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Abstract—The Coalescence Hidden-variable Fractal Interpolation
Surface (CHFIS) was built by combining interpolation data from the
Iterated Function System (IFS). The interpolation data in a CHFIS
comprise a row and/or column of uncertain values when a single
point is entered. Alternatively, a row and/or column of additional
points are placed in the given interpolation data to demonstrate the
node added CHFIS. There are three techniques for inserting new
points that correspond to the row and/or column of nodes inserted,
and each method is further classified into four types based on the
values of the inserted nodes. As a result, numerous forms of node
insertion can be found in a CHFIS.

Keywords—Fractal, interpolation, iterated function system,
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I. INTRODUCTION

ONE of the most important contributions in understanding

nature’s structures is the concept of fractals. An

increasing number of research publications have shown the

fractal character of numerous systems with various physical

attributes ever since Mandelbrot [1], [2] coined the term

“fractal”. The study of fractals soared to new heights with

the invention of Barnsley’s Fractal Interpolation Function

(FIF) [3]. Massopust [4] extended this design to a triangular

simplex surface, creating a Fractal Interpolation Surface (FIS)

with co-planar interpolation points on the border. Then,

Geronimo and Hardin [5], Xie, and Sun [6], Dalla [7],

Malysz [8], and others created numerous FIS constructions

on various sorts of domains that gave self-affine attractors.

Most naturally formed objects, such as rocks, sea surfaces,

clouds, and so on, are made up of both self-affine

and non-affine components. In [9], Chand and Kapoor

created a non-diagonal Iterated Function System (IFS) that

creates both self-affine and non-self-affine FIS simultaneously

based on free and constrained variables on a large

collection of interpolation data. Coalescence Hidden-variable

Fractal Interpolation Surface was born from the attractor

corresponding to such IFS (CHFIS). The smoothness, stability

and fractal dimension of such a CHFIS was investigated

in [10], [11] and [12].

We assume that interpolation data are obtained from various

districts of a location and that one or more of the districts

is later subdivided into smaller districts. In this scenario, we

must employ node insertion to the preceding data to use it

with smaller districts. Similarly, the results of some tests may

provide us with a tip as to where we should place nodes while

performing approximation. This leads to the investigation of

the node insertion problem in bivariate functions.
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Node insertion is described as the process of adding

a new point to an existing set of interpolation data.

The node insertion for Coalescence Hidden-variable Fractal

Interpolation Functions (CHFIFs) was explored in [13]. If

we introduce a single point in the bivariate situation, there

are an unknown quantities in the row and/or column. As a

result, the problem of new point inclusion in the Coalescence

Hidden-variable Fractal Interpolation Surface is characterized

by adding a row and/or column of new points. In the

bivariate example, there are now several methods for inserting

additional points. The impact of such new points on the related

non-diagonal IFS and CHFIS is investigated in this work.

Furthermore, the problem of node insertion is categorized into

four types based on the values of inserted points for each

method.

The organization of the paper is as follows: Section II

provides an outline of how a CHFIS is constructed. Section III

discusses the three possible methods for inserting new points

into interpolation data. It is demonstrated that the non-diagonal

IFS produced utilizing the new set of interpolation data gives

rise to a new CHFIS for each mode of node insertion.

Following the study of the three techniques of insertion of

new points, Section IV considers several types of insertion

based on the values of added nodes for each approach. So,

in the bivariate instance, there are 12 different types of

node insertion. Finally, Section V provides an example of a

computer model of a few different forms of insertion.

II. CONSTRUCTION OF CHFIS

A set of real parameters {ti,j} for i = 0, 1, . . . , N and

j = 0, 1, . . . ,M is introduced in a given interpolation data

Λ = {(x0, y0, z0,0), (x1, y0, z1,0), . . . , (x0, y1, z0,1), . . . ,
(xN , yM , zN,M )} to form the generalized interpolation data

Δ = {(xi, yj , zi,j , ti,j) : i = 0, 1, . . . , N and j =
0, 1, . . . ,M}. From the interpolation data, the rectangle S =
I × J = [x0, xN ] × [y0, yM ] is subdivided into smaller

rectangles Sn,m = In × Jm = [xn−1, xn] × [ym−1, ym] for

n = 1, 2, . . . , N and m = 1, 2, . . . ,M . For n = 1, 2, . . . , N
and m = 1, 2, . . . ,M , the contractive homeomorphisms Ln :
I → In, L̃m : J → Jm and the functions Fn,m : S×R

2 → D,

where D is a compact subset of R2, are defined by:

Ln(x) = xn−1 +
xn − xn−1

xN − x0
(x− x0),

L̃m(y) = ym−1 +
ym − ym−1

yM − y0
(y − y0) (1)
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and

Fn,m(x, y, z, t)= (αn,m z + βn,m t+ pn,m(x, y),

γn,m t+ qn,m(x, y)). (2)

In the above definition, αn,m and γn,m are called free

variables and are chosen randomly but satisfying the condition:

|αn,m| < 1 and |γn,m| < 1. The values of βn,m are chosen

such that |βn,m|+|γn,m| < 1 and hence are called constrained

variables. The functions pn,m and qn,m in Fn,m are selected

such that the following join-up conditions are satisfied:

Fn,m(x0, y0, z0,0, t0,0) = (zn−1,m−1, tn−1,m−1)

Fn,m(xN , y0, zN,0, tN,0) = (zn,m−1, tn,m−1)

Fn,m(x0, yM , z0,M , t0,M ) = (zn−1,m, tn−1,m)

Fn,m(xN , yM , zN,M , tN,M ) = (zn,m, tn,m). (3)

To ensure continuity, the functions F̃n,m are defined as:

F̃n,m(x, y, z, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fn+1,m(x0, y, z, t), x = xN ,

n = 1, . . . , N − 1,

m = 1, . . . ,M

Fn,m+1(x, y0, z, t), y = yM ,

n = 1, . . . , N,

m = 1, . . . ,M − 1

Fn,m(x, y, z, t), otherwise.

(4)

It has been proved in [9] that if

ωn,m(x, y, z, t) = (Ln(x), L̃m(y), F̃n,m(x, y, z, t)), the IFS

defined by

{S × R
2;ωn,m, n = 1, 2, . . . N and m = 1, 2, . . .M} (5)

is hyperbolic with respect to a suitable metric equivalent to

the Euclidean metric and there exists an attractor G ⊆ R
4

satisfying G =
N⋃

n=1

N⋃
m=1

ωn,m(G) and G is graph of a

continuous function f : S → R
2 such that f(xi, yj) =

(zi,j , ti,j) for i = 0, 1, . . . , N and j = 0, 1, . . . ,M . Hence

the Coalescence Hidden variable Fractal Interpolation Surface

(CHFIS) is defined as

Definition 1: The Coalescence Hidden variable Fractal
Interpolation Surface (CHFIS) for the given interpolation

data {(xi, yj , zi,j) : i, j = 0, 1, . . . , N} is defined as the graph

of projection f1 of f on R
3, where f1 is the first component

of the function f = (f1, f2).
Remark 1: The function f1 is called a Coalescence

Hidden-variable Fractal Interpolation bivariate function as it

exhibits both self-affine and non-self-affine nature. For the

same interpolation data, the function f2(x, y) is a self-affine

bivariate function.

III. METHODS OF INSERTION OF NEW POINTS

The problem of node insertion in the bivariate situation is

characterized by introducing a row and/or column of additional

points. In order to enter additional points, there are three

options.

