WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/3102,
	  title     = {Profile Controlled Gold Nanostructures Fabricated by Nanosphere Lithography for Localized Surface Plasmon Resonance},
	  author    = {Xiaodong Zhou and  Nan Zhang},
	  country	= {},
	  institution	= {},
	  abstract     = {Localized surface plasmon resonance (LSPR) is the
coherent oscillation of conductive electrons confined in noble
metallic nanoparticles excited by electromagnetic radiation, and
nanosphere lithography (NSL) is one of the cost-effective methods to
fabricate metal nanostructures for LSPR. NSL can be categorized
into two major groups: dispersed NSL and closely pack NSL. In
recent years, gold nanocrescents and gold nanoholes with vertical
sidewalls fabricated by dispersed NSL, and silver nanotriangles and
gold nanocaps on silica nanospheres fabricated by closely pack NSL,
have been reported for LSPR biosensing. This paper introduces
several novel gold nanostructures fabricated by NSL in LSPR
applications, including 3D nanostructures obtained by evaporating
gold obliquely on dispersed nanospheres, nanoholes with slant
sidewalls, and patchy nanoparticles on closely packed nanospheres,
all of which render satisfactory sensitivity for LSPR sensing. Since
the LSPR spectrum is very sensitive to the shape of the metal
nanostructures, formulas are derived and software is developed for
calculating the profiles of the obtainable metal nanostructures by
NSL, for different nanosphere masks with different fabrication
conditions. The simulated profiles coincide well with the profiles of
the fabricated gold nanostructures observed under scanning electron
microscope (SEM) and atomic force microscope (AFM), which
proves that the software is a useful tool for the process design of
different LSPR nanostructures.},
	    journal   = {International Journal of Materials and Metallurgical Engineering},
	  volume    = {4},
	  number    = {8},
	  year      = {2010},
	  pages     = {467 - 473},
	  ee        = {https://publications.waset.org/pdf/3102},
	  url   	= {https://publications.waset.org/vol/44},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 44, 2010},
	}