
 
Abstract—This paper applies to the creation of virtual 3D 

environments for the study and development of mobile robot image 
based navigation algorithms and techniques, which need to operate 
robustly and efficiently. The test of these algorithms can be 
performed in a physical way, from conducting experiments on a 
prototype, or by numerical simulations. Current simulation platforms 
for robotic applications do not have flexible and updated models for 
image rendering, being unable to reproduce complex light effects and 
materials. Thus, it is necessary to create a test platform that integrates 
sophisticated simulated applications of real environments for 
navigation, with data and image processing. This work proposes the 
development of a high-level platform for building 3D model’s 
environments and the test of image-based navigation algorithms for 
mobile robots. Techniques were used for applying texture and 
lighting effects in order to accurately represent the generation of 
rendered images regarding the real world version. The application 
will integrate image processing scripts, trajectory control, dynamic 
modeling and simulation techniques for physics representation and 
picture rendering with the open source 3D creation suite - Blender. 
 

Keywords—Simulation, visual navigation, mobile robot, data 
visualization. 

I. INTRODUCTION 

IMULATORS are computerized environments which 
emulate some activities of real phenomena that users can 

manipulate, explore and experiment [1]. Nowadays to reduce 
the cost and time of research, scientists develop and use their 
own tools to create a simple and easy way of testing ideas, 
theories and scripts, without the need to depend physically on 
certain machinery and equipment. 

Using simulations over real applications brings advantages 
to a project, of which can be cited: 
 Repeatability – possibility of easier reproduction of a test 

innumerous times, saving time and other resources; 
 Flexibility – less effort in the creation and modification of 

the desired work place; 
 Enable the tests in unreachable or complex environments; 
 Simulate dangerous situations that could possibly damage 

the prototype; 
 Get exact values of position, orientation, velocity and 

acceleration without any extra device. 
A number of different software packages for 3D simulation 

in robotics, like Gazebo (Fig. 1) [2], Weebots [3] and V-Rep 
[4]. These tools are made, basically, to reproduce the 
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estimated dynamic model of a robot, interacting with their 
neighborhood using sensors and actuators.  

Many experiments can be represented with these 
applications, but one problem is that their virtual camera 
sensor generally is very limited compared to the rendered 
images generated by computer graphics platforms, such as 
Blender [5]. Another issue is the reproduction of specific 
materials with reflection and deflection of light, if the software 
has an implementation; it is a very simplistic one. This can be 
a problem for visual odometry techniques, such as those 
developed in [6], [7] 

The inability of these software to render precise patterns 
and complex light effects presented in the real world, reduce 
their reliability for the training of some algorithm, like neural-
network based scripts.  

The next section of this paper details the creation of a robot 
and environment, combined with the physics presented in an 
estimated dynamic model for differential robots. After the 
methodology is explained, some results obtained are 
discussed. Furthermore, some comments are included in the 
conclusion regarding the main future works applications of 
this research, and possible enhancements for this simulation.  

II. COMBINATION OF ROBOT DYNAMICS WITH A COMPUTER 

GRAPHICS PLATFORM 

As explained in the previous section, the current simulators 
oriented to the field of robotics do not have the same 
flexibility to render images having complex light effects and 
materials with a difficult reproduction. However, they have a 
library with the estimated dynamic models implemented for 
many mobile robots, ready to use. 

The main idea of this work is to combine the physics of a 
dynamic model with high quality rendering algorithms for 
camera simulation. This kinematics is the discussion for the 
first subtopic. 

A. Dynamic Model for Differential Robots 

Primarily, it is necessary to study the robot to implement its 
movements in the simulation. As the University of Campinas 
has the Pioneer 3DX available for experiments, the mobile 
robot chosen was the differential type. This model is the 
presented robot in Fig. 2 [6]. Fig. 3 [8] shows this robot view 
from the top, defining the positions of each variable for future 
uses in the paper. In this figure, u e ω are, respectively, the 
linear and angular velocities of the robot, G is its center of 
mass, C is the position of its castor wheel, h is the interest 
point (the coordinates x and y in the plain XY), ψ is the robot 
orientation, and a is the distance between the interest point and 
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the center point of the virtual axis that connects the traction 
wheels (B point). 

