Search results for: surface pressure distribution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4833

Search results for: surface pressure distribution

4023 Effect of High Injection Pressure on Mixture Formation, Burning Process and Combustion Characteristics in Diesel Combustion

Authors: Amir Khalid, B. Manshoor

Abstract:

The mixture formation prior to the ignition process plays as a key element in the diesel combustion. Parametric studies of mixture formation and ignition process in various injection parameter has received considerable attention in potential for reducing emissions. Purpose of this study is to clarify the effects of injection pressure on mixture formation and ignition especially during ignition delay period, which have to be significantly influences throughout the combustion process and exhaust emissions. This study investigated the effects of injection pressure on diesel combustion fundamentally using rapid compression machine. The detail behavior of mixture formation during ignition delay period was investigated using the schlieren photography system with a high speed camera. This method can capture spray evaporation, spray interference, mixture formation and flame development clearly with real images. Ignition process and flame development were investigated by direct photography method using a light sensitive high-speed color digital video camera. The injection pressure and air motion are important variable that strongly affect to the fuel evaporation, endothermic and prolysis process during ignition delay. An increased injection pressure makes spray tip penetration longer and promotes a greater amount of fuel-air mixing occurs during ignition delay. A greater quantity of fuel prepared during ignition delay period thus predominantly promotes more rapid heat release.

Keywords: Mixture Formation, Diesel Combustion, Ignition Process, Spray, Rapid Compression Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2841
4022 CFD Simulations of a Co-current Spray Dryer

Authors: Saad Nahi Saleh

Abstract:

This paper presents the prediction of air flow, humidity and temperature patterns in a co-current pilot plant spray dryer fitted with a pressure nozzle using a three dimensional model. The modelling was done with a Computational Fluid Dynamic package (Fluent 6.3), in which the gas phase is modelled as continuum using the Euler approach and the droplet/ particle phase is modelled by the Discrete Phase model (Lagrange approach).Good agreement was obtained with published experimental data where the CFD simulation correctly predicts a fast downward central flowing core and slow recirculation zones near the walls. In this work, the effects of the air flow pattern on droplets trajectories, residence time distribution of droplets and deposition of the droplets on the wall also were investigated where atomizing of maltodextrin solution was used.

Keywords: Spray, CFD, multiphase, drying, droplet, particle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4005
4021 Overall Effect of Nano Clay on the Physical Mechanical Properties of Epoxy Resin

Authors: Alireza BozorgianÏî Navid Majdi Nasab, Hassan Mirzazadeh

Abstract:

In this paper, the effect of modified clay on the mechanical efficiency of epoxy resin is examined. Studies by X ray diffraction and microscopic transient electron method show that modified clay distribution in polymer area is intercalated kind. Examination the results of mechanical tests shows that existence of modified clay in epoxy area increases pressure yield strength, tension module and nano composite fracture toughness in relate of pure epoxy. By microscopic examinations it is recognized too that the action of toughness growth of this kind of nano composite is due to crack deflection, formation of new surfaces and fracture of clay piles.

Keywords: Nano clay, Epoxy, Toughness, Composite

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2173
4020 Detecting and Measuring Fabric Pills Using Digital Image Analysis

Authors: Dariush Semnani, Hossein Ghayoor

Abstract:

In this paper a novel method was presented for evaluating the fabric pills using digital image processing techniques. This work provides a novel technique for detecting pills and also measuring their heights, surfaces and volumes. Surely, measuring the intensity of defects by human vision is an inaccurate method for quality control; as a result, this problem became a motivation for employing digital image processing techniques for detection of defects of fabric surface. In the former works, the systems were just limited to measuring of the surface of defects, but in the presented method the height and the volume of defects were also measured, which leads to a more accurate quality control. An algorithm was developed to first, find pills and then measure their average intensity by using three criteria of height, surface and volume. The results showed a meaningful relation between the number of rotations and the quality of pilled fabrics.

Keywords: 3D analysis, computer vision, fabric, pile, surface evaluation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2617
4019 Separation of Hazardous Brominated Plastics from Waste Plastics by Froth Flotation after Surface Modification with Mild Heat-Treatment

Authors: Nguyen Thi Thanh Truc, Chi-Hyeon Lee, Byeong-Kyu Lee, Srinivasa Reddy Mallampati

Abstract:

This study evaluated to facilitate separation of ABS plastics from other waste plastics by froth flotation after surface hydrophilization of ABS with heat treatment. The mild heat treatment at 100oC for 60s could selectively increase the hydrophilicity of the ABS plastics surface (i.e., ABS contact angle decreased from 79o to 65.8o) among other plastics mixture. The SEM and XPS results of plastic samples sufficiently supported the increase in hydrophilic functional groups and decrease contact angle on ABS surface, after heat treatment. As a result of the froth flotation (at mixing speed 150 rpm and airflow rate 0.3 L/min) after heat treatment, about 85% of ABS was selectively separated from other heavy plastics with 100% of purity. The effect of optimum treatment condition and detailed mechanism onto separation efficiency in the froth floatation was also investigated. This research is successful in giving a simple, effective, and inexpensive method for ABS separation from waste plastics.

Keywords: ABS, hydrophilic, heat treatment, froth flotation, contact angle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2302
4018 A Numerical Study of a Droplet Impinging on a Liquid Surface

Authors: S.Asadi, H.Panahi

Abstract:

The Navier–Stokes equations for unsteady, incompressible, viscous fluids in the axisymmetric coordinate system are solved using a control volume method. The volume-of-fluid (VOF) technique is used to track the free-surface of the liquid. Model predictions are in good agreement with experimental measurements. It is found that the dynamic processes after impact are sensitive to the initial droplet velocity and the liquid pool depth. The time evolution of the crown height and diameter are obtained by numerical simulation. The critical We number for splashing (Wecr) is studied for Oh (Ohnesorge) numbers in the range of 0.01~0.1; the results compares well with those of the experiments.

Keywords: Droplet impingement, free surface flows, liquid crown, numerical simulation, thin liquid film.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1978
4017 Simultaneous Optimization of Machining Parameters and Tool Geometry Specifications in Turning Operation of AISI1045 Steel

Authors: Farhad Kolahan, Mohsen Manoochehri, Abbas Hosseini

Abstract:

Machining is an important manufacturing process used to produce a wide variety of metallic parts. Among various machining processes, turning is one of the most important one which is employed to shape cylindrical parts. In turning, the quality of finished product is measured in terms of surface roughness. In turn, surface quality is determined by machining parameters and tool geometry specifications. The main objective of this study is to simultaneously model and optimize machining parameters and tool geometry in order to improve the surface roughness for AISI1045 steel. Several levels of machining parameters and tool geometry specifications are considered as input parameters. The surface roughness is selected as process output measure of performance. A Taguchi approach is employed to gather experimental data. Then, based on signal-to-noise (S/N) ratio, the best sets of cutting parameters and tool geometry specifications have been determined. Using these parameters values, the surface roughness of AISI1045 steel parts may be minimized. Experimental results are provided to illustrate the effectiveness of the proposed approach.

Keywords: Taguchi method, turning parameters, tool geometry specifications, S/N ratio, statistical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2319
4016 Bearing Capacity of Sheet Hanger Connection to the Trapezoidal Metal Sheet

Authors: Kateřina Jurdová

Abstract:

Hanging to the trapezoidal sheet by decking hanger is a very widespread solution used in civil engineering to lead the distribution of energy, sanitary, air distribution system etc. under the roof or floor structure. The trapezoidal decking hanger is usually a part of the whole installation system for specific distribution medium. The leading companies offer installation systems for each specific distribution e.g. pipe rings, sprinkler systems, installation channels etc. Every specific part is connected to the base connector which is decking hanger. The own connection has three main components: decking hanger, threaded bar with nuts and web of trapezoidal sheet. The aim of this contribution is determinate the failure mechanism of each component in connection. Load bearing capacity of most components in connection could be calculated by formulas in European codes. This contribution is focused on problematic of bearing resistance of threaded bar in web of trapezoidal sheet. This issue is studied by experimental research and numerical modelling. This contribution presented the initial results of experiment which is compared with numerical model of specimen.

Keywords: Decking hanger, concentrated load, connection, load bearing capacity, trapezoidal metal sheet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2644
4015 Simulation Study on Vehicle Drag Reduction by Surface Dimples

Authors: S. F. Wong, S. S. Dol

Abstract:

Automotive designers have been trying to use dimples to reduce drag in vehicles. In this work, a car model has been applied with dimple surface with a parameter called dimple ratio DR, the ratio between the depths of the half dimple over the print diameter of the dimple, has been introduced and numerically simulated via k-ε turbulence model to study the aerodynamics performance with the increasing depth of the dimples The Ahmed body car model with 25 degree slant angle is simulated with the DR of 0.05, 0.2, 0.3 0.4 and 0.5 at Reynolds number of 176387 based on the frontal area of the car model. The geometry of dimple changes the kinematics and dynamics of flow. Complex interaction between the turbulent fluctuating flow and the mean flow escalates the turbulence quantities. The maximum level of turbulent kinetic energy occurs at DR = 0.4. It can be concluded that the dimples have generated extra turbulence energy at the surface and as a result, the application of dimples manages to reduce the drag coefficient of the car model compared to the model with smooth surface.

Keywords: Aerodynamics, Boundary Layer, Dimple, Drag, Kinetic Energy, Turbulence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2338
4014 Pressure-Detecting Method for Estimating Levitation Gap Height of Swirl Gripper

Authors: Kaige Shi, Chao Jiang, Xin Li

Abstract:

The swirl gripper is an electrically activated noncontact handling device that uses swirling airflow to generate a lifting force. This force can be used to pick up a workpiece placed underneath the swirl gripper without any contact. It is applicable, for example, in the semiconductor wafer production line, where contact must be avoided during the handling and moving of a workpiece to minimize damage. When a workpiece levitates underneath a swirl gripper, the gap height between them is crucial for safe handling. Therefore, in this paper, we propose a method to estimate the levitation gap height by detecting pressure at two points. The method is based on theoretical model of the swirl gripper, and has been experimentally verified. Furthermore, the force between the gripper and the workpiece can also be estimated using the detected pressure. As a result, the nonlinear relationship between the force and gap height can be linearized by adjusting the rotating speed of the fan in the swirl gripper according to the estimated force and gap height. The linearized relationship is expected to enhance handling stability of the workpiece.

Keywords: Swirl gripper, noncontact handling, levitation, gap height estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 526
4013 The Distance between a Point and a Bezier Curveon a Bezier Surface

Authors: Wen-Haw Chen, Sheng-Gwo Chen

Abstract:

The distance between two objects is an important problem in CAGD, CAD and CG etc. It will be presented in this paper that a simple and quick method to estimate the distance between a point and a Bezier curve on a Bezier surface.

Keywords: Geodesic-like curve, distance, projection, Bezier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2557
4012 Introduction to Electron Spectroscopy for Surfaces Characterization

Authors: Abdelkader Benzian

Abstract:

Spectroscopy is the study of the spectrum produced by the radiation-matter interaction which requires the study of electromagnetic radiation (or electrons) emitted, absorbed, or scattered by matter. Thus, the spectral analysis is using spectrometers which enables us to obtain curves that express the distribution of the energy emitted (spectrum). Analysis of emission spectra can therefore constitute several methods depending on the range of radiation energy. The most common methods used are Auger electron spectroscopy (AES) and Electron Energy Losses Spectroscopy (EELS), which allow the determination of the atomic structure on the surface. This paper focalized essentially on the Electron Energy Loss Spectroscopy.

Keywords: Dielectric, plasmon, mean free path, spectroscopy of electron energy losses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 756
4011 Construction of Strain Distribution Profiles of EDD Steel at Elevated Temperatures

Authors: Eshwara K. Prasad, Raman R. Goud, Swadesh Kumar Singh, N. Sateesh

Abstract:

In the present work, forming limit diagrams and strain distribution profile diagrams for extra deep drawing steel at room and elevated temperatures have been determined experimentally by conducting stretch forming experiments by using designed and fabricated warm stretchforming tooling setup. With the help of forming Limit Diagrams (FLDs) and strain, distribution profile diagrams the formability of Extra Deep Drawing steel has been analyzed and co-related with mechanical properties like strain hardening COEFFICIENT (n) and normal anisotropy (r−). Mechanical properties of EDD steel from room temperature to 4500C were determined and discussed the impact of temperature on the properties like work hardening exponent (n) anisotropy (r-) and strength coefficient of the material. In addition, the fractured surfaces after stretching have undergone the some metallurgical investigations and attempt has been made to co-relate with the formability of EDD steel sheets. They are co-related and good agreement with FLDs at various temperatures.

Keywords: FLD, microhardness, strain distribution profile, stretch forming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831
4010 Impact of Landuse Change on Surface Temperature in Ibadan, Nigeria

Authors: Abegunde Linda, Adedeji Oluwatola

Abstract:

It has become an increasing evident that large development influences the climate. There are concerns that rising temperature over developed areas could have negative impact and increase living discomfort within city boundaries. Temperature trends in Ibadan city have received little attention, yet the area has experienced heavy urban expansion between 1972 and 2014. This research aims at examining the impact of landuse change on surface temperature knowing that the built-up environment absorb and store solar energy, resulting into the Urban Heat Island (UHI) effect. The Landsat imagery was used to examine the landuse change for a period of 42 years (1972-2014). Land Surface Temperature (LST) was obtained by converting the thermal band to a surface temperature map and zonal statistic analyses was used to examine the relationship between landuse and temperature emission. The results showed that the settlement area increased to a large extent while the area covered by vegetation reduced during the study period. The spatial and temporal trends of surface temperature are related to the gradual change in urban landuse/landcover and the settlement area has the highest emission. This research provides useful insight into the temporal behavior of the Ibadan city.

