Search results for: Surface Enhanced Raman Scattering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2892

Search results for: Surface Enhanced Raman Scattering

2082 CFD Simulation of Surge Wave Generated by Flow-Like Landslides

Authors: Liu-Chao Qiu

Abstract:

The damage caused by surge waves generated in water bodies by flow-like landslides can be very high in terms of human lives and economic losses. The complicated phenomena occurred in this highly unsteady process are difficult to model because three interacting phases: air, water and sediment are involved. The problem therefore is challenging since the effects of non-Newtonian fluid describing the rheology of the flow-like landslides, multi-phase flow and free surface have to be included in the simulation. In this work, the commercial computational fluid dynamics (CFD) package FLUENT is used to model the surge waves due to flow-like landslides. The comparison between the numerical results and experimental data reported in the literature confirms the accuracy of the method.

Keywords: Flow-like landslide, surge wave, VOF, non-Newtonian fluids, multi-phase flows, free surface flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1422
2081 Effects of Different Fiber Orientations on the Shear Strength Performance of Composite Adhesive Joints

Authors: Ferhat Kadioglu, Hasan Puskul

Abstract:

A composite material with carbon fiber and polymer matrix has been used as adherent for manufacturing adhesive joints. In order to evaluate different fiber orientations on joint performance, the adherents with the 0°, ±15°, ±30°, ±45° fiber orientations were used in the single lap joint configuration. The joints with an overlap length of 25 mm were prepared according to the ASTM 1002 specifications and subjected to tensile loadings. The structural adhesive used was a two-part epoxy to be cured at 70°C for an hour. First, mechanical behaviors of the adherents were measured using three point bending test. In the test, considerations were given to stress to failure and elastic modulus. The results were compared with theoretical ones using rule of mixture. Then, the joints were manufactured in a specially prepared jig, after a proper surface preparation. Experimental results showed that the fiber orientations of the adherents affected the joint performance considerably; the joints with ±45° adherents experienced the worst shear strength, half of those with 0° adherents, and in general, there was a great relationship between the fiber orientations and failure mechanisms. Delamination problems were observed for many joints, which were thought to be due to peel effects at the ends of the overlap. It was proved that the surface preparation applied to the adherent surface was adequate. For further explanation of the results, a numerical work should be carried out using a possible non-linear analysis.

Keywords: Composite materials, adhesive bonding, bonding strength, lap joint, tensile strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2450
2080 Understanding Integrated Removal of Heavy Metals, Organic Matter and Nitrogen in a Constructed Wetland System Receiving Simulated Landfill Leachate

Authors: A. Mohammed, A. Babatunde

Abstract:

This study investigated the integrated removal of heavy metals, organic matter and nitrogen from landfill leachate using a novel laboratory scale constructed wetland system. The main objectives of this study were: (i) to assess the overall effectiveness of the constructed wetland system for treating landfill leachate; (ii) to examine the interactions and impact of key leachate constituents (heavy metals, organic matter and nitrogen) on the overall removal dynamics and efficiency. The constructed wetland system consisted of four stages operated in tidal flow and anoxic conditions. Results obtained from 215 days of operation have demonstrated extraordinary heavy metals removal up to 100%. Analysis of the physico- chemical data reveal that the controlling factors for metals removal were the anoxic condition and the use of the novel media (dewatered ferric sludge which is a by-product of drinking water treatment process) as the main substrate in the constructed wetland system. Results show that the use of the ferric sludge enhanced heavy metals removal and brought more flexibility to simultaneous nitrification and denitrification which occurs within the microbial flocs. Furthermore, COD and NH4-N were effectively removed in the system and this coincided with enhanced aeration in the 2nd and 3rd stages of the constructed wetland system. Overall, the results demonstrated that the ferric dewatered sludge constructed wetland system would be an effective solution for integrated removal of pollutants from landfill leachates.

Keywords: Constructed wetlands, ferric dewatered sludge, heavy metal, landfill leachate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1001
2079 Spectroscopic Characterization of Indium-Tin Laser Ablated Plasma

Authors: M. Hanif, M. Salik

Abstract:

In the present research work we present the optical emission studies of the Indium (In) – Tin (Sn) plasma produced by the first (1064 nm) harmonic of an Nd: YAG nanosecond pulsed laser. The experimentally observed line profiles of neutral Indium (In I) and Tin (SnI) are used to extract the electron temperature (Te) using the Boltzmann plot method. Whereas, the electron number density (Ne) has been determined from the Stark broadening line profile method. The Te is calculated by varying the distance from the target surface along the line of propagation of plasma plume and also by varying the laser irradiance. Beside we have studied the variation of Ne as a function of laser irradiance as well as its variation with distance from the target surface.

Keywords: Indium – Tin plasma, laser ablation, optical emission spectroscopy, electron temperature, and electron number density.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2294
2078 Study of the Quality of Surface Water in the Upper Cheliff Basin

Authors: Touhari Fadhila, Mehaiguene Madjid, Meddi Mohamed

Abstract:

This work aims to assess the quality of water dams based on the monitoring of physical-chemical parameters by the National Agency of Water Resources (ANRH) for a period of 10 years (1999-2008). Quality sheets of surface water for the four dams in the region of upper Cheliff (Ghrib, Deurdeur, Harreza, and Ouled Mellouk) show a degradation of the quality (organic pollution expressed in COD and OM) over time. Indeed, the registered amount of COD often exceeds 50 mg/ l, and the OM exceeds 15 mg/l. This pollution is caused by discharges of wastewater and eutrophication. The waters of dams show a very high salinity (TDS = 2574 mg/l in 2008 for the waters of the dam Ghrib, standard = 1500 mg/l). The concentration of nitrogenous substances (NH4+, NO2-) in water is high in 2008 at Ouled Melloukdam. This pollution is caused by the oxidation of nitrogenous organic matter. On the other hand, we studied the relationship between the evolution of quality parameters and filling dams. We observed a decrease in the salinity and COD following an improvement of the filling state of dams, this resides in the dilution water through the contribution of rainwater. While increased levels of nitrates and phosphorus in the waters of four dams studied during the rainy season is compared to the dry period, this increase may be due to leaching from fertilizers used in agricultural soils situated in watersheds.

Keywords: Surface water quality, pollution, physical-chemical parameters, upper Cheliff basin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 910
2077 Design Calculation and Performance Testing of Heating Coil in Induction Surface Hardening Machine

Authors: Soe Sandar Aung, Han Phyo Wai, Nyein Nyein Soe

Abstract:

The induction hardening machines are utilized in the industries which modify machine parts and tools needed to achieve high ware resistance. This paper describes the model of induction heating process design of inverter circuit and the results of induction surface hardening of heating coil. In the design of heating coil, the shape and the turn numbers of the coil are very important design factors because they decide the overall operating performance of induction heater including resonant frequency, Q factor, efficiency and power factor. The performance will be tested by experiments in some cases high frequency induction hardening machine.

Keywords: Induction Heating, Resonant Circuit, InverterCircuit, Coil Design, Induction Hardening Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22283
2076 Spurious Crests in Second-Order Waves

Authors: M. A. Tayfun

Abstract:

Occurrences of spurious crests on the troughs of large, relatively steep second-order Stokes waves are anomalous and not an inherent characteristic of real waves. Here, the effects of such occurrences on the statistics described by the standard second-order stochastic model are examined theoretically and by way of simulations. Theoretical results and simulations indicate that when spurious occurrences are sufficiently large, the standard model leads to physically unrealistic surface features and inaccuracies in the statistics of various surface features, in particular, the troughs and thus zero-crossing heights of large waves. Whereas inaccuracies can be fairly noticeable for long-crested waves in both deep and shallower depths, they tend to become relatively insignificant in directional waves.

Keywords: Large waves, non-linear effects, simulation, spectra, spurious crests, Stokes waves, wave breaking, wave statistics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1314
2075 Enhanced GA-Fuzzy OPF under both Normal and Contingent Operation States

Authors: Ashish Saini, A.K. Saxena

Abstract:

The genetic algorithm (GA) based solution techniques are found suitable for optimization because of their ability of simultaneous multidimensional search. Many GA-variants have been tried in the past to solve optimal power flow (OPF), one of the nonlinear problems of electric power system. The issues like convergence speed and accuracy of the optimal solution obtained after number of generations using GA techniques and handling system constraints in OPF are subjects of discussion. The results obtained for GA-Fuzzy OPF on various power systems have shown faster convergence and lesser generation costs as compared to other approaches. This paper presents an enhanced GA-Fuzzy OPF (EGAOPF) using penalty factors to handle line flow constraints and load bus voltage limits for both normal network and contingency case with congestion. In addition to crossover and mutation rate adaptation scheme that adapts crossover and mutation probabilities for each generation based on fitness values of previous generations, a block swap operator is also incorporated in proposed EGA-OPF. The line flow limits and load bus voltage magnitude limits are handled by incorporating line overflow and load voltage penalty factors respectively in each chromosome fitness function. The effects of different penalty factors settings are also analyzed under contingent state.

Keywords: Contingent operation state, Fuzzy rule base, Genetic Algorithms, Optimal Power Flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615
2074 Low Temperature Ethanol Gas Sensor based on SnO2/MWNTs Nanocomposite

Authors: O. Alizadeh Sahraei, A. Khodadadi, Y. Mortazavi, M. Vesali Naseh, S. Mosadegh

Abstract:

A composite made of plasma functionalized multiwall carbon nanotubes (MWNTs) coated with SnO2 was synthesized by sonochemical precipitation method. Thick layer of this nanocomposite material was used as ethanol sensor at low temperatures. The composite sensitivity for ethanol has increased by a factor of 2 at room temperature and by a factor of 13 at 250°C in comparison to that of pure SnO2. SEM image of nanocomposite material showed MWNTs were embedded in SnO2 matrix and also a higher surface area was observed in the presence of functionalized MWNTs. Greatly improved sensitivity of the composite material to ethanol can be attributed to new gas accessing passes through MWNTs and higher specific surface area.

Keywords: Carbon nanotube, Functionalized, Gas sensor, Low temperature, Nanocomposite, Tin oxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2339
2073 Influence of Composition and Austempering Temperature on Machinability of Austempered Ductile Iron

Authors: Jagmohan Datt, Uma Batra

Abstract:

Present investigations involve a systematic study on the machinability of austempered ductile irons (ADI) developed from four commercially viable ductile irons alloyed with different contents of 0, 0.1, 0.3 and 0.6 wt.% of Ni. The influence of Ni content, amount of retained austenite and hardness of ADI on machining behavior has been conducted systematically. Austempering heat treatment was carried out for 120 minutes at four temperatures- 270oC, 320oC, 370oC or 420oC, after austenitization at 900oC for 120 min. Milling tests were performed and machinability index, cutting forces and surface roughness measurements were used to evaluate the machinability. Higher cutting forces, lower machinability index and the poorer surface roughness of the samples austempered at lower temperatures indicated that austempering at higher temperatures resulted in better machinability. The machinability of samples austempered at 420oC, which contained higher fractions of retained austenite, was superior to that of samples austempered at lower temperatures, indicating that hardness is an important factor in assessing machinability in addition to high carbon austenite content. The ADI with 0.6% Ni, austempered at 420°C for 120 minutes, demonstrated best machinability.

Keywords: Austempering, machinability, machining index, cutting force, surface finish.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2383
2072 Design of Moving Sliding Surfaces in A Variable Structure Plant and Chattering Phenomena

Authors: T.C. Manjunath

Abstract:

This paper deals with the design of a moving sliding surface in a variable structure plant for a second order system. The chattering phenomena is also dealt with during the switching process for an unstable sliding surface condition. The simulation examples considered in this paper shows the effectiveness of the sliding mode control method used for the design of the moving sliding surfaces. A simulink model of the continuous system was also developed in MATLAB-SIMULINK for the design and hence demonstrated. The phase portraits and the state plots shows the demonstration of the powerful control technique which can be applied for second order systems.

Keywords: Sliding mode control, VSC, Reaching phase, Sliding phase, Moving surfaces, Chattering, Trajectories.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336
2071 Profile Controlled Gold Nanostructures Fabricated by Nanosphere Lithography for Localized Surface Plasmon Resonance

Authors: Xiaodong Zhou, Nan Zhang

Abstract:

Localized surface plasmon resonance (LSPR) is the coherent oscillation of conductive electrons confined in noble metallic nanoparticles excited by electromagnetic radiation, and nanosphere lithography (NSL) is one of the cost-effective methods to fabricate metal nanostructures for LSPR. NSL can be categorized into two major groups: dispersed NSL and closely pack NSL. In recent years, gold nanocrescents and gold nanoholes with vertical sidewalls fabricated by dispersed NSL, and silver nanotriangles and gold nanocaps on silica nanospheres fabricated by closely pack NSL, have been reported for LSPR biosensing. This paper introduces several novel gold nanostructures fabricated by NSL in LSPR applications, including 3D nanostructures obtained by evaporating gold obliquely on dispersed nanospheres, nanoholes with slant sidewalls, and patchy nanoparticles on closely packed nanospheres, all of which render satisfactory sensitivity for LSPR sensing. Since the LSPR spectrum is very sensitive to the shape of the metal nanostructures, formulas are derived and software is developed for calculating the profiles of the obtainable metal nanostructures by NSL, for different nanosphere masks with different fabrication conditions. The simulated profiles coincide well with the profiles of the fabricated gold nanostructures observed under scanning electron microscope (SEM) and atomic force microscope (AFM), which proves that the software is a useful tool for the process design of different LSPR nanostructures.

Keywords: Nanosphere lithography, localized surface plasmonresonance, biosensor, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
2070 Ultra-Precise Hybrid Lens Distortion Correction

Authors: Christian Bräuer-Burchardt, Peter Kühmstedt, Gunther Notni

Abstract:

A new hybrid method to realise high-precision distortion determination for optical ultra-precision 3D measurement systems based on stereo cameras using active light projection is introduced. It consists of two phases: the basic distortion determination and the refinement. The refinement phase of the procedure uses a plane surface and projected fringe patterns as calibration tools to determine simultaneously the distortion of both cameras within an iterative procedure. The new technique may be performed in the state of the device “ready for measurement" which avoids errors by a later adjustment. A considerable reduction of distortion errors is achieved and leads to considerable improvements of the accuracy of 3D measurements, especially in the precise measurement of smooth surfaces.

Keywords: 3D Surface Measurement, Fringe Projection, Lens Distortion, Stereo.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067
2069 Material and Parameter Analysis of the PolyJet Process for Mold Making Using Design of Experiments

Authors: A. Kampker, K. Kreisköther, C. Reinders

Abstract:

Since additive manufacturing technologies constantly advance, the use of this technology in mold making seems reasonable. Many manufacturers of additive manufacturing machines, however, do not offer any suggestions on how to parameterize the machine to achieve optimal results for mold making. The purpose of this research is to determine the interdependencies of different materials and parameters within the PolyJet process by using design of experiments (DoE), to additively manufacture molds, e.g. for thermoforming and injection molding applications. Therefore, the general requirements of thermoforming molds, such as heat resistance, surface quality and hardness, have been identified. Then, different materials and parameters of the PolyJet process, such as the orientation of the printed part, the layer thickness, the printing mode (matte or glossy), the distance between printed parts and the scaling of parts, have been examined. The multifactorial analysis covers the following properties of the printed samples: Tensile strength, tensile modulus, bending strength, elongation at break, surface quality, heat deflection temperature and surface hardness. The key objective of this research is that by joining the results from the DoE with the requirements of the mold making, optimal and tailored molds can be additively manufactured with the PolyJet process. These additively manufactured molds can then be used in prototyping processes, in process testing and in small to medium batch production.

Keywords: Additive manufacturing, design of experiments, mold making, PolyJet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730
2068 Energy Consumption and Surface Finish Analysis of Machining Ti6Al4V

Authors: Salman Pervaiz, Ibrahim Deiab, Amir Rashid, Mihai Nicolescu, Hossam Kishawy

Abstract:

Greenhouse gases (GHG) emissions impose major threat to global warming potential (GWP). Unfortunately manufacturing sector is one of the major sources that contribute towards the rapid increase in greenhouse gases (GHG) emissions. In manufacturing sector electric power consumption is the major driver that influences CO2 emission. Titanium alloys are widely utilized in aerospace, automotive and petrochemical sectors because of their high strength to weight ratio and corrosion resistance. Titanium alloys are termed as difficult to cut materials because of their poor machinability rating. The present study analyzes energy consumption during cutting with reference to material removal rate (MRR). Surface roughness was also measured in order to optimize energy consumption.