 

 

 

Fig. 1 Example of a scene developed in Gazebo 
 

 

Fig. 2 Pioneer 3DX 
 

 

Fig. 3 Representation of differential robot with the desired variables  
 
For dynamic models, the experiments use those developed 

by De La Cruz [8], based on the model proposed by Zhang et 
al. [9], which present as entry signals, the values of torque 
applied to the left and right wheels. However, commercial 
robots usually accept linear and velocity commands, and not 

torque inputs for its motors. In this context, in De La Cruz [8] 
proposed two models for mobile robots for the differential 
type. The first model has the entry signals as the tension 
applied in both motors of the left and right wheels, and in the 
last one, the references are the linear and angular velocities 
performed by the robot. The complete model for the first case 
is represented by (1): 
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where, ߜ ൌ ሾߜ௫, ,௬ߜ 0, ,ఓ̅ߜ  ఠ̅ሿ, is the uncertain vectorߜ
associated with the mobile robot, in which ߜ௫ and ߜ௬ are 

functions of the sliding velocity and robot orientation, ߜఓ̅ e ߜఠ̅ 
are functions of the physical parameters like mass, inertia, 
wheel diameter, motor’s parameter, wheel force, among 
others, and ݒ௥ and ݒ௟, are the tensions applied in the left and 
right tires, respectively. The model parameters (ߠଵ

଴, ଶߠ
଴, ଷߠ

଴, ସߠ
଴) 

are represented by (2)-(5). 
 

ଵߠ
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ሺ݉ݎଶ ൅ .௘ሻሾܸܫ2   ଶሿݏ (2) 
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For the above equations, Ra (ݏ݄݉݋) is the motor electric 

resistance, kb (ܸ.  (ܣ/݉.ܰ) is its voltage constant, ka (݀ܽݎ/ݏ
is its torque constant multiplied by the gear ratio, Be (ܰ. /ݏ
 ,is the robot total mass (݃ܭ) is the rotational friction, m (݀ܽݎ
Iz (݃ܭ.݉ଶ) is the inertia at the G point, Ie (݃ܭ.݉ଶ) is the 
inertia for each group of wheels, r (݉) is the radius of the 
wheels, b (݉) and d (݉) are the distances represented in Fig. 
3. 

The first model is useful when it is possible to control 
directly the tensions in each robot’s motor. However, 
commercial robots generally have internal controllers that 
receive velocities references for each one, and do not allow 
their tension to be directly controlled. In this context, in De La 
Cruz [8] considered that the internal controllers are PD 
(Proportional and Derivative), with proportional gains ݇௉் > 0 
and ݇௉ோ > 0, and derivatives ݇஽் ≥ 0 e ݇஽ோ ≥ 0. Thus, it can be 
represented by (6): 
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In this case, ݒ௨ and ݒఠ are defined by (7) and (8): 
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The values of ݑ and ߱ are defined by (9) and (10), 
respectively. 
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The angular velocities are represented by ߱௥ for the right 

wheel, and ߱௟for the left one. From (1), (6)-(10), we obtain 
(11): 
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(11)

where, ݑ௥௘௙ and ߱௥௘௙ are the reference signals for the linear 
and angular velocities, ߠ ൌ ሾߠଵ	ߠଶ	ߠଷ	ߠସ	ߠହ	ߠ଺	ሿ் is the model 

parameters vector, and ߜ ൌ ൧	ఠߜ	௨ߜ	0	௬ߜ	௫ߜൣ
்
 is the uncertain 

vector associated to the mobile robot model. As previously 
presented, ߜ௫ and ߜ௬ are functions of the sliding speed and 
orientation, however ߜ௨ and ߜఠ are functions of physical 
parameters. 

The values of ߠଵ, ,ଶߠ ,ଷߠ ,ସߠ  .ହ are represented by (12)-(17)ߠ
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The parameters above for the robot Pioneer 3DX were 

already calculated in the dissertation of Martins [10], they are 
ߠ ൌ ሾ0.5338, 0.2509,െ0.0134, 0.9560, െ0.0843, 1.0590ሿ். His 
work also produced a Simulink [11] block diagram that 
generates the trajectory of differential robots following their 
parameter vector and the target points. The main blocks of this 
diagram are represented in Fig. 4. 

The blocks presented in the Fig. 4 above, are in the 
following order. First, in the Reference Trajectories Block is 
defined the initial and final position, this block will also 
initiate the process and is being fed by the last position in the 
position array, controlling the robots path.  

The next block is the Dynamic Model, its inputs are the 
Linear and Angular reference speeds, which are corrected by 
the dynamic equation with the robot parameters ߠ, resulting in 
the robot’s estimated linear and angular velocities. 

The last block is the Kinematic, the inputs for this block are 
the velocities generated by the previous block, and its output is 
the next trajectory point, with the location (x,y) and the 
orientation (߰ሻ. The model of the Dynamic block is 
represented by (18), and for the Kinematic block by (19). 
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The next step for the integration is the construction of a 
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simulated environment, described by the next subtopic. 
 

 

Fig. 4 Main blocks input/output 

B. Simulation Environment 

The simulation environment was developed in the computer 
graphics platform Blender 2.65 [5]. This software has a very 
large specter of applications, like the creation of simple 3D 
mesh, solid, textures, scripts for movement and others. 