Method 1: The first method is inserting a point x̂
between xk−1 and xk. This gives a column of new points

as Γ1 = {(x̂, y0, ẑ∗,0, t̂∗,0), . . . , (x̂, yM , ẑ∗,M , t̂∗,M )} in the

generalized interpolation data Δ. So, the new generalized

interpolation data are

Δ̂1 =

{
(x0, y0, z0,0, t0,0), . . . , (xk−1, y0, zk−1,0, tk−1,0),

(x̂, y0, ẑ∗,0, t̂∗,0), (xk, y0, zk,0, tk,0), . . . . . . ,
(xN , y0, zN,0, tN,0), . . . , (x0, yM , z0,M , t0,M ), . . . ,
(xk−1, yM , zk−1,M , tk−1,M ), (x̂, yM , ẑ∗,M , t̂∗,M ),

(xk, yM , zk,M , tk,M ), . . . , (xN , yM , zN,M , tN,M )

}
. The

interval Ik is split into two intervals I lk = [xk−1, x̂]
and Irk = [x̂, xk] which in turn gives that the rectangles

Sk,m,m = 1, 2, . . . ,M,m �= l are broken into two rectangles,

say Sl
k,m = I lk×Jm and Sr

k,m = Irk×Jm. Define Ll
k : I → I lk

and Lr
k : I → Irk as

Ll
k(x) = xk−1 +

x̂− xk−1

xN − x0
(x− x0)

Lr
k(x) = x̂+

xk − x̂

xN − x0
(x− x0) (6)

For m = 1, 2, . . . ,M , define F l
k,m : S → Sl

k,m and F r
k,m :

S → Sr
k,m as

F l
k,m(x, y) =

(
αl
k,mz + βl

k,mt+ plk,m(x, y),

γl
k,mt+ qlk,m(x, y)

)
, m = 1, 2, . . . ,M

F r
k,m(x, y) =

(
αr
k,mz + βr

k,mt+ prk,m(x, y),

γr
k,mt+ qrk,m(x, y)

)
, m = 1, 2, . . . ,M (7)

where, αl
k,m, αr

k,m, γl
k,m, γr

k,m are free variables whose

absolute value is strictly less than one; βl
k,m and βr

k,m are

constrained variables such that |βl
k,m| + |γl

k,m| < 1 and

|βr
k,m|+ |γr

k,m| < 1. The functions plk,m, prk,m, qlk,m and qrk,m
are continuous functions selected such that the functions F l

k,m

map the end points of the rectangle S to end points of the

rectangle Sl
k,m and F r

k,m map the end points of the rectangle

S to end points of the rectangle Sr
k,m i.e. F l

k,m and F r
k,m for

m = 1, . . . ,M satisfy the following conditions:

F l
k,m(x0, y0, z0,0, t0,0) = (zk−1,m−1, tk−1,m−1)

F r
k,m(x0, y0, z0,0, t0,0) = (ẑ∗,m−1, t̂∗,m−1)

F l
k,m(x0, yM , z0,M , t0,M ) = (zk−1,m, tk−1,m)

F r
k,m(x0, yM , z0,M , t0,M ) = (ẑ∗,m, t̂∗,m)

F l
k,m(xN , y0, zN,0, tN,0) = (ẑ∗,m−1, t̂∗,m−1)

F r
k,m(xN , y0, zN,0, tN,0) = (zk,m−1, tk,m−1)

F l
k,m(xN , yM , zN,M , tN,M ) = (ẑ∗,m, t̂∗,m)

F r
k,m(xN , yM , zN,M , tN,M ) = (zk,m, tk,m)

Theorem 1: Let Δ̂1 = Δ
⋃

Γ1. Then,{
S × R

2; ωn,m, n = 1, . . . , N, n �= k;

ωl
k,m ωr

k,m, m = 1, . . . ,M

}
(8)
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with ωl
k,m = (Ll

k, L̃m, F l
k,m) and

ωr
k,m = (Lr

k, L̃m, F r
k,m) is a hyperbolic IFS on

S × R
2 and there exists an attractor Â that satisfies

Â =
N⋃

n=1
n �=k

M⋃
m=1

ωn,m(Â)
M⋃

m=1

⋃
p∈{l,r}

ωp
k,m(Â). In addition, the

aforementioned IFS’s attractor is a graph of a continuous

bivariate function that passes over the new generalized

interpolation points Δ̂1.

