

Abstract—This paper applies to the creation of virtual 3D

environments for the study and development of mobile robot image
based navigation algorithms and techniques, which need to operate
robustly and efficiently. The test of these algorithms can be
performed in a physical way, from conducting experiments on a
prototype, or by numerical simulations. Current simulation platforms
for robotic applications do not have flexible and updated models for
image rendering, being unable to reproduce complex light effects and
materials. Thus, it is necessary to create a test platform that integrates
sophisticated simulated applications of real environments for
navigation, with data and image processing. This work proposes the
development of a high-level platform for building 3D model’s
environments and the test of image-based navigation algorithms for
mobile robots. Techniques were used for applying texture and
lighting effects in order to accurately represent the generation of
rendered images regarding the real world version. The application
will integrate image processing scripts, trajectory control, dynamic
modeling and simulation techniques for physics representation and
picture rendering with the open source 3D creation suite - Blender.

Keywords—Simulation, visual navigation, mobile robot, data
visualization.

I. INTRODUCTION

IMULATORS are computerized environments which
emulate some activities of real phenomena that users can

manipulate, explore and experiment [1]. Nowadays to reduce
the cost and time of research, scientists develop and use their
own tools to create a simple and easy way of testing ideas,
theories and scripts, without the need to depend physically on
certain machinery and equipment.

Using simulations over real applications brings advantages
to a project, of which can be cited:
 Repeatability – possibility of easier reproduction of a test

innumerous times, saving time and other resources;
 Flexibility – less effort in the creation and modification of

the desired work place;
 Enable the tests in unreachable or complex environments;
 Simulate dangerous situations that could possibly damage

the prototype;
 Get exact values of position, orientation, velocity and

acceleration without any extra device.
A number of different software packages for 3D simulation

in robotics, like Gazebo (Fig. 1) [2], Weebots [3] and V-Rep
[4]. These tools are made, basically, to reproduce the

V. B. Bastos and Lima, M. P. are PhD students in the Integrated Systems

Department at University of Campinas, SP-Brazil (e-mail:
bastos_est@hotmail.com, mvpleng@fem.unicamp.br).

Kurka, P. R. G is with the Integrated Systems Department at University of
Campinas, SP-Brazil as a professor. (e-mail: kurka@fem.unicamp.br).

estimated dynamic model of a robot, interacting with their
neighborhood using sensors and actuators.

Many experiments can be represented with these
applications, but one problem is that their virtual camera
sensor generally is very limited compared to the rendered
images generated by computer graphics platforms, such as
Blender [5]. Another issue is the reproduction of specific
materials with reflection and deflection of light, if the software
has an implementation; it is a very simplistic one. This can be
a problem for visual odometry techniques, such as those
developed in [6], [7]

The inability of these software to render precise patterns
and complex light effects presented in the real world, reduce
their reliability for the training of some algorithm, like neural-
network based scripts.

The next section of this paper details the creation of a robot
and environment, combined with the physics presented in an
estimated dynamic model for differential robots. After the
methodology is explained, some results obtained are
discussed. Furthermore, some comments are included in the
conclusion regarding the main future works applications of
this research, and possible enhancements for this simulation.

II. COMBINATION OF ROBOT DYNAMICS WITH A COMPUTER

GRAPHICS PLATFORM

As explained in the previous section, the current simulators
oriented to the field of robotics do not have the same
flexibility to render images having complex light effects and
materials with a difficult reproduction. However, they have a
library with the estimated dynamic models implemented for
many mobile robots, ready to use.

The main idea of this work is to combine the physics of a
dynamic model with high quality rendering algorithms for
camera simulation. This kinematics is the discussion for the
first subtopic.