Keywords: Landuse, LST, Remote sensing, UHI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2754
4009 Understanding Grip Choice and Comfort Whilst Hoovering

Authors: S.R.Kamat, A.Yoxall, C.Craig , M.J.Carré, J.Rowson

Abstract:

The hand is one of the essential parts of the body for carrying out Activities of Daily Living (ADLs). Individuals use their hands and fingers in everyday activities in the both the workplace and home. Hand-intensive tasks require diverse and sometimes extreme levels of exertion, depending on the action, movement or manipulation involved. The authors have undertaken several studies looking at grip choice and comfort. It is hoped that in providing improved understanding of discomfort during ADLs this will aid in the design of consumer products. Previous work by the authors outlined a methodology for calculating pain frequency and pain level for a range of tasks. From an online survey undertaken by the authors with regards manipulating objects during everyday tasks, tasks involving gripping were seen to produce the highest levels of pain and discomfort. Questioning of the participants showed that cleaning tasks were seen to be ADL's that produced the highest levels of discomfort, with women feeling higher levels of discomfort than men. This paper looks at the methodology for calculating pain frequency and pain level with particular regards to gripping activities. This methodology shows that activities such as mopping, sweeping and hoovering shows the highest numbers of pain frequency and pain level at 3112.5 frequency per month while the pain level per person doing this action was 0.78.The study then uses thin-film force sensors to analyze the force distribution in the hand whilst hoovering and compares this for differing grip styles and genders. Women were seen to have more of their hand under a higher pressure than men when undertaking hoovering. This suggests that women may feel greater discomfort than men since their hand is at a higher pressure more of the time.

Keywords: hovering, grip, pain

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1467
4008 Large-Eddy Simulations of Subsonic Impinging Jets

Authors: L. Nguyen, V. Golubev, R. Mankbadi

Abstract:

We consider here the subsonic impinging jet representing the flow field of a vertical take-off aircraft or the initial stage of rocket launching. Implicit Large-Eddy Simulation (ILES) is used to calculate the time-dependent flow field and the radiate sound pressure associated with jet impinging. With proper boundary treatments and high-order numerical scheme, the near field sound pressure is successfully obtained. Results are presented for both a rectangular as well a circular jet.

Keywords: Aeroacoustics, Large-Eddy Simulations, Jets, Fluid Dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2186
4007 Numerical Simulation of the Effects of Nanofluid on a Heat Pipe Thermal Performance

Authors: Barzin Gavtash, Khalid Hussain, Mohammad Layeghi, Saeed Sadeghi Lafmejani

Abstract:

This research aims at modeling and simulating the effects of nanofluids on cylindrical heat pipes thermal performance using the ANSYS-FLUENT CFD commercial software. The heat pipe outer wall temperature distribution, thermal resistance, liquid pressure and axial velocity in presence of suspended nano-scaled solid particle (i.e. Cu, Al2O3 and TiO2) within the fluid (water) were investigated. The effect of particle concentration and size were explored and it is concluded that the thermal performance of the heat pipe is improved when using nanofluid as the system working fluid. Additionally, it was observed that the thermal resistance of the heat pipe drops as the particle concentration level increases and particle radius decreases.

Keywords: CFD, Heat Pipe, Nanofluid, Thermal resistance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44849
4006 A Simplified Approach for Load Flow Analysis of Radial Distribution Network

Authors: K. Vinoth Kumar, M.P. Selvan

Abstract:

This paper presents a simple approach for load flow analysis of a radial distribution network. The proposed approach utilizes forward and backward sweep algorithm based on Kirchoff-s current law (KCL) and Kirchoff-s voltage law (KVL) for evaluating the node voltages iteratively. In this approach, computation of branch current depends only on the current injected at the neighbouring node and the current in the adjacent branch. This approach starts from the end nodes of sub lateral line, lateral line and main line and moves towards the root node during branch current computation. The node voltage evaluation begins from the root node and moves towards the nodes located at the far end of the main, lateral and sub lateral lines. The proposed approach has been tested using four radial distribution systems of different size and configuration and found to be computationally efficient.