Keywords: Energy Consumption, CO2 Emission, Ti6Al4V.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2784
2067 Generalized Maximal Ratio Combining as a Supra-optimal Receiver Diversity Scheme

Authors: Jean-Pierre Dubois, Rania Minkara, Rafic Ayoubi

Abstract:

Maximal Ratio Combining (MRC) is considered the most complex combining technique as it requires channel coefficients estimation. It results in the lowest bit error rate (BER) compared to all other combining techniques. However the BER starts to deteriorate as errors are introduced in the channel coefficients estimation. A novel combining technique, termed Generalized Maximal Ratio Combining (GMRC) with a polynomial kernel, yields an identical BER as MRC with perfect channel estimation and a lower BER in the presence of channel estimation errors. We show that GMRC outperforms the optimal MRC scheme in general and we hereinafter introduce it to the scientific community as a new “supraoptimal" algorithm. Since diversity combining is especially effective in small femto- and pico-cells, internet-associated wireless peripheral systems are to benefit most from GMRC. As a result, many spinoff applications can be made to IP-based 4th generation networks.

Keywords: Bit error rate, femto-internet cells, generalized maximal ratio combining, signal-to-scattering noise ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152
2066 An Improved Optimal Sliding Mode Control for Structural Stability

Authors: Leila Fatemi, Morteza Moradi, Azadeh Mansouri

Abstract:

In this paper, the modified optimal sliding mode control with a proposed method to design a sliding surface is presented. Because of the inability of the previous approach of the sliding mode method to design a bounded and suitable input, the new variation is proposed in the sliding manifold to obviate problems in a structural system. Although the sliding mode control is a powerful method to reject disturbances and noises, the chattering problem is not good for actuators. To decrease the chattering phenomena, the optimal control is added to the sliding mode control. Not only the proposed method can decline the intense variations in the inputs of the system but also it can produce the efficient responses respect to the sliding mode control and optimal control that are shown by performing some numerical simulations.

Keywords: Structural Control, optimal control, optimal sliding mode controller, modified sliding surface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009
2065 Maximizer of the Posterior Marginal Estimate of Phase Unwrapping Based On Statistical Mechanics of the Q-Ising Model

Authors: Yohei Saika, Tatsuya Uezu

Abstract:

We constructed a method of phase unwrapping for a typical wave-front by utilizing the maximizer of the posterior marginal (MPM) estimate corresponding to equilibrium statistical mechanics of the three-state Ising model on a square lattice on the basis of an analogy between statistical mechanics and Bayesian inference. We investigated the static properties of an MPM estimate from a phase diagram using Monte Carlo simulation for a typical wave-front with synthetic aperture radar (SAR) interferometry. The simulations clarified that the surface-consistency conditions were useful for extending the phase where the MPM estimate was successful in phase unwrapping with a high degree of accuracy and that introducing prior information into the MPM estimate also made it possible to extend the phase under the constraint of the surface-consistency conditions with a high degree of accuracy. We also found that the MPM estimate could be used to reconstruct the original wave-fronts more smoothly, if we appropriately tuned hyper-parameters corresponding to temperature to utilize fluctuations around the MAP solution. Also, from the viewpoint of statistical mechanics of the Q-Ising model, we found that the MPM estimate was regarded as a method for searching the ground state by utilizing thermal fluctuations under the constraint of the surface-consistency condition.

Keywords: Bayesian inference, maximizer of the posterior marginal estimate, phase unwrapping, Monte Carlo simulation, statistical mechanics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715
2064 Enhanced Planar Pattern Tracking for an Outdoor Augmented Reality System

Authors: L. Yu, W. K. Li, S. K. Ong, A. Y. C. Nee

Abstract:

In this paper, a scalable augmented reality framework for handheld devices is presented. The presented framework is enabled by using a server-client data communication structure, in which the search for tracking targets among a database of images is performed on the server-side while pixel-wise 3D tracking is performed on the client-side, which, in this case, is a handheld mobile device. Image search on the server-side adopts a residual-enhanced image descriptors representation that gives the framework a scalability property. The tracking algorithm on the client-side is based on a gravity-aligned feature descriptor which takes the advantage of a sensor-equipped mobile device and an optimized intensity-based image alignment approach that ensures the accuracy of 3D tracking. Automatic content streaming is achieved by using a key-frame selection algorithm, client working phase monitoring and standardized rules for content communication between the server and client. The recognition accuracy test performed on a standard dataset shows that the method adopted in the presented framework outperforms the Bag-of-Words (BoW) method that has been used in some of the previous systems. Experimental test conducted on a set of video sequences indicated the real-time performance of the tracking system with a frame rate at 15-30 frames per second. The presented framework is exposed to be functional in practical situations with a demonstration application on a campus walk-around.