A. Dynamic Model for Differential Robots

Primarily, it is necessary to study the robot to implement its
movements in the simulation. As the University of Campinas
has the Pioneer 3DX available for experiments, the mobile
robot chosen was the differential type. This model is the
presented robot in Fig. 2 [6]. Fig. 3 [8] shows this robot view
from the top, defining the positions of each variable for future
uses in the paper. In this figure, u e ω are, respectively, the
linear and angular velocities of the robot, G is its center of
mass, C is the position of its castor wheel, h is the interest
point (the coordinates x and y in the plain XY), ψ is the robot
orientation, and a is the distance between the interest point and

Virtual 3D Environments for Image-Based
Navigation Algorithms

V. B. Bastos, M. P. Lima, P. R. G. Kurka

S

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:11, No:6, 2017

720International Scholarly and Scientific Research & Innovation 11(6) 2017 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

1,
 N

o:
6,

 2
01

7
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

07
25

2.
pd

f

the center point of the virtual axis that connects the traction
wheels (B point).

Fig. 1 Example of a scene developed in Gazebo

Fig. 2 Pioneer 3DX

Fig. 3 Representation of differential robot with the desired variables

For dynamic models, the experiments use those developed

by De La Cruz [8], based on the model proposed by Zhang et
al. [9], which present as entry signals, the values of torque
applied to the left and right wheels. However, commercial
robots usually accept linear and velocity commands, and not

torque inputs for its motors. In this context, in De La Cruz [8]
proposed two models for mobile robots for the differential
type. The first model has the entry signals as the tension
applied in both motors of the left and right wheels, and in the
last one, the references are the linear and angular velocities
performed by the robot. The complete model for the first case
is represented by (1):

ۏ
ێ
ێ
ێ
ۍ
ሶݔ
ሶݕ
ሶ߰
ሶݑ
ሶ߱ ے
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ

	

cos ߰ െܽ sin߰
sin߰ ܽ cos߰
	0	 	1	

ఏయ
బ

ఏభ
బ
	௥మఠమ

௨
	 െ

ଶ௨

ఠ

ఏర
బ

ఏభ
బ

െ2ݎଶ߱
ఏయ
బ

ఏమ
బ	 െ

ఏర
బ

ఏమ
బ ݀

ଶ߱

	

ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ቂ
ݑ
߱ቃ ൅

ۏ
ێ
ێ
ێ
ۍ
0 0
0
0
ଶ௥

ఏభ
బ

0

0
0
0
ଶ௥ௗ

ఏమ
బ ے
ۑ
ۑ
ۑ
ې

	൥

௩ೝା௩೗
ଶ

௩ೝି௩೗
ଶ
	
൩ ൅

ۏ
ێ
ێ
ێ
ێ
ۍ
௫ߜ
௬ߜ
0
ఓ̅ߜ
ےఠ̅ߜ
ۑ
ۑ
ۑ
ۑ
ې

(1)

where, ߜ ൌ ሾߜ௫, ,௬ߜ 0, ,ఓ̅ߜ ఠ̅ሿ, is the uncertain vectorߜ
associated with the mobile robot, in which ߜ௫ and ߜ௬ are

functions of the sliding velocity and robot orientation, ߜఓ̅ e ߜఠ̅
are functions of the physical parameters like mass, inertia,
wheel diameter, motor’s parameter, wheel force, among
others, and ݒ௥ and ݒ௟, are the tensions applied in the left and
right tires, respectively. The model parameters (ߠଵ

଴, ଶߠ
଴, ଷߠ

଴, ସߠ
଴)

are represented by (2)-(5).

ଵߠ
଴ ൌ

ோೌ
௞ೌ
ሺ݉ݎଶ ൅ .௘ሻሾܸܫ2 ଶሿݏ (2)

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:11, No:6, 2017

721International Scholarly and Scientific Research & Innovation 11(6) 2017 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

1,
 N

o:
6,

 2
01

7
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

07
25

2.
pd

f

ଶߠ
଴ ൌ

ோೌ
௞ೌ
൫ܫ௘݀ଶ ൅ ௭ܫଶሺݎ2 ൅ ܾ݉ଶሻ൯ሾܸ.݉ଶ. ଶሿݏ

(3)

ଷߠ
଴ ൌ

ோೌ
௞ೌ
ܾ݉ሾܸ. ଶ/݉ሿݏ

(4)

ସߠ
଴ ൌ ோೌ

௞ೌ
ቀ௞ೌ௞್

ோೌ
൅ ௘ቁܤ ሾܸ. ሿ݀ܽݎ/ݏ (5)