Keywords: constant current load, constant impedance load, constant power load, forward–backward sweep, load flow analysis, radial distribution system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2668
4005 Wet Flue Gas Desulfurization Using a New O-Element Design Which Replaces the Venturi Scrubber

Authors: P. Lestinsky, D. Jecha, V. Brummer, P. Stehlik

Abstract:

Scrubbing by a liquid spraying is one of the most effective processes used for removal of fine particles and soluble gas pollutants (such as SO2, HCl, HF) from the flue gas. There are many configurations of scrubbers designed to provide contact between the liquid and gas stream for effectively capturing particles or soluble gas pollutants, such as spray plates, packed bed towers, jet scrubbers, cyclones, vortex and venturi scrubbers. The primary function of venturi scrubber is the capture of fine particles as well as HCl, HF or SO2 removal with effect of the flue gas temperature decrease before input to the absorption column. In this paper, sulfur dioxide (SO2) from flue gas was captured using new design replacing venturi scrubber (1st degree of wet scrubbing). The flue gas was prepared by the combustion of the carbon disulfide solution in toluene (1:1 vol.) in the flame in the reactor. Such prepared flue gas with temperature around 150°C was processed in designed laboratory O-element scrubber. Water was used as absorbent liquid. The efficiency of SO2 removal, pressure drop and temperature drop were measured on our experimental device. The dependence of these variables on liquid-gas ratio was observed. The average temperature drop was in the range from 150°C to 40°C. The pressure drop was increased with increasing of a liquid-gas ratio, but no too much as for the common venturi scrubber designs. The efficiency of SO2 removal was up to 70 %. The pressure drop of our new designed wet scrubber is similar to commonly used venturi scrubbers; nevertheless the influence of amount of the liquid on pressure drop is not so significant.

Keywords: Desulphurization, absorption, flue gas, modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2886
4004 Roughness and Hardness of 60/40 Cu-Zn Alloy

Authors: Pavana Manvikar, G K Purohit

Abstract:

The functional performance of machined components, often, depends on surface topography, hardness, nature of stress and strain induced on the surface, etc. Invariably, surfaces of metallic components obtained by turning, milling, etc., consist of irregularities such as machining marks are responsible for the above. Surface finishing/coating processes used to produce improved surface quality/textures are classified as chip-removal and chip-less processes. Burnishing is chip-less cold working process carried out to improve surface finish, hardness and resistance to fatigue and corrosion; not obtainable by other surface coating and surface treatment processes. It is a very simple, but effective method which improves surface characteristics and is reported to introduce compressive stresses.

Of late, considerable attention is paid to post-machining, finishing operations, such as burnishing. During burnishing the micro-irregularities start to deform plastically, initially the crests are gradually flattened and zones of reduced deformation are formed. When all the crests are deformed, the valleys between the micro-irregularities start moving in the direction of the newly formed surface. The grain structure is then condensed, producing a smoother and harder surface with superior load-carrying and wear-resistant capabilities.

Burnishing can be performed on a lathe with a highly polished ball or roller type tool which is traversed under force over a rotating/stationary work piece. Often, several passes are used to obtain the work piece surface with the desired finish and hardness.

This paper presents the findings of an experimental investigation on the effect of ball burnishing parameters such as, burnishing speed, feed, force and number of passes; on surface roughness (Ra) and micro-hardness (Hv) of a 60/40 copper/zinc alloy, using a 2-level fractional factorial design of experiments (DoE). Mathematical models were developed to predict surface roughness and hardness generated by burnishing in terms of the above process parameters. A ball-type tool, designed and constructed from a high chrome steel material (HRC=63 and Ra=0.012 µm), was used for burnishing of fine-turned cylindrical bars (0.68-0.78µm and 145Hv). They are given by,

 

Ra= 0.305-0.005X1 - 0.0175X2 + 0.0525X4 + 0.0125X1X4 -0.02X2X4 - 0.0375X3X4

 

Hv=160.625 -2.37 5X1 + 5.125X2 + 1.875X3 + 4.375X4 - 1.625X1X4 + 4.375X2X4 - 2.375X3X4

 

High surface microhardness (175HV) was obtained at 400rpm, 2passes, 0.05mm/rev and 15kgf., and high surface finish (0.20µm) was achieved at 30kgf, 0.1mm/rev, 112rpm and single pass. In other words, surface finish improved by 350% and microhardness improved by 21% compared to as machined conditions.