Proof: We suppose αp
k,m ≤ αk,m, γp

k,m ≤ γk,m and

βp
k,m ≤ βk,m for all m = 1, 2, . . . ,M and p ∈ {l, r}. Then the

maps ωl
k,m and ωr

k,m are contraction maps for the same metric,

by which ωn,m are contraction maps. Alternatively, a metric

could be defined as in [9] where, ωn,m;n = 1, 2, . . . N, n �=
k, ωl

k,m;ωr
k,m;m = 1, 2, . . . ,M, are contraction maps. Then

the IFS represented by (8) is hyperbolic and contains an

attractor Â that fulfills

Â =
N⋃

n=1
n �=k

M⋃
m=1

ωn,m(Â)
M⋃

m=1
ωl
k,m(Â)

M⋃
m=1

ωr
k,m(Â).

We consider the metric space of functions (G, dG) such that

G =
{
g | g : S → R

2 is continuous,

g(x0, y0) = (z0,0, t0,0), g(xN , y0) = (zN,0, tN,0),

g(x0, yM ) = (z0,M , t0,M ), and g(xN , yM ) = (zN,M , tN,M )
}

and dG(g, ĝ) = max
(x,y)∈S

(
|g1(x, y) − ĝ1(x, y)|, |g2(x, y) −

ĝ2(x, y)|
)

, for g, ĝ ∈ G. Define Read-Bajraktarević operator

on (G, dG) as

T̂ (g)(x, y)= Fn,m(L−1
n (x), L̃−1

m (y), g(L−1
n (x), L̃−1

m (y))),

(x, y) ∈ Sn,m, n = 1, 2, . . . , N ;n �= k,

T̂ (g)(x, y)= F l
k,m(Ll−1

k (x), L̃−1
m (y), g(Ll−1

k (x), L̃−1
m (y))),

(x, y) ∈ Sl
k,m

T̂ (g)(x, y)= F r
k,m(Lr−1

k (x), L̃−1
m (y), g(Lr−1

k (x), L̃−1
m (y))),

(x, y) ∈ Sr
k,m (9)

for all m = 1, 2, . . . ,M . Following the lines of proof as

in [9], it is straightforward to demonstrate that the bivariate

Read-Bajraktarević operator defined by (9) is a contraction

map and that a continuous bivariate function f̂ : S → R
2

exists which passes through the generalized interpolation

points Δ̂1. In addition, distinctiveness provides Â represents

the graph of the function f̂ .

Method 2: The second method is inserting a point ŷ
between yl−1 and yl which gives a row of new points as Γ2 =
{(x0, ŷ, ẑ0,∗, t̂0,∗), (x1, ŷ, ẑ1,∗, t̂1,∗), . . . . . . , (xN , ŷ, ẑN,∗, t̂N,∗)}
in the generalized interpolation data Δ. Here, the new

generalized interpolation data are Δ̂2 ={
(x0, y0, z0,0, t0,0), . . . . . . , (xN , y0, zN,0, tN,0), . . . . . . ,

(x0, yl−1, z0,l−1, t0,l−1), . . . . . . , (xN , yl−1, zN,l−1, tN,l−1),
(x0, ŷ, ẑ0,∗, t̂0,∗), . . . . . . , (xN , ŷ, ẑN,∗, t̂N,∗), (x0, yl, z0,l, t0,l),
. . . . . . , (xN , yl, zN,l, tN,l), . . . . . . , (x0, yM , z0,M , t0,M ), . . . ,

(xN , yM , zN,M , tN,M )

}
. The interval Jl is broken into two

intervals Jb
l = [yl−1, ŷ] and J t

l = [ŷ, yl] and the rectangles

Sn,l for n = 1, 2, . . . , N are split into two rectangles, say

Sb
n,l = In × Jb

l and St
n,l = In × J t

l .