The purpose of the simulation can be split into two 
objectives, first, move the robot object following its dynamics, 
and second, render the images of two cameras positioned in 
front of the robot object, as shown in Fig. 5. 

As the robot rendering will not be necessary in the 
applications using this simulation, its representation is very 
simple. Fig. 5 shows the cameras pointed to the ground, which 
is their default position, but their orientation can be easily 
changed depending on the objective of the application. This 
robot was included in two scenarios, the room and the office, 
each one with their characteristics focused on a specific 
objective. The first one, the room, is presented in Fig. 6. 

 

 

Fig. 5 Robot object representation 
 

 

Fig. 6 Scenario: The room 
 
This scenario is a 10x10 meter dimension and with 3 meter 

high walls. Even being quite simple, the scenario already has 
textures and two light sources generating shadows, allowing 
the production of ‘good’ quality images for processing.  

The next one, the office, has exterior light interference, and 
complex object materials, like the mirror characteristics in the 
floor; its representation is shown in Fig. 7. 
 

 

Fig. 7 Scenario: The office 
 
Its dimensions are 12x9x3 meters, the high quality materials 

and the number of light sources make the image rendering of 
this environment very slow, being used when it is needed to 
test scripts with effects like reflection and inconstant 
luminosity. An example of a rendered image from the camera 
pointed to the front of the robot is shown in Fig. 8. 

For the camera, the characteristics are easily changed 
depending on the simulation needs, but for the majority of 
uses, the values were focal distance = 32 mm, CCD 35 x 28.18 
mm, and resolution 720x480. The output format was (*.jpeg), 
which can also be changed. 

The last part of this project is the implementation of the 
dynamic and kinematic model in the developed environments, 
to simulate the robot’s physics and generate an accurate 
approximation of its movement. 
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Fig. 8 Example of a rendered image from the robot camera 

C. Implementing the Dynamic Model in the Computer 
Graphics Platform 

At the simulation platform, each object created has an ID 
for their specification in each operation. As only one in which 
movement is needed, the differential robot has the most 
important ID, ‘Cube_001’, in this case. So all operations 
related to ‘Cube_001’ refers to the robot’s movement. 

All the calculations were made in the computer graphics 
platform ‘Blender’ [5], using the programming language 
python, and its module ‘math’, already available in the default 
downloaded software of the 2.65 version. 

The first step is the initial and target points definition, so for 
one desired point, the main function ‘Robot ()’ will run one 
time with the initial condition as the beginning and the target 
point as the end. For ‘n’ points, the main function will run ‘n’ 
times, just setting each time the initial condition with the 
previous point and the end with the target point. 

The function Robot is responsible for calculating the next 
step of the robot until it reaches its target point with a defined 
tolerance, 1 cm tolerance of was used for the simulations and 
each step represents 0.033 seconds. This sample time was 
selected to make it possible for the generation of videos at 30 
fps with the rendered images from the robot. 

The max velocities, the robot measurements and parameters 
 are also specified in this function. For each target point it ,’ߠ‘
is necessary to specify a controller to drive the robot to the 
desired location. The controller’s outputs are defined by (20) 
and (21). 
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(21) 

  
where, ݁ݔݎ݋ݎݎ and ݁ݕݎ݋ݎݎ are given by the difference 
between the last and the current position of the robot, step by 
step. The values of the controller gains ݇ݕ, ,ݔ݇ ,ݕ݈  were ݔ݈
defined as 10, and ܽ is the distance ‘a’ represented in Fig. 3. 
With the values of ݑ௥௘௙ and ߰௥௘௙ it is possible to implement 
the equations of the dynamic and kinematic blocks. Thus, the 

simulation will run at 30 steps per second, and each step will 
return the location and orientation of the robot. With these 
data it is possible to execute the function Move in each step. In 
Blender, for example, the code below was implemented to 
move the robot, make the animation and render the images: 
 
#Select the robot 
bpy.data.objects['Cube_001'].select = True 
#Get current position and rotation 
cubepositionx = bpy.data.objects['Cube_001'].location[0] 
cubepositiony = bpy.data.objects['Cube_001'].location[1] 
cuberotation = bpy.data.objects['Cube_001'].rotation_euler[2] 
#Get variations 
x=xgl-cubepositionx; 
y=ygl-cubepositiony; 
r=rgl-cuberotation-pi/2;   
#Move the robot 
bpy.ops.transform.translate(value=(x,y,0)) 
bpy.ops.transform.rotate(value= r, axis=(0,0,1)) 
#Insert frames 
bpy.ops.anim.keyframe_insert(type='Location', 
confirm_success=True) 
bpy.ops.anim.keyframe_insert(type='Rotation', 
confirm_success=True) 
#Render Images 
Capture(frame) 

 
For the code above, the green lines are just comments to 

help through the reading and the blue values are numbers or 
Boolean. The first step in the code is the selection of the robot, 
then it is possible to get its current location and rotation, and 
with these values we get the variation by subtracting the 
estimated (x, y, r) with the current ones. 