Keywords: Ball burnishing, surface roughness, micro-hardness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2526
4003 Risk Assessment of Trace Element Pollution in Gymea Bay, NSW, Australia

Authors: Yasir M. Alyazichi, Brian G. Jones, Errol McLean, Hamd N. Altalyan, Ali K. M. Al-Nasrawi

Abstract:

The main purpose of this study is to assess the sediment quality and potential ecological risk in marine sediments in Gymea Bay located in south Sydney, Australia. A total of 32 surface sediment samples were collected from the bay. Current track trajectories and velocities have also been measured in the bay. The resultant trace elements were compared with the adverse biological effect values Effect Range Low (ERL) and Effect Range Median (ERM) classifications. The results indicate that the average values of chromium, arsenic, copper, zinc, and lead in surface sediments all reveal low pollution levels and are below ERL and ERM values. The highest concentrations of trace elements were found close to discharge points and in the inner bay, and were linked with high percentages of clay minerals, pyrite and organic matter, which can play a significant role in trapping and accumulating these elements. The lowest concentrations of trace elements were found to be on the shoreline of the bay, which contained high percentages of sand fractions. It is postulated that the fine particles and trace elements are disturbed by currents and tides, then transported and deposited in deeper areas. The current track velocities recorded in Gymea Bay had the capability to transport fine particles and trace element pollution within the bay. As a result, hydrodynamic measurements were able to provide useful information and to help explain the distribution of sedimentary particles and geochemical properties. This may lead to knowledge transfer to other bay systems, including those in remote areas. These activities can be conducted at a low cost, and are therefore also transferrable to developing countries. The advent of portable instruments to measure trace elements in the field has also contributed to the development of these lower cost and easily applied methodologies available for use in remote locations and low-cost economies.

Keywords: Current track velocities, Gymea Bay, surface sediments, trace elements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104
4002 Mass Transfer of Palm Kernel Oil under Supercritical Conditions

Authors: I. Norhuda, A. K. Mohd Omar

Abstract:

The purpose of the study was to determine the amount of Palm Kernel Oil (PKO) extracted from a packed bed of palm kernels in a supercritical fluid extractor using supercritical carbon dioxide (SC-CO2) as an environmental friendly solvent. Further, the study sought to ascertain the values of the overall mass transfer coefficient (K) of PKO evaluation through a mass transfer model, at constant temperature of 50 °C, 60 °C, and 70 °C and pressures range from 27.6 MPa, 34.5 MPa, 41.4 MPa and 48.3 MPa respectively. Finally, the study also seeks to demonstrate the application of the overall mass transfer coefficient values in relation to temperature and pressure. The overall mass transfer coefficient was found to be dependent pressure at each constant temperature of 50 °C, 60 °C and 70 °C. The overall mass transfer coefficient for PKO in a packed bed of palm kernels was found to be in the range of 1.21X 10-4 m min-1 to 1.72 X 10-4 m min-1 for a constant temperature of 50 °C and in the range of 2.02 X 10-4 m min-1 to 2.43 X 10-4 m min-1 for a constant temperature of 60 °C. Similar increasing trend of the overall mass transfer coefficient from 1.77 X 10-4 m min-1 to 3.64 X 10-4 m min-1 was also observed at constant temperature of 70 °C within the same pressure range from 27.6 MPa to 48.3 MPa.

Keywords: Overall Mass Transfer Coefficient (D), Supercritical Carbon Dioxide (SC-CO2), Palm Kernel Oil (PKO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742
4001 Computer Modeling of Drug Distribution after Intravitreal Administration

Authors: N. Haghjou, M. J. Abdekhodaie, Y. L. Cheng, M. Saadatmand

Abstract:

Intravitreal injection (IVI) is the most common treatment for eye posterior segment diseases such as endopthalmitis, retinitis, age-related macular degeneration, diabetic retinopathy, uveitis, and retinal detachment. Most of the drugs used to treat vitreoretinal diseases, have a narrow concentration range in which they are effective, and may be toxic at higher concentrations. Therefore, it is critical to know the drug distribution within the eye following intravitreal injection. Having knowledge of drug distribution, ophthalmologists can decide on drug injection frequency while minimizing damage to tissues. The goal of this study was to develop a computer model to predict intraocular concentrations and pharmacokinetics of intravitreally injected drugs. A finite volume model was created to predict distribution of two drugs with different physiochemical properties in the rabbit eye. The model parameters were obtained from literature review. To validate this numeric model, the in vivo data of spatial concentration profile from the lens to the retina were compared with the numeric data. The difference was less than 5% between the numerical and experimental data. This validation provides strong support for the numerical methodology and associated assumptions of the current study.