We define L̃b
l : J → Jb

l and L̃t
l : J → J t

l are defined as

L̃b
l (y)= yl−1 +

ŷ − yl−1

yM − y0
(y − y0)

L̃t
l(y)= ŷ +

yl − ŷ

yM − y0
(y − y0) (10)

For n = 1, 2, . . . , N , define F b
n,l : S → Sb

n,l and

F t
n,l : S → St

n,l as

F b
n,l(x, y)=

(
αb
n,lz + βb

n,lt+ pbn,l(x, y),

γb
n,lt+ qbn,l(x, y)

)
,

n = 1, 2, . . . , N, n �= k

F t
n,l(x, y)=

(
αt
n,lz + βt

n,lt+ ptn,l(x, y),

γt
n,lt+ qtn,l(x, y)

)
,

n = 1, 2, . . . , N, n �= k (11)

where, αb
n,l, α

t
n,l, γ

b
n,l, γ

t
n,l are free variables whose absolute

value is strictly less than one; βb
n,l and βt

n,l are constrained

variables such that |βb
n,l|+ |γb

n,l| < 1 and |βt
n,l|+ |γt

n,l| < 1.

The functions pbn,l, p
t
n,l, q

b
n,l and qtn,l are continuous functions

selected such that the functions F b
n,l map the end points of the

rectangle S to end points of the rectangle Sb
n,l and F t

n,l map

the end points of the rectangle S to end points of the rectangle

St
n,l i.e. F b

n,l and F b
n,l for n = 1, . . . , N satisfy the following

conditions:

F b
n,l(x0, y0, z0,0, t0,0) = (zn−1,l−1, tn−1,l−1)

F t
n,l(x0, y0, z0,0, t0,0) = (ẑn−1,∗, t̂n−1,∗)

F b
n,l(x0, yM , z0,M , t0,M ) = (ẑn−1,∗, t̂n−1,∗)

F t
n,l(x0, yM , z0,M , t0,M ) = (zn−1,l, tn−1,l)

F b
n,l(xN , y0, zN,0, tN,0) = (zn,l−1, tn,l−1)

F t
n,l(xN , y0, zN,0, tN,0) = (ẑn,∗, t̂n,∗)

F b
n,l(xN , yM , zN,M , tN,M ) = (ẑn,∗, t̂n,∗)

F t
n,l(xN , yM , zN,M , tN,M ) = (zn,l, tn,l)

Theorem 2: Let Δ̂2 = Δ
⋃
Γ2. Then,{

S × R
2; ωn,m; m = 1, . . . ,M,m �= l,

ωb
n,l; ωt

n,l; n = 1, . . . , N,

}
(12)

with ωb
n,l = (Ln, L̃

b
l , F

b
n,l) and ωt

n,l = (Ln, L̃
t
l , F

t
n,l) is

a hyperbolic IFS on S × R
2 and there exists an attractor

Â that satisfies Â =
M⋃

m=1
m �=l

N⋃
n=1

ωn,m(Â)
N⋃

n=1

⋃
q∈{b,t}

ωq
n,l(Â).

Furthermore, the attractor of the aforementioned IFS is a graph

of a continuous bivariate function that passes through the new

generalized interpolation points. Δ̂2.

Proof: Suppose αq
n,l ≤ αn,l, γ

q
n,l ≤ γn,l and βq

n,l ≤ βn,l

for all m = 1, 2, . . . ,M and q ∈ {b, t}. Then the maps ωb
n,l

and ωt
n,l are contraction maps for the same metric by which

ωn,m are contraction maps. Or else, a metric could be defined

as in [9] where, ωn,m;m = 1, . . . ,M,m �= l, ωb
n,l;ω

t
n,l; n =

1, 2, . . . N are contraction maps. Then, the IFS given by (12)is
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hyperbolic and contains an attractor Â which fulfills Â =
N⋃

m=1
m �=l

N⋃
n=1

ωn,m(Â)
N⋃

n=1
ωb
n,l(Â)

N⋃
n=1

ωt
n,l(Â).