Keywords: Augmented reality framework, server-client model, vision-based tracking, image search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1140
2063 Characterization of Inertial Confinement Fusion Targets Based on Transmission Holographic Mach-Zehnder Interferometer

Authors: B. Zare-Farsani, M. Valieghbal, M. Tarkashvand, A. H. Farahbod

Abstract:

To provide the conditions for nuclear fusion by high energy and powerful laser beams, it is required to have a high degree of symmetry and surface uniformity of the spherical capsules to reduce the Rayleigh-Taylor hydrodynamic instabilities. In this paper, we have used the digital microscopic holography based on Mach-Zehnder interferometer to study the quality of targets for inertial fusion. The interferometric pattern of the target has been registered by a CCD camera and analyzed by Holovision software. The uniformity of the surface and shell thickness are investigated and measured in reconstructed image. We measured shell thickness in different zone where obtained non uniformity 22.82 percent.  

Keywords: Inertial confinement fusion, Mach-Zehnder interferometer, Digital holographic microscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1314
2062 Synthesis, Characterization and Physico–Chemical Properties of Nano Zinc Oxide and PVA Composites

Authors: Rashmi S. H., G. M. Madhu, A. A. Kittur, R. Suresh

Abstract:

Polymer nanocomposites represent a new class of materials in which nanomaterials act as the reinforcing material in composites, wherein small additions of nanomaterials lead to large enhancements in thermal, optical and mechanical properties. A boost in these properties is due to the large interfacial area per unit volume or weight of the nanoparticles and the interactions between the particle and the polymer. Micro sized particles used as reinforcing agents scatter light, thus reducing light transmittance and optical clarity. Efficient nanoparticle dispersion combined with good polymer–particle interfacial adhesion eliminates scattering and allows the exciting possibility of developing strong yet transparent films, coatings and membranes. This paper aims at synthesising zinc oxide nanoparticles which are reinforced in poly vinyl alcohol (PVA) polymer. The mechanical properties showed that the tensile strength of the PVA nanocomposites increases with the increase in the amount of nanoparticles.

Keywords: Glutaraldehyde, polymer nanocomposites, poly vinyl alcohol, zinc oxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3036
2061 Laminar Impinging Jet Heat Transfer for Curved Plates

Authors: A. M. Tahsini, S. Tadayon Mousavi

Abstract:

The purpose of the present study is to analyze the effect of the target plate-s curvature on the heat transfer in laminar confined impinging jet flows. Numerical results from two dimensional compressible finite volume solver are compared between three different shapes of impinging plates: Flat, Concave and Convex plates. The remarkable result of this study proves that the stagnation Nusselt number in laminar range of Reynolds number based on the slot width is maximum in convex surface and is minimum in concave plate. These results refuse the previous data in literature stating the amount of the stagnation Nusselt number is greater in concave surface related to flat plate configuration.

Keywords: Concave, Convex, Heat transfer, Impinging jet, Laminar flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3011
2060 Structural Modelling of the LiCl Aqueous Solution: Using the Hybrid Reverse Monte Carlo (HRMC) Simulation

Authors: M. Habchi, S.M. Mesli, M. Kotbi

Abstract:

The Reverse Monte Carlo (RMC) simulation is applied in the study of an aqueous electrolyte LiCl6H2O. On the basis of the available experimental neutron scattering data, RMC computes pair radial distribution functions in order to explore the structural features of the system. The obtained results include some unrealistic features. To overcome this problem, we use the Hybrid Reverse Monte Carlo (HRMC), incorporating an energy constraint in addition to the commonly used constraints derived from experimental data. Our results show a good agreement between experimental and computed partial distribution functions (PDFs) as well as a significant improvement in pair partial distribution curves. This kind of study can be considered as a useful test for a defined interaction model for conventional simulation techniques.