Keywords: Posterior segment, Intravitreal injection (IVI), Pharmacokinetic, Modelling, Finite volume method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2438
4000 The Effect of Tool Path Strategy on Surface and Dimension in High Speed Milling

Authors: A. Razavykia, A. Esmaeilzadeh, S. Iranmanesh

Abstract:

Many orthopedic implants like proximal humerus cases require lower surface roughness and almost immediate/short lead time surgery. Thus, rapid response from the manufacturer is very crucial. Tool path strategy of milling process has a direct influence on the surface roughness and lead time of medical implant. High-speed milling as promised process would improve the machined surface quality, but conventional or super-abrasive grinding still required which imposes some drawbacks such as additional costs and time. Currently, many CAD/CAM software offers some different tool path strategies to milling free form surfaces. Nevertheless, the users must identify how to choose the strategies according to cutting tool geometry, geometry complexity, and their effects on the machined surface. This study investigates the effect of different tool path strategies for milling a proximal humerus head during finishing operation on stainless steel 316L. Experiments have been performed using MAHO MH700 S vertical milling machine and four machining strategies, namely, spiral outward, spiral inward, and radial as well as zig-zag. In all cases, the obtained surfaces were analyzed in terms of roughness and dimension accuracy compared with those obtained by simulation. The findings provide evidence that surface roughness, dimensional accuracy, and machining time have been affected by the considered tool path strategy.

Keywords: CAD/CAM software, milling, orthopedic implants, tool path strategy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 993
3999 Increasing Power Transfer Capacity of Distribution Networks Using Direct Current Feeders

Authors: Akim Borbuev, Francisco de León

Abstract:

Economic and population growth in densely-populated urban areas introduce major challenges to distribution system operators, planers, and designers. To supply added loads, utilities are frequently forced to invest in new distribution feeders. However, this is becoming increasingly more challenging due to space limitations and rising installation costs in urban settings. This paper proposes the conversion of critical alternating current (ac) distribution feeders into direct current (dc) feeders to increase the power transfer capacity by a factor as high as four. Current trends suggest that the return of dc transmission, distribution, and utilization are inevitable. Since a total system-level transformation to dc operation is not possible in a short period of time due to the needed huge investments and utility unreadiness, this paper recommends that feeders that are expected to exceed their limits in near future are converted to dc. The increase in power transfer capacity is achieved through several key differences between ac and dc power transmission systems. First, it is shown that underground cables can be operated at higher dc voltage than the ac voltage for the same dielectric stress in the insulation. Second, cable sheath losses, due to induced voltages yielding circulation currents, that can be as high as phase conductor losses under ac operation, are not present under dc. Finally, skin and proximity effects in conductors and sheaths do not exist in dc cables. The paper demonstrates that in addition to the increased power transfer capacity utilities substituting ac feeders by dc feeders could benefit from significant lower costs and reduced losses. Installing dc feeders is less expensive than installing new ac feeders even when new trenches are not needed. Case studies using the IEEE 342-Node Low Voltage Networked Test System quantify the technical and economic benefits of dc feeders.

Keywords: Dc power systems, distribution feeders, distribution networks, energy efficiency, power transfer capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1068
3998 Geochemical Assessment of Heavy Metals Concentration in Surface Sediment of West Port, Malaysia

Authors: B.Tavakoly Sany, A. Salleh, A.H .Sulaiman, A. Mehdinia, GH. Monazami

Abstract:

One year (November 2009-October 2010) sediment monitoring was used to evaluate pollution status, concentration and distribution of heavy metals (As, Cu, Cd, Cr, Hg, Ni, Pb and Zn) in West Port of Malaysia. Sediment sample were collected from nine stations every four months. Geo-accumulation factor and Pollution Load Index (PLI) were estimated to better understand the pollution level in study area. The heavy metal concentration (Mg/g dry weight) were ranged from 20.2 to 162 for As, 7.4 to 27.6 for Cu, 0.244 to 3.53 for Cd, 11.5 to 61.5 for Cr, 0.11 to 0.409 for Hg, 7.2 to 22.2 for Ni, 22.3 to 80 for Pb and 23 to 98.3 for Zn. In general, concentration some metals (As,Cd, Hg and Pb) was higher than background values that are considered as serious concern for aquatic life and the human health.