For the above equations, Ra (ݏ݄݉݋) is the motor electric

resistance, kb (ܸ. (ܣ/݉.ܰ) is its voltage constant, ka (݀ܽݎ/ݏ
is its torque constant multiplied by the gear ratio, Be (ܰ. /ݏ
 ,is the robot total mass (݃ܭ) is the rotational friction, m (݀ܽݎ
Iz (݃ܭ.݉ଶ) is the inertia at the G point, Ie (݃ܭ.݉ଶ) is the
inertia for each group of wheels, r (݉) is the radius of the
wheels, b (݉) and d (݉) are the distances represented in Fig.
3.

The first model is useful when it is possible to control
directly the tensions in each robot’s motor. However,
commercial robots generally have internal controllers that
receive velocities references for each one, and do not allow
their tension to be directly controlled. In this context, in De La
Cruz [8] considered that the internal controllers are PD
(Proportional and Derivative), with proportional gains ݇௉் > 0
and ݇௉ோ > 0, and derivatives ݇஽் ≥ 0 e ݇஽ோ ≥ 0. Thus, it can be
represented by (6):

ቂ	
௨ݒ
ఠݒ
ቃ ൌ ቈ	

݇௉்൫ݑ௥௘௙ െ ൯ݑ െ ݇஽்ݑሶ

݇௉ோ൫߱௥௘௙ െ ߱൯ െ ݇஽ோ ሶ߱
	቉ (6)

In this case, ݒ௨ and ݒఠ are defined by (7) and (8):

௨ݒ ൌ
௩ೝା௩೗
ଶ

 (7)

ఠݒ ൌ ௩ೝି௩೗
ଶ

 (8)

The values of ݑ and ߱ are defined by (9) and (10),
respectively.

ݑ ൌ ଵ

ଶ
ሾݎሺ߱௥ ൅ ߱௟ሻሿ (9)

߱ ൌ ଵ

ௗ
ሾݎሺ߱௥ െ ߱௟ሻሿ (10)

The angular velocities are represented by ߱௥ for the right

wheel, and ߱௟for the left one. From (1), (6)-(10), we obtain
(11):

ۏ
ێ
ێ
ێ
ۍ
ሶݔ
ሶݕ
ሶ߰
ሶݑ
ሶ߱ ے
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
cos ߰	 െܽ sin߰
sin߰	 	ܽ cos߰
	0	 	1	
െ

ఏర
ఏభ
	

ఏయ
ఏభ
߱

െఏఱ
ఏమ
߱	 െ ఏల

ఏమ

	

ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ቂ
ݑ
߱ቃ ൅	

ۏ
ێ
ێ
ێ
ۍ
0 0
0
0
ଵ

ఏభ
0

0
0
0
ଵ

ఏమے
ۑ
ۑ
ۑ
ې

	ቂ
௥௘௙ݑ
߱௥௘௙

ቃ ൅

ۏ
ێ
ێ
ێ
ۍ
௫ߜ
௬ߜ
0
௨ߜ
ےఠߜ
ۑ
ۑ
ۑ
ې

(11)

where, ݑ௥௘௙ and ߱௥௘௙ are the reference signals for the linear
and angular velocities, ߠ ൌ ሾߠଵ	ߠଶ	ߠଷ	ߠସ	ߠହ	ߠ଺	ሿ் is the model

parameters vector, and ߜ ൌ ൧	ఠߜ	௨ߜ	0	௬ߜ	௫ߜൣ
்
 is the uncertain

vector associated to the mobile robot model. As previously
presented, ߜ௫ and ߜ௬ are functions of the sliding speed and
orientation, however ߜ௨ and ߜఠ are functions of physical
parameters.

The values of ߠଵ, ,ଶߠ ,ଷߠ ,ସߠ .ହ are represented by (12)-(17)ߠ

ଵߠ ൌ ቂோೌ
௞ೌ
ሺ݉ݎଶ ൅ ௘ሻܫ2 ൅ ஽்ቃ݇ݎ2

ଵ

ଶ௥௞ು೅
ሾݏሿ

(12)

ଶߠ ൌ
ቂ
ೃೌ
ೖೌ
ቀூ೐ௗమାଶ௥మ൫ூ೥ା௠௕మ൯ቁାଶ௥ௗ௞ವೃቃ	

ଶ௥ௗ௞ುೃ
ሾݏሿ

(13)

ଷߠ ൌ
ோೌ
௞ೌ

௠௕௥

ଶ௞ು೅
ሾ݀ܽݎ/݉.ݏଶሿ

(14)

ସߠ ൌ
ோೌ
௞ೌ
ቀ௞ೌ௞್

ோೌ
൅ ௘ቁܤ

ଵ

௥௞ು೅
൅ 1

(15)

ହߠ ൌ
ோೌ
௞ೌ

௠௕௥

ௗ௞ುೃ
	ሾݏ/݉ሿ

(16)

଺ߠ ൌ
ோೌ
௞ೌ
ቀ
௞ೌ௞್
ோೌ

൅ ௘ቁܤ
ௗ

ଶ௥௞ುೃ
൅ 1 (17)

The parameters above for the robot Pioneer 3DX were

already calculated in the dissertation of Martins [10], they are
ߠ ൌ ሾ0.5338, 0.2509,െ0.0134, 0.9560, െ0.0843, 1.0590ሿ். His
work also produced a Simulink [11] block diagram that
generates the trajectory of differential robots following their
parameter vector and the target points. The main blocks of this
diagram are represented in Fig. 4.

The blocks presented in the Fig. 4 above, are in the
following order. First, in the Reference Trajectories Block is
defined the initial and final position, this block will also
initiate the process and is being fed by the last position in the
position array, controlling the robots path.

The next block is the Dynamic Model, its inputs are the
Linear and Angular reference speeds, which are corrected by
the dynamic equation with the robot parameters ߠ, resulting in
the robot’s estimated linear and angular velocities.

The last block is the Kinematic, the inputs for this block are
the velocities generated by the previous block, and its output is
the next trajectory point, with the location (x,y) and the
orientation (߰ሻ. The model of the Dynamic block is
represented by (18), and for the Kinematic block by (19).

ቂݑሶ
ሶ߱
ቃ ൌ ൦

െ ఏర
ఏభ

ఏయ
ఏభ
߱

െ
ఏఱ
ఏమ
߱ െ

ఏల
ఏమ

൪ ቂ
ݑ
߱ቃ ൅ ቈ

ଵ

ఏభ
0

0
ଵ

ఏమ

቉	ቂ
௥௘௙ݑ
߱௥௘௙

ቃ ൅ ൤
௨ߜ
ఠߜ
൨

(18)

቎
ሶݔ
ሶݕ
ሶ߰
቏ ൌ ൥

cos ߰ െܽ sin߰
sin߰ ܽ cos߰
0 1	

	൩ ቂ
ݑ
߱ቃ ൅ ൥

௫ߜ
௬ߜ
0
൩ (19)

The next step for the integration is the construction of a

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:11, No:6, 2017

722International Scholarly and Scientific Research & Innovation 11(6) 2017 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

1,
 N

o:
6,

 2
01

7
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

07
25

2.
pd

f

simulated environment, described by the next subtopic.

Fig. 4 Main blocks input/output

B. Simulation Environment

The simulation environment was developed in the computer
graphics platform Blender 2.65 [5]. This software has a very
large specter of applications, like the creation of simple 3D
mesh, solid, textures, scripts for movement and others.

The purpose of the simulation can be split into two
objectives, first, move the robot object following its dynamics,
and second, render the images of two cameras positioned in
front of the robot object, as shown in Fig. 5.

As the robot rendering will not be necessary in the
applications using this simulation, its representation is very
simple. Fig. 5 shows the cameras pointed to the ground, which
is their default position, but their orientation can be easily
changed depending on the objective of the application. This
robot was included in two scenarios, the room and the office,
each one with their characteristics focused on a specific
objective. The first one, the room, is presented in Fig. 6.