With the variations, the robot can be moved and rotated, 
and, to visualize its followed path at the 3D view window, the 
location and rotation key frames are inserted. Fig. 9 shows the 
current position and rotation of the robot at the selected key 
frame, after the execution of the script. 

The last line of the code runs the Capture function at the 
specific frame value. This function uses each camera ID to 
select, activate, render its image, and save at the specified 
directory. As the simulation has two cameras, the result will 
be two pictures each step, or 60 pic/sec. 

The next topic will discuss the evaluation of the simulation, 
first related to the reproduction of the robot’s movements, and 
then, the quality of the rendered images for use in image based 
applications. 

III. SIMULATION AND RESULTS 

As commented in the Section II-A, Martins [10] produced a 
block diagram in Simulink and made it available for 
download. Thus, it is possible to compare the results of the 
Blender simulation developed by the authors with the 
Simulink one. Fig. 10 represents the comparison between both 
trajectories. 

The target points used for the generation of the trajectories 
represented in Fig. 10 are:  
 Initial condition = (0,0); 
 First point = (1,1); 
 Second point = (0,1); 
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 Third point = (1,0); 
 Last point = (2,2). 

 

 

 

Fig. 9 3D view window 
 

 

Fig. 10 Comparison between trajectories of the simulations in 
Blender and Simulink 

 
Both trajectories follow the same behavior, but with some 

difference. Two explanations were found for that difference, 
the first one are the sample times used. In Blender, it was 
0.033 seconds and in Simulink it was 0.1 seconds. The shorter 
sample time makes the Blender simulation produce more steps 
per second, and have a better response to rapid changes in 
robot position and orientation. 

The second reason is the way that the simulations stop. In 
Blender, 1 cm of tolerance was specified, so when the 

difference between the position of both axis and the target 
point is less than that, the process stops. In Simulink that is not 
the procedure, it is necessary to specify the total simulation 
time, and the process of the robot’s movement estimation will 
continue until that time ends, resulting, sometimes, in a very 
large amount of steps very close to the target point. 

Another comparison is the error of both simulations from 
the target point [0,1], as it is the second point in the specified 
path, the minimum value in the graphs represents the robot 
passing through the point. Fig. 11 shows first the error in ‘x’ 
axis, and second ‘y’ axis, both errors vs. the normalized steps.  

In Fig. 11, Blender simulation obtained smaller minimum 
errors, (7 ∗ 10ିସ, 1.3 ∗ 10ିଷሻ, in comparison to Simulink, 
(4.52 ∗ 10ିଶ, 3.3 ∗ 10ିଷ). Also, the MATLAB simulation 
seems slower for all the target points but the last one, the 
motive is that, the Simulink block diagram generates a large 
number of steps at the end of its execution, so the cut of some 
steps may cause this effect for a normalized representation. 
The motive for these extra steps at the end is because the 
Simulink block diagram is based on time and not in a 
tolerance from the target point. 

The final result (Fig. 12) is an application for rendered 
images validation that consists of the estimate of the path 
followed by the robot using its camera pictures saved in each 
step using Lucas-Kanade method to estimate the variation of 
pixels between subsequent images, and epipolar geometry to 
calculate the robot’s translation and rotation. 
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Fig. 11 Comparison between trajectories of the simulations in Blender and Simulink 
 

 

Fig. 12 Image based trajectory estimation using simulation results 
.
This application consists of the use of images from both 

cameras pointed at a textured floor to track the pixels of 
subsequent pictures, as well as the use of visual odometry to 
estimate the robot’s movement with the related pixel 
localizations. The path for the estimation was (0,0) to (0,1), 
(0,1) to (1,1), and (1,1) to (2,2). 

IV. CONCLUSION 

The main objective of this paper is to exemplify a 
methodology for enabling the use of computer graphics 
platforms in the field of mobile robotic, focused in image-

based navigation algorithms. This same process can be 
duplicated for dynamic and kinematic models of different 
robots, or for another platform, by making just a few changes. 

Thus, the major applications of this work are aimed at its 
duplication and implementation in a very large field of image 
analysis, and its methodology is particularly easy to adapt for 
the field of visual navigation. 

Even though at this point the research can be very useful, 
some points still need improvement, such as the creation of a 
library with different scenarios ready to use, the modeling of 
more sensors and actuators, and use the Blender game engine 
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API to interact with the robot.  
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