Search results for: Non-Linear Control System
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11072

Search results for: Non-Linear Control System

10292 Existence of Solution of Nonlinear Second Order Neutral Stochastic Differential Inclusions with Infinite Delay

Authors: Yong Li

Abstract:

The paper is concerned with the existence of solution of nonlinear second order neutral stochastic differential inclusions with infinite delay in a Hilbert Space. Sufficient conditions for the existence are obtained by using a fixed point theorem for condensing maps.

Keywords: Mild solution, Convex multivalued map, Neutral stochastic differential inclusions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
10291 Real E-Government, Real Convenience

Authors: M. Kargar, F.Fartash, T. Saderi, M. Abdar-e Bakhshayesh

Abstract:

In this paper we have suggested a new system for egovernment. In this method a government can design a precise and perfect system to control people and organizations by using five major documents. These documents contain the important information of each member of a society and help all organizations to do their informatics tasks through them. This information would be available by only a national code and a secure program would support it. The suggested system can give a good awareness to the society and help it be managed correctly.

Keywords: E-Government, Internet, Web-Based System, Society.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486
10290 Takagi-Sugeno Fuzzy Control of Induction Motor

Authors: Allouche Moez, Souissi Mansour, Chaabane Mohamed, Mehdi Driss

Abstract:

This paper deals with the synthesis of fuzzy state feedback controller of induction motor with optimal performance. First, the Takagi-Sugeno (T-S) fuzzy model is employed to approximate a non linear system in the synchronous d-q frame rotating with electromagnetic field-oriented. Next, a fuzzy controller is designed to stabilise the induction motor and guaranteed a minimum disturbance attenuation level for the closed-loop system. The gains of fuzzy control are obtained by solving a set of Linear Matrix Inequality (LMI). Finally, simulation results are given to demonstrate the controller-s effectiveness.

Keywords: Rejection disturbance, fuzzy modelling, open-loop control, Fuzzy feedback controller, fuzzy observer, Linear Matrix Inequality (LMI)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
10289 Automation of the Maritime UAV Command, Control, Navigation Operations, Simulated in Real-Time Using Kinect Sensor: A Feasibility Study

Authors: Regius Asiimwe, Amir Anvar

Abstract:

This paper describes the process used in the automation of the Maritime UAV commands using the Kinect sensor. The AR Drone is a Quadrocopter manufactured by Parrot [1] to be controlled using the Apple operating systems such as iPhones and Ipads. However, this project uses the Microsoft Kinect SDK and Microsoft Visual Studio C# (C sharp) software, which are compatible with Windows Operating System for the automation of the navigation and control of the AR drone. The navigation and control software for the Quadrocopter runs on a windows 7 computer. The project is divided into two sections; the Quadrocopter control system and the Kinect sensor control system. The Kinect sensor is connected to the computer using a USB cable from which commands can be sent to and from the Kinect sensors. The AR drone has Wi-Fi capabilities from which it can be connected to the computer to enable transfer of commands to and from the Quadrocopter. The project was implemented in C#, a programming language that is commonly used in the automation systems. The language was chosen because there are more libraries already established in C# for both the AR drone and the Kinect sensor. The study will contribute toward research in automation of systems using the Quadrocopter and the Kinect sensor for navigation involving a human operator in the loop. The prototype created has numerous applications among which include the inspection of vessels such as ship, airplanes and areas that are not accessible by human operators.

Keywords: UAV, AR drone, Kinect Sensors, Automation, Real time, C sharp, Microsoft Kinect SDK.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2912
10288 Volterra Filtering Techniques for Removal of Gaussian and Mixed Gaussian-Impulse Noise

Authors: M. B. Meenavathi, K. Rajesh

Abstract:

In this paper, we propose a new class of Volterra series based filters for image enhancement and restoration. Generally the linear filters reduce the noise and cause blurring at the edges. Some nonlinear filters based on median operator or rank operator deal with only impulse noise and fail to cancel the most common Gaussian distributed noise. A class of second order Volterra filters is proposed to optimize the trade-off between noise removal and edge preservation. In this paper, we consider both the Gaussian and mixed Gaussian-impulse noise to test the robustness of the filter. Image enhancement and restoration results using the proposed Volterra filter are found to be superior to those obtained with standard linear and nonlinear filters.

Keywords: Gaussian noise, Image enhancement, Imagerestoration, Linear filters, Nonlinear filters, Volterra series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2716
10287 Performences of Type-2 Fuzzy Logic Control and Neuro-Fuzzy Control Based on DPC for Grid Connected DFIG with Fixed Switching Frequency

Authors: Fayssal Amrane, Azeddine Chaiba

Abstract:

In this paper, type-2 fuzzy logic control (T2FLC) and neuro-fuzzy control (NFC) for a doubly fed induction generator (DFIG) based on direct power control (DPC) with a fixed switching frequency is proposed for wind generation application. First, a mathematical model of the doubly-fed induction generator implemented in d-q reference frame is achieved. Then, a DPC algorithm approach for controlling active and reactive power of DFIG via fixed switching frequency is incorporated using PID. The performance of T2FLC and NFC, which is based on the DPC algorithm, are investigated and compared to those obtained from the PID controller. Finally, simulation results demonstrate that the NFC is more robust, superior dynamