Morphology Study of Inverted Planar Heterojunction Perovskite Solar Cells in Sequential Deposition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Morphology Study of Inverted Planar Heterojunction Perovskite Solar Cells in Sequential Deposition

Authors: Asmat Nawaz, Ali Koray Erdinc, Burak Gultekin, Muhammad Tayyib, Ceylan Zafer, Kaiying Wang, M. Nadeem Akram

Abstract:

In this study, a sequential deposition process is used for the fabrication of PEDOT: PSS based inverted planar perovskite solar cell. A small amount of additive deionized water (DI-H2O) was added into PbI2 + Dimethyl formamide (DMF) precursor solution in order to increase the solubility of PbI2 in DMF, and finally to manipulate the surface morphology of the perovskite films. A morphology transition from needle like structure to hexagonal plates, and then needle-like again has been observed as the DI-H2O was added continuously (0.0 wt% to 3.0wt%). The latter one leads to full surface coverage of the perovskite, which is essential for high performance solar cell.

Keywords: Charge carrier diffusion lengths, methylamonium lead iodide, precursor composition, perovskite solar cell, sequential deposition.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1125963

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682

References:


[1] Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, et al., "Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers," Energy & Environmental Science, vol. 7, pp. 2619-2623, 2014.
[2] L. Zheng, Y. Ma, S. Chu, S. Wang, B. Qu, L. Xiao, et al., "Improved light absorption and charge transport for perovskite solar cells with rough interfaces by sequential deposition," Nanoscale, vol. 6, pp. 8171-8176, 2014.
[3] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells," Nat Mater, vol. 13, pp. 897-903, 2014.
[4] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," J Am Chem Soc, vol. 131, pp. 6050-1, 2009.
[5] M. Liu, M. B. Johnston, and H. J. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, vol. 501, pp. 395-398, 2013.
[6] L. Meng, J. You, T.-F. Guo, and Y. Yang, "Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells," Accounts of Chemical Research, vol. 49, pp. 155-165, 2016.
[7] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, et al., "Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3," Science, vol. 342, pp. 344-347, 2013.
[8] L. Hu, J. Peng, W. Wang, Z. Xia, J. Yuan, J. Lu, et al., "Sequential Deposition of CH3NH3PbI3 on Planar NiO Film for Efficient Planar Perovskite Solar Cells," ACS Photonics, vol. 1, pp. 547-553, 2014.
[9] H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, et al., "Interface engineering of highly efficient perovskite solar cells," Science, vol. 345, pp. 542-546, 2014.
[10] G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, "Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells," Energy & Environmental Science, vol. 7, pp. 982-988, 2014.
[11] C.-G. Wu, C.-H. Chiang, Z.-L. Tseng, M. K. Nazeeruddin, A. Hagfeldt, and M. Gratzel, "High efficiency stable inverted perovskite solar cells without current hysteresis," Energy & Environmental Science, vol. 8, pp. 2725-2733, 2015.
[12] L. Yang, J. Wang, and W. W.-F. Leung, "Lead Iodide Thin Film Crystallization Control for High-Performance and Stable Solution-Processed Perovskite Solar Cells," ACS Applied Materials & Interfaces, vol. 7, pp. 14614-14619, 2015/07/15 2015.
[13] P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, et al., "Additive enhanced crystallization of solution‐processed perovskite for highly efficient planar‐heterojunction solar cells," Advanced materials, vol. 26, pp. 3748-3754, 2014.
[14] A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, et al., "A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability," Science, vol. 345, pp. 295-8, 2014.
[15] Y.-J. Jeon, S. Lee, R. Kang, J.-E. Kim, J.-S. Yeo, S.-H. Lee, et al., "Planar heterojunction perovskite solar cells with superior reproducibility," Scientific Reports, vol. 4, p. 6953, 2014.
[16] B.-E. Cohen and L. Etgar, "Parameters that control and influence the organo-metal halide perovskite crystallization and morphology," Frontiers of Optoelectronics, vol. 9, pp. 44-52, 2016.
[17] P. Luo, Z. Liu, W. Xia, C. Yuan, J. Cheng, and Y. Lu, "A simple in situ tubular chemical vapor deposition processing of large-scale efficient perovskite solar cells and the research on their novel roll-over phenomenon in J-V curves," Journal of Materials Chemistry A, vol. 3, pp. 12443-12451, 2015.
[18] C. Jiang, S. L. Lim, W. P. Goh, F. X. Wei, and J. Zhang, "Improvement of CH3NH3PbI3 Formation for Efficient and Better Reproducible Mesoscopic Perovskite Solar Cells," ACS Applied Materials & Interfaces, vol. 7, pp. 24726-24732, 2015.
[19] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, et al., "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature, vol. 499, pp. 316-319, 2013.
[20] D. Liu, M. K. Gangishetty, and T. L. Kelly, "Effect of CH3NH3PbI3 thickness on device efficiency in planar heterojunction perovskite solar cells," Journal of Materials Chemistry A, vol. 2, pp. 19873-19881, 2014.
[21] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, et al., "Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber," Science, vol. 342, pp. 341-4, 2013.
[22] Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, et al., "Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process," Journal of the American Chemical Society, vol. 136, pp. 622-625, 2014.
[23] W. Yan, Y. Li, Y. Li, S. Ye, Z. Liu, S. Wang, et al., "Stable high-performance hybrid perovskite solar cells with ultrathin polythiophene as hole-transporting layer," Nano Research, vol. 8, pp. 2474-2480, 2015.