Keywords: Heavy metals, Sediment Quality, geo-accumulationindex, Pollution Load Index

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2525
3997 Determination of Surface Deformations with Global Navigation Satellite System Time Series

Authors: I. Tiryakioglu, M. A. Ugur, C. Ozkaymak

Abstract:

The development of Global Navigation Satellite System (GNSS) technology has led to increasingly widely and successful applications of GNSS surveys for monitoring crustal movements. Instead of the multi-period GNSS solutions, this study utilizes GNSS time series that are required to more precisely determine the vertical deformations in the study area. In recent years, the surface deformations that are parallel and semi-parallel to Bolvadin fault have occurred in Western Anatolia. These surface deformations have continued to occur in Bolvadin settlement area that is located mostly on alluvium ground. Due to these surface deformations, a number of cracks in the buildings located in the residential areas and breaks in underground water and sewage systems have been observed. In order to determine the amount of vertical surface deformations, two continuous GNSS stations have been established in the region. The stations have been operating since 2015 and 2017, respectively. In this study, GNSS observations from the mentioned two GNSS stations were processed with GAMIT/GLOBK (GNSS Analysis Massachusetts Institute of Technology/GLOBal Kalman) program package to create coordinate time series. With the time series analyses, the GNSS stations’ behaviour models (linear, periodical, etc.), the causes of these behaviours, and mathematical models were determined. The study results from the time series analysis of these two 2 GNSS stations show approximately 50-90 mm/yr vertical movement.

Keywords: Bolvadin fault, GAMIT, GNSS time series, surface deformations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 810
3996 Bowen Ratio in Western São Paulo State, Brazil

Authors: Elaine C. Barboza, Antonio J. Machado

Abstract:

This paper discusses micrometeorological aspects of the urban climate in three cities in Western São Paulo State: Presidente Prudente, Assis and Iepê. Particular attention is paid to the method used to estimate the components of the energy balance at the surface. Estimates of convective fluxes showed that the Bowen ratio was an indicator of the local climate and that its magnitude varied between 0.3 and 0.7. Maximum values for the Bowen ratio occurred earlier in Iepê (11:00 am) than in Presidente Prudente (4:00 pm). The results indicate that the Bowen ratio is modulated by the radiation balance at the surface and by different clusters of vegetation.

Keywords: Bowen ratio, medium-sized cities, surface energy balance, urban climate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4022
3995 Sorptive Storage of Natural Gas on Molecular Sieves: Dynamic Investigation

Authors: S. Al-Asheh, K. Al-Emadi

Abstract:

In recent years, there have been attempts to store natural gas in adsorptive form. This is called adsorptive natural gas, or ANG. The problem with this technology is the low sorption capacity. The purpose is to achieve compressed natural gas (CNG) capacity of 230 V/V. Further research is required to achieve such target. Several research studies have been performed with this target; through either the modification or development of new sorbents or the optimization of the operation sorption process itself. In this work, storage of methane on molecular sieves 5A and 13X was studied on dry basis, and on wet basis to certain extent. The temperature and the pressure dynamics were investigated. The results indicated that regardless of the charge pressure, the time for the peak temperature during the methane charge process is always the same. This can be used as a characteristic of the adsorbent. The total achieved deliveries using molecular sieves were much lower than that of activated carbons; 53.0 V/V for the case of 13X molecular sieves and 43 V/V for the case of 5A molecular sieves, both at 2oC and 4 MPa (580 psi). Investigation of charge pressure dynamic using wet molecular sieves at 2oC and a mass ratio of 0.5, revealed slowness of the process and unexpected behavior.

Keywords: Methane, Molecular sieves, Adsorption, Delivery, Storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1986
3994 A Finite Element Method Simulation for Rocket Motor Material Selection

Authors: T. Kritsana, P. Sawitri, P. Teeratas

Abstract:

This article aims to study the effect of pressure on rocket motor case by Finite Element Method simulation to select optimal material in rocket motor manufacturing process. In this study, cylindrical tubes with outside diameter of 122 mm and thickness of 3 mm are used for simulation. Defined rocket motor case materials are AISI4130, AISI1026, AISI1045, AL2024 and AL7075. Internal pressure used for the simulation is 22 MPa.

The result from Finite Element Method shows that at a pressure of 22 MPa rocket motor case produced by AISI4130, AISI1045 and AL7075 can be used. A comparison of the result between AISI4130, AISI1045 and AL7075 shows that AISI4130 has minimum principal stress and confirm the results of Finite Element Method by the used of calculation method found that, the results from Finite Element Method has good reliability.

Keywords: Rocket motor case, Finite Element Method, principal Stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2542