Keywords: RMC simulation, HRMC simulation, energy constraint, screened potential, glassy state, liquid state, partial distribution function, pair partial distribution function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1468
2059 Node Insertion in Coalescence Hidden-Variable Fractal Interpolation Surface

Authors: Srijanani Anurag Prasad

Abstract:

The Coalescence Hidden-variable Fractal Interpolation Surface (CHFIS) was built by combining interpolation data from the Iterated Function System (IFS). The interpolation data in a CHFIS comprise a row and/or column of uncertain values when a single point is entered. Alternatively, a row and/or column of additional points are placed in the given interpolation data to demonstrate the node added CHFIS. There are three techniques for inserting new points that correspond to the row and/or column of nodes inserted, and each method is further classified into four types based on the values of the inserted nodes. As a result, numerous forms of node insertion can be found in a CHFIS.

Keywords: Fractal, interpolation, iterated function system, coalescence, node insertion, knot insertion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 341
2058 Gluten-Free Cookies Enriched with Blueberry Pomace: Optimization of Baking Process

Authors: Aleksandra Mišan, Bojana Šarić, Nataša Nedeljković, Mladenka Pestorić, Pavle Jovanov, Milica Pojić, Jelena Tomić, Bojana Filipčev, Miroslav Hadnađev, Anamarija Mandić

Abstract:

With the aim of improving nutritional profile and antioxidant capacity of gluten-free cookies, blueberry pomace, by-product of juice production, was processed into a new food ingredient by drying and grinding and used for a gluten-free cookie formulation. Since the quality of a baked product is highly influenced by the baking conditions, the objective of this work was to optimize the baking time and thickness of dough pieces, by applying Response Surface Methodology (RSM) in order to obtain the best technological quality of the cookies. The experiments were carried out according to a Central Composite Design (CCD) by selecting the dough thickness and baking time as independent variables, while hardness, color parameters (L*, a* and b* values), water activity, diameter and short/long ratio were response variables. According to the results of RSM analysis, the baking time of 13.74min and dough thickness of 4.08mm was found to be the optimal for the baking temperature of 170°C. As similar optimal parameters were obtained by previously conducted experiment based on sensory analysis, response surface methodology (RSM) can be considered as a suitable approach to optimize the baking process.

Keywords: Baking process, blueberry pomace, gluten-free cookies, Response Surface Methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2575
2057 Scatterer Density in Nonlinear Diffusion for Speckle Reduction in Ultrasound Imaging: The Isotropic Case

Authors: Ahmed Badawi

Abstract:

This paper proposes a method for speckle reduction in medical ultrasound imaging while preserving the edges with the added advantages of adaptive noise filtering and speed. A nonlinear image diffusion method that incorporates local image parameter, namely, scatterer density in addition to gradient, to weight the nonlinear diffusion process, is proposed. The method was tested for the isotropic case with a contrast detail phantom and varieties of clinical ultrasound images, and then compared to linear and some other diffusion enhancement methods. Different diffusion parameters were tested and tuned to best reduce speckle noise and preserve edges. The method showed superior performance measured both quantitatively and qualitatively when incorporating scatterer density into the diffusivity function. The proposed filter can be used as a preprocessing step for ultrasound image enhancement before applying automatic segmentation, automatic volumetric calculations, or 3D ultrasound volume rendering.

Keywords: Ultrasound imaging, Nonlinear isotropic diffusion, Speckle noise, Scattering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951
2056 Morphology Study of Inverted Planar Heterojunction Perovskite Solar Cells in Sequential Deposition

Authors: Asmat Nawaz, Ali Koray Erdinc, Burak Gultekin, Muhammad Tayyib, Ceylan Zafer, Kaiying Wang, M. Nadeem Akram

Abstract:

In this study, a sequential deposition process is used for the fabrication of PEDOT: PSS based inverted planar perovskite solar cell. A small amount of additive deionized water (DI-H2O) was added into PbI2 + Dimethyl formamide (DMF) precursor solution in order to increase the solubility of PbI2 in DMF, and finally to manipulate the surface morphology of the perovskite films. A morphology transition from needle like structure to hexagonal plates, and then needle-like again has been observed as the DI-H2O was added continuously (0.0 wt% to 3.0wt%). The latter one leads to full surface coverage of the perovskite, which is essential for high performance solar cell.