We consider the metric space of continuous functions

(G, dG) and define Read-Bajraktarević operator on (G, dG) as

T̂ (g)(x, y)

= Fn,m(L−1
n (x), L̃−1

m (y), g(L−1
n (x), L̃−1

m (y))),

for (x, y) ∈ Sn,m,m = 1, 2, . . . ,M ;m �= l

T̂ (g)(x, y)

= F b
n,l(L

−1
n (x), L̃b−1

l (y), g(L−1
n (x), L̃b−1

l (y))),

for (x, y) ∈ Sb
n,l

T̂ (g)(x, y)

= F t
n,l(L

−1
n (x), L̃t−1

l (y), g(L−1
n (x), L̃t−1

l (y))),

for (x, y) ∈ St
n,l (13)

for n = 1, 2, . . . , N . Just as in case (i), the bivariate

Read-Bajraktarević operator defined by (13) is a contraction

map and there exists a continuous bivariate function f̂ : S →
R

2 which passes through the new generalized interpolation

points Δ̂2. Additionally, uniqueness indicates that Â is graph

of the function f̂ .

Method 3: The third kind is inserting the point (x̂, ŷ)
in the given interpolation data where, xk−1 < x̂ < xk and

yl−1 < ŷ < yl. Here, a row and a column of new points

given by Γ = {(x̂, y0, ẑ∗,0, t̂∗,0), . . . , (x̂, yM , ẑ∗,M , t̂∗,M ),
(x0, ŷ, ẑ0,∗, t̂0,∗), . . . , (xN , ŷ, ẑN,∗, t̂N,∗), (x̂, ŷ, ẑ, t̂)} is

inserted in the generalized interpolation data Δ. It is easy to

see that the third case is nothing but combination of Method

1 and Method 2.

Theorem 3: Let Δ̂ = Δ
⋃

Γ. Then,{
S × R

2; ωn,m, n = 1, . . . , N, m = 1, . . . ,M, n �= k, m �= l;

ωp
n,l, n = 1, . . . , N, p ∈ {b, t}, n �= k;

ωA
k,m m = 1, . . . ,M,m �= l, p ∈ {l, r};

ωp
k,l, p ∈ {(l, b), (r, b), (l, t), (r, t)}

}
(14)

with ωp
n,m = (Lp

n, L̃
p
m, F p

n,m) is a hyperbolic IFS on S × R
2

and there exists an attractor Â that satisfies

Â=

⎛
⎜⎝ N⋃

n=1
n �=k

M⋃
m=1
m �=l

ωn,m(Â)
N⋃

n=1
n �=k

⋃
p∈{b,t}

ωp
n,l(Â)

M⋃
m=1
m �=l

⋃
p∈{l,r}

ωp
k,m(Â)

⋃
p∈{(l,b),(r,b),(l,t),(r,t)}

ωp
k,l(Â)

⎞
⎟⎠ .

In addition, the attractor of the aforementioned IFS is

graph of a continuous bivariate function that passes across

the generalized interpolation points Δ̂.

Proof: Let Γ1 = {(x̂, y0, ẑ∗,0, t̂∗,0), . . . ,
(x̂, yM , ẑ∗,M , t̂∗,M )} and Γ3 = {(x0, ŷ, ẑ0,∗, t̂0,∗), . . . ,
(x̂, ŷ, ẑ, t̂), . . . (xN , ŷ, ẑN,∗, t̂N,∗)} = Γ2

⋃
(x̂, ŷ, ẑ, t̂). Then,

Theorem 1 is applied on Δ̂1 = Δ
⋃

Γ1 followed by Theorem 2

on Δ̂ = Δ̂1

⋃
Γ3. So, there exists a continuous bivariate

function f̂ : S → R
2 passing through the new generalized

interpolation points Δ̂.

