E. Tarantino, G. Disciglio, L. Frabboni, A. Libutti, G. Gatta, A. Gagliaridi, A. Tarantino

Abstract:

Nowadays, the main goal for modern horticultural production is an increase the quality. In recent years, the use of organic fertilizers or biostimulants that can be applied in agriculture to improve quali-quantitative crop yields has encountered increasing interest. Biostimulants are gaining importance also for their possible use in organic and sustainable agriculture, to avoid excessive fertilizer applications. Consecutive experimental trials were carried out in the Apulia region (southern Italy) on three herbaceous crops (cauliflower, pepper, fennel) grown in pots under conventional and organic fertilization systems without and with biostimulants. The aim was to determine the effects of three biostimulants (Siapton®10L, Micotech L, Lysodin Alga-Fert) on quali-quantitative yield characteristics. At harvest, the quali-quantitative yield characteristics of each crop were determined. All of the experimental data were subjected to analysis of variance (ANOVA), and when significant effects were detected, the means were compared using Tukey’s tests. These data show large differences in these yield characteristics between conventional and organic crops, particularly highlighting higher yields for the conventional crops, while variable results were generally observed when the biostimulants were applied. In this context, there were no effects of the biostimulants on the quantitative yield, whereas there were low positive effects on the qualitative characteristics, as related to higher dry matter content of cauliflower, and higher soluble solids content of pepper. Moreover, there were evident positive effects of the biostimulants with fennel, due to the lower nitrate content. These latter data are in line with most of the published literature obtained for other herbaceous crops.

Keywords: Biostimulants, cauliflower, pepper, fennel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3570
9184 The Effect of Cooperation Teaching Method on Learning of Students in Primary Schools

Authors: Fereshteh Afkari, Davood Bagheri

Abstract:

The effect of teaching method on learning assistance Dunn Review .The study, to compare the effects of collaboration on teaching mathematics learning courses, including writing, science, experimental girl students by other methods of teaching basic first paid and the amount of learning students methods have been trained to cooperate with other students with other traditional methods have been trained to compare. The survey on 100 students in Tehran that using random sampling ¬ cluster of girl students between the first primary selections was performed. Considering the topic of semi-experimental research methods used to practice the necessary information by questionnaire, examination questions by the researcher, in collaboration with teachers and view authority in this field and related courses that teach these must have been collected. Research samples to test and control groups were divided. Experimental group and control group collaboration using traditional methods of mathematics courses, including writing and experimental sciences were trained. Research results using statistical methods T is obtained in two independent groups show that, through training assistance will lead to positive results and student learning in comparison with traditional methods, will increase also led to collaboration methods increase skills to solve math lesson practice, better understanding and increased skill level of students in practical lessons such as science and has been writing.

Keywords: method of teaching, learning, collaboration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637