Keywords: Charge carrier diffusion lengths, methylamonium lead iodide, precursor composition, perovskite solar cell, sequential deposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677
2055 The Determination of the Potassium Nitrate, Sodium Hydroxide and Boric Acid Molar Ratio in the Synthesis of Potassium Borates via Hydrothermal Method

Authors: M. Yildirim, A. S. Kipcak, F. T. Senberber, M. O. Asensio, E. M. Derun, S. Piskin

Abstract:

Potassium borates, which are widely used in welding and metal refining industry, as a lubricating oil additive, cement additive, fiberglass additive and insulation compound, are one of the important groups of borate minerals. In this study the production of a potassium borate mineral via hydrothermal method is aimed. The potassium source of potassium nitrate (KNO3) was used along with a sodium source of sodium hydroxide (NaOH) and boron source of boric acid (H3BO3). The constant parameters of reaction temperature and reaction time were determined as 80°C and 1 h, respectively. The molar ratios of 1:1:3 (as KNO3:NaOH:H3BO3), 1:1:4, 1:1:5, 1:1:6 and 1:1:7 were used. Following the synthesis the identifications of the produced products were conducted by X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Raman Spectroscopy. The results of the experiments and analysis showed in the ratio of 1:1:6, the Santite mineral with powder diffraction file number (pdf no.) of 01-072-1688, which is known as potassium pentaborate (KB5O8·4H2O) was synthesized as best.

Keywords: Hydrothermal synthesis, potassium borate, potassium nitrate, santite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3310
2054 Tribological Aspects of Advanced Roll Material in Cold Rolling of Stainless Steel

Authors: Mohammed Tahir, Jonas Lagergren

Abstract:

Vancron 40, a nitrided powder metallurgical tool Steel, is used in cold work applications where the predominant failure mechanisms are adhesive wear or galling. Typical applications of Vancron 40 are among others fine blanking, cold extrusion, deep drawing and cold work rolls for cluster mills. Vancron 40 positive results for cold work rolls for cluster mills and as a tool for some severe metal forming process makes it competitive compared to other type of work rolls that require higher precision, among others in cold rolling of thin stainless steel, which required high surface finish quality. In this project, three roll materials for cold rolling of stainless steel strip was examined, Vancron 40, Narva 12B (a high-carbon, high-chromium tool steel alloyed with tungsten) and Supra 3 (a Chromium-molybdenum tungsten-vanadium alloyed high speed steel). The purpose of this project was to study the depth profiles of the ironed stainless steel strips, emergence of galling and to study the lubrication performance used by steel industries. Laboratory experiments were conducted to examine scratch of the strip, galling and surface roughness of the roll materials under severe tribological conditions. The critical sliding length for onset of galling was estimated for stainless steel with four different lubricants. Laboratory experiments result of performance evaluation of resistance capability of rolls toward adhesive wear under severe conditions for low and high reductions. Vancron 40 in combination with cold rolling lubricant gave good surface quality, prevents galling of metal surfaces and good bearing capacity.

Keywords: Adhesive wear, Cold rolling, Lubricant, Stainless steel, Surface finish, Vancron 40.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2761
2053 Application of Japanese Origami Ball for Floating Multirotor Aerial Robot

Authors: P. H. Le, J. Molina, S. Hirai

Abstract:

In this work, we propose the application of Japanese “Origami” art for a floating function of a small aerial vehicle such as a hexarotor. A preliminary experiment was conducted using Origami magic balls mounted under a hexarotor. This magic ball can expand and shrink using an air pump during free flying. Using this interesting and functional concept, it promises to reduce the resistance of wind as well as reduce the energy consumption when the Origami balls are deflated. This approach can be particularly useful in rescue emergency situations. Furthermore, there are many unexpected reasons that may cause the multi-rotor has to land on the surface of water due to problems with the communication between the aircraft and the ground station. In addition, a complementary experiment was designed to prove that the hexarotor can fly maintaining the stability and also, takes off and lands on the surface of water using air balloons.

Keywords: Helicopter, Japanese Origami ball, Floating, Aerial Robots, Rescue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2465