Remark 2: In the above Theorem 3, we suppose

Γ2 = {(x0, ŷ, ẑ0,∗, t̂0,∗), . . . , (xN , ŷ, ẑN,∗, t̂N,∗)} and Γ3 =
{(x̂, y0, ẑ∗,0, t̂∗,0), . . . , (x̂, ŷ, ẑ, t̂) . . . (x̂, yM , ẑ∗,M , t̂∗,M )} =
Γ1

⋃
(x̂, ŷ, ẑ, t̂). In this case, Theorem 2 is applied first on

Δ̂2 = Δ
⋃

Γ2 followed by Theorem 1 on Δ̂ = Δ̂2

⋃
Γ3.

Again, it is obtained that there exist a continuous function

f̂ : S → R
2 passing through the new generalized interpolation

points Δ̂.

IV. DIFFERENT KINDS OF NODE INSERTION

Let us now describe different types of insertion according

to the values of inserted nodes for each method of insertion.

We suppose f̂ = (f̂1, f̂2) is a component-wise expression of

the function f̂ . The graph of f̂1 then becomes a CHFIS that

passes through the interpolation data Λ̂.

Method 1: In this method, a column of new points are

inserted in the given interpolation data.

• If ˆt∗,m = f2(x̂, ym) for all m = 0, 1, . . . ,M and t̂ =
f2(x̂, ŷ) but ˆz∗,m �= f1(x̂, ym) for some m = 1, 2, . . . ,M
or ẑ �= f1(x̂, ŷ) then it is called C-Node-Knot insertion

problem.

• If ˆz∗,m = f1(x̂, ym) for all m = 0, 1, . . . ,M and ẑ =
f1(x̂, ŷ) but ˆt∗,m �= f2(x̂, ym) for some m = 1, 2, . . . ,M
or t̂ �= f2(x̂, ŷ) then it is called C-Knot-Node insertion

problem.

• If ˆz∗,m = f1(x̂, ym), ˆt∗,m = f2(x̂, ym) for all m =
0, 1, . . . ,M , ẑ = f1(x̂, ŷ) and t̂ = f2(x̂, ŷ) then it is

called C-Knot-Knot insertion problem.

• If ˆz∗,m �= f1(x̂, ym) and ˆt∗,m �= f2(x̂, ym) for some

m = 0, 1, . . . ,M then it is called C-Node-Node insertion

problem.

Method 2: In this method, a row of new points are inserted

in the given interpolation data.

• If ˆtn,∗ = f2(xn, ŷ) for all n = 0, 1, . . . , N and t̂ =
f2(x̂, ŷ) but ˆzn,∗ �= f1(xn, ŷ) for some n = 1, 2, . . . , N
or ẑ �= f1(x̂, ŷ) then it is called R-Node-Knot insertion

problem.

• If ˆzn,∗ = f1(xn, ŷ) for all n = 0, 1, . . . , N and ẑ =
f1(x̂, ŷ) but ˆtn,∗ �= f2(xn, ŷ) for some n = 1, 2, . . . , N
or t̂ �= f2(x̂, ŷ) then it is called R-Knot-Node insertion

problem.

• If ˆzn,∗ = f1(xn, ŷ), ˆtn,∗ = f2(xn, ŷ) for all n =
0, 1, . . . , N , ẑ = f1(x̂, ŷ) and t̂ = f2(x̂, ŷ) then it is

called R-Knot-Knot insertion problem.

• If ˆzn,∗ �= f1(xn, ŷ) and ˆtn,∗ �= f2(xn, ŷ) for some

n = 0, 1, . . . , N then it is called R-Node-Node insertion

problem.

Method 3: In this method, both row and column of new

points are inserted in the given interpolation data.

• If ˆtn,∗ = f2(xn, ŷ) for all n = 0, 1, . . . , N ,
ˆt∗,m = f2(x̂, ym) for all m = 0, 1, . . . ,M and

t̂ = f2(x̂, ŷ) but ˆzn,∗ �= f1(xn, ŷ) for some

n = 1, 2, . . . , N or ˆz∗,m �= f1(x̂, ym) for some
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TABLE I
VALUE OF zn,m AT (xn, ym) IN A SAMPLE INTERPOLATION DATA

ym/xn 0 8 22 42 50

0 23 20 20 31 18

15 36 26 24 24 23

35 26 26 26 26 25

40 32 29 36 36 30

TABLE II Value of tn,m at (xn, ym) in generalized interpolation data

ym/xn 0 8 22 42 50

0 20 60 37 57 45

15 29 22 16 38 68

35 19 58 36 63 71

40 69 82 44 35 15

m = 1, 2, . . . ,M or ẑ �= f1(x̂, ŷ) then it is called

RC-Node-Knot insertion problem.