Fig. 5 Robot object representation

Fig. 6 Scenario: The room

This scenario is a 10x10 meter dimension and with 3 meter

high walls. Even being quite simple, the scenario already has
textures and two light sources generating shadows, allowing
the production of ‘good’ quality images for processing.

The next one, the office, has exterior light interference, and
complex object materials, like the mirror characteristics in the
floor; its representation is shown in Fig. 7.

Fig. 7 Scenario: The office

Its dimensions are 12x9x3 meters, the high quality materials

and the number of light sources make the image rendering of
this environment very slow, being used when it is needed to
test scripts with effects like reflection and inconstant
luminosity. An example of a rendered image from the camera
pointed to the front of the robot is shown in Fig. 8.

For the camera, the characteristics are easily changed
depending on the simulation needs, but for the majority of
uses, the values were focal distance = 32 mm, CCD 35 x 28.18
mm, and resolution 720x480. The output format was (*.jpeg),
which can also be changed.

The last part of this project is the implementation of the
dynamic and kinematic model in the developed environments,
to simulate the robot’s physics and generate an accurate
approximation of its movement.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:11, No:6, 2017

723International Scholarly and Scientific Research & Innovation 11(6) 2017 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

1,
 N

o:
6,

 2
01

7
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

07
25

2.
pd

f

Fig. 8 Example of a rendered image from the robot camera

C. Implementing the Dynamic Model in the Computer
Graphics Platform

At the simulation platform, each object created has an ID
for their specification in each operation. As only one in which
movement is needed, the differential robot has the most
important ID, ‘Cube_001’, in this case. So all operations
related to ‘Cube_001’ refers to the robot’s movement.

All the calculations were made in the computer graphics
platform ‘Blender’ [5], using the programming language
python, and its module ‘math’, already available in the default
downloaded software of the 2.65 version.

The first step is the initial and target points definition, so for
one desired point, the main function ‘Robot ()’ will run one
time with the initial condition as the beginning and the target
point as the end. For ‘n’ points, the main function will run ‘n’
times, just setting each time the initial condition with the
previous point and the end with the target point.

The function Robot is responsible for calculating the next
step of the robot until it reaches its target point with a defined
tolerance, 1 cm tolerance of was used for the simulations and
each step represents 0.033 seconds. This sample time was
selected to make it possible for the generation of videos at 30
fps with the rendered images from the robot.

The max velocities, the robot measurements and parameters
 are also specified in this function. For each target point it ,’ߠ‘
is necessary to specify a controller to drive the robot to the
desired location. The controller’s outputs are defined by (20)
and (21).

u୰ୣ୤ ൌ ݄݊ܽݐ ቀ݁ݕݎ݋ݎݎ ∗ ௞௬

௟௬
ቁ ∗ ݕ݈ ∗ ሺ߰ሻ݊݅ݏ ൅

݄݊ܽݐ ቀ݁ݔݎ݋ݎݎ ∗ ௞௫

௟௫
ቁ ∗ ݔ݈ ∗ ሺ߰ሻݏ݋ܿ

(20)

ψ୰ୣ୤ ൌ ቀଵ
௔
ቁ ቆ݄݊ܽݐ ቀ݁ݕݎ݋ݎݎ ∗ ௞௬

௟௬
ቁ ∗ ݕ݈ ∗

cosሺ߰ሻ	– ݄݊ܽݐ ቀ݁ݔݎ݋ݎݎ ∗ ௞௫

௟௫
ቁ ∗ ݔ݈ ∗ ሺ߰ሻቇ݊݅ݏ

(21)

where, ݁ݔݎ݋ݎݎ and ݁ݕݎ݋ݎݎ are given by the difference
between the last and the current position of the robot, step by
step. The values of the controller gains ݇ݕ, ,ݔ݇ ,ݕ݈ were ݔ݈
defined as 10, and ܽ is the distance ‘a’ represented in Fig. 3.
With the values of ݑ௥௘௙ and ߰௥௘௙ it is possible to implement
the equations of the dynamic and kinematic blocks. Thus, the

simulation will run at 30 steps per second, and each step will
return the location and orientation of the robot. With these
data it is possible to execute the function Move in each step. In
Blender, for example, the code below was implemented to
move the robot, make the animation and render the images:

#Select the robot
bpy.data.objects['Cube_001'].select = True
#Get current position and rotation
cubepositionx = bpy.data.objects['Cube_001'].location[0]
cubepositiony = bpy.data.objects['Cube_001'].location[1]
cuberotation = bpy.data.objects['Cube_001'].rotation_euler[2]
#Get variations
x=xgl-cubepositionx;
y=ygl-cubepositiony;
r=rgl-cuberotation-pi/2;
#Move the robot
bpy.ops.transform.translate(value=(x,y,0))
bpy.ops.transform.rotate(value= r, axis=(0,0,1))
#Insert frames
bpy.ops.anim.keyframe_insert(type='Location',
confirm_success=True)
bpy.ops.anim.keyframe_insert(type='Rotation',
confirm_success=True)
#Render Images
Capture(frame)

For the code above, the green lines are just comments to

help through the reading and the blue values are numbers or
Boolean. The first step in the code is the selection of the robot,
then it is possible to get its current location and rotation, and
with these values we get the variation by subtracting the
estimated (x, y, r) with the current ones.

With the variations, the robot can be moved and rotated,
and, to visualize its followed path at the 3D view window, the
location and rotation key frames are inserted. Fig. 9 shows the
current position and rotation of the robot at the selected key
frame, after the execution of the script.

The last line of the code runs the Capture function at the
specific frame value. This function uses each camera ID to
select, activate, render its image, and save at the specified
directory. As the simulation has two cameras, the result will
be two pictures each step, or 60 pic/sec.

The next topic will discuss the evaluation of the simulation,
first related to the reproduction of the robot’s movements, and
then, the quality of the rendered images for use in image based
applications.

III. SIMULATION AND RESULTS

As commented in the Section II-A, Martins [10] produced a
block diagram in Simulink and made it available for
download. Thus, it is possible to compare the results of the
Blender simulation developed by the authors with the
Simulink one. Fig. 10 represents the comparison between both
trajectories.

The target points used for the generation of the trajectories
represented in Fig. 10 are:
 Initial condition = (0,0);
 First point = (1,1);
 Second point = (0,1);

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:11, No:6, 2017

724International Scholarly and Scientific Research & Innovation 11(6) 2017 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

1,
 N

o:
6,

 2
01

7
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

07
25

2.
pd

f

 Third point = (1,0);
 Last point = (2,2).

Fig. 9 3D view window

Fig. 10 Comparison between trajectories of the simulations in
Blender and Simulink

Both trajectories follow the same behavior, but with some

difference. Two explanations were found for that difference,
the first one are the sample times used. In Blender, it was
0.033 seconds and in Simulink it was 0.1 seconds. The shorter
sample time makes the Blender simulation produce more steps
per second, and have a better response to rapid changes in
robot position and orientation.

The second reason is the way that the simulations stop. In
Blender, 1 cm of tolerance was specified, so when the

difference between the position of both axis and the target
point is less than that, the process stops. In Simulink that is not
the procedure, it is necessary to specify the total simulation
time, and the process of the robot’s movement estimation will
continue until that time ends, resulting, sometimes, in a very
large amount of steps very close to the target point.

Another comparison is the error of both simulations from
the target point [0,1], as it is the second point in the specified
path, the minimum value in the graphs represents the robot
passing through the point. Fig. 11 shows first the error in ‘x’
axis, and second ‘y’ axis, both errors vs. the normalized steps.

In Fig. 11, Blender simulation obtained smaller minimum
errors, (7 ∗ 10ିସ, 1.3 ∗ 10ିଷሻ, in comparison to Simulink,
(4.52 ∗ 10ିଶ, 3.3 ∗ 10ିଷ). Also, the MATLAB simulation
seems slower for all the target points but the last one, the
motive is that, the Simulink block diagram generates a large
number of steps at the end of its execution, so the cut of some
steps may cause this effect for a normalized representation.
The motive for these extra steps at the end is because the
Simulink block diagram is based on time and not in a
tolerance from the target point.