• If ˆzn,∗ = f1(xn, ŷ) for all n = 0, 1, . . . , N ,

ˆz∗,m = f1(x̂, ym) for all m = 0, 1, . . . ,M and

ẑ = f1(x̂, ŷ) but ˆtn,∗ �= f2(xn, ŷ) for some

n = 1, 2, . . . , N or ˆt∗,m �= f2(x̂, ym) for some

m = 1, 2, . . . ,M or t̂ �= f2(x̂, ŷ) then it is called

RC-Knot-Node insertion problem.

• If ˆzn,∗ = f1(xn, ŷ), ˆtn,∗ = f2(xn, ŷ) for all

n = 0, 1, . . . , N , ˆz∗,m = f1(x̂, ym), ˆt∗,m = f2(x̂, ym)
for all m = 0, 1, . . . ,M , ẑ = f1(x̂, ŷ) and t̂ = f2(x̂, ŷ)
then it is called RC-Knot-Knot insertion problem.

• If ˆzn,∗ �= f1(xn, ŷ) and ˆtn,∗ �= f2(xn, ŷ) for some

n = 0, 1, . . . , N , ˆz∗,m �= f1(x̂, ym) and ˆt∗,m �= f2(x̂, ym)
for some m = 0, 1, . . . ,M or ẑ �= f1(x̂, ŷ) and

t̂ �= f2(x̂, ŷ) then it is called RC-Node-Node insertion

problem.

V. EXAMPLES

Let Δ = {(xi, yj , zi,j , ti,j) : i = 0, 1, . . . , N and

j = 0, 1, . . . ,M} where zi,j is given by Table I and ti,j
is given by Table II be a sample generalized interpolation

data. Fig. 1 is created with αn,m = 0.3, βn,m = 0.2 and

γn,m = 0.5. Figs. 2 and 3 are simulations of CHFIS generated

corresponding to insertion of set of nodes

Γ1 = {(30, 0, 12, 23), (30, 15, 25, 56), (30, 35, 31, 12),
(30, 50, 40, 76)} and Γ2 = {(0, 20, 22, 12), (8, 20, 43, 45),
(22, 20, 67, 76), (42, 20, 12, 21), (50, 20, 55, 55)} in the Δ
respectively. Fig. 4 is obtained by inserting Γ1, Γ2 and

(30, 20, 55, 99) in the Δ.

VI. CONCLUSION

The impact of node insertion on the associated non-diagonal

IFS and CHFIS is investigated in this paper. In bivariate case,

there are the three different ways of inserting new points such

as inserting a row of new points, inserting a column of new

points and inserting both row and column of new points. For

each of these methods, it is proved that the new non-diagonal

IFS constructed using the new set of interpolation data give

Fig. 1 Original Surface

Fig. 2 Insertion of nodes Γ1

Fig. 3 Insertion of nodes Γ2

Fig. 4 Insertion of nodes Γ1
⋃

Γ2

rise to a new CHFIS. Further, for each mode of insertion

of nodes, the problem is further classified into four types of

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:17, No:1, 2023 

15International Scholarly and Scientific Research & Innovation 17(1) 2023 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:1
7,

 N
o:

1,
 2

02
3 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
12

88
5.

pd
f



insertion according to inserted nodes’ values. So, there are 12
kinds of node insertion in bivariate case as opposed to only 4
cases in single variable. These 12 cases also indicate whether

the new set of points are inserted along a row or a column or in

both. In future, the effect of insertion of nodes in smoothness

and fractal dimension will be studied.
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