The final result (Fig. 12) is an application for rendered
images validation that consists of the estimate of the path
followed by the robot using its camera pictures saved in each
step using Lucas-Kanade method to estimate the variation of
pixels between subsequent images, and epipolar geometry to
calculate the robot’s translation and rotation.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:11, No:6, 2017

725International Scholarly and Scientific Research & Innovation 11(6) 2017 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

1,
 N

o:
6,

 2
01

7
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

07
25

2.
pd

f

Fig. 11 Comparison between trajectories of the simulations in Blender and Simulink

Fig. 12 Image based trajectory estimation using simulation results
.
This application consists of the use of images from both

cameras pointed at a textured floor to track the pixels of
subsequent pictures, as well as the use of visual odometry to
estimate the robot’s movement with the related pixel
localizations. The path for the estimation was (0,0) to (0,1),
(0,1) to (1,1), and (1,1) to (2,2).

IV. CONCLUSION

The main objective of this paper is to exemplify a
methodology for enabling the use of computer graphics
platforms in the field of mobile robotic, focused in image-

based navigation algorithms. This same process can be
duplicated for dynamic and kinematic models of different
robots, or for another platform, by making just a few changes.

Thus, the major applications of this work are aimed at its
duplication and implementation in a very large field of image
analysis, and its methodology is particularly easy to adapt for
the field of visual navigation.

Even though at this point the research can be very useful,
some points still need improvement, such as the creation of a
library with different scenarios ready to use, the modeling of
more sensors and actuators, and use the Blender game engine

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:11, No:6, 2017

726International Scholarly and Scientific Research & Innovation 11(6) 2017 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

1,
 N

o:
6,

 2
01

7
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

07
25

2.
pd

f

API to interact with the robot.

REFERENCES
[1] D. Jonassen. “O uso de novas tecnologias na educação a distância e a

aprendizagem construtivista” (The use of new technologies in distance
education and constructive learning). In open, Brasília, 2016, n.70,
apr/jun, 1996. pp 88.

[2] Gazebosim. Gazebo. http://www.gazebosim.org/. Retrieved October 15,
2015.

[3] Cyberbotics. Webots. http://www.cyberbotics.com/. Retrieved October
15, 2015.

[4] Coppelia. V-rep. http://www.coppeliarobotics.com/. Retrieved October
18, 2015.

[5] Blender 2.65a. blender.org. October 26, 2016. Retrieved October 26,
2015.

[6] M. Sharifi, X. Chen and C. G. Pretty, "Experimental study on using
visual odometry for navigation in outdoor GPS-denied environments,"
2016 12th IEEE/ASME International Conference on Mechatronic and
Embedded Systems and Applications (MESA), Auckland, 2016, pp. 1-5.

[7] Y. Liu et al., "Stereo Visual-Inertial Odometry With Multiple Kalman
Filters Ensemble," in IEEE Transactions on Industrial Electronics, vol.
63, no. 10, pp. 6205-6216, Oct. 2016.

[8] De La Cruz, C.; Carelli, R. “Dynamic modeling and centralized
formation control of mobile robots”. In: 32nd IEEE Conference on
Industrial Electronics. (S.l.: s.n.), 2006. p. 3880–3885.

[9] Zhang, Y. et al. “Dynamic model based robust tracking control of a
differentially steered wheeled mobile robot”. American Control
Conference, v. 2, 1998.

[10] Martins, F. N.; Carelli, R.; Sarcinelli-Filho, M.; Bastos-Filho, T. F.
“Dynamic Modeling and Adaptive Dynamic Compensation for
Unicycle-Like Mobile Robots”. 14th International Conference on
Advanced Robotics - ICAR 2009, Germany, June, 22-26, 2009.

[11] © 2016 The MathWorks, Inc. MATLAB and Simulink are registered
trademarks of The MathWorks, Inc. See mathworks.com/trademarks for
a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:11, No:6, 2017

727International Scholarly and Scientific Research & Innovation 11(6) 2017 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

1,
 N

o:
6,

 2
01

7
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

07
25

2.
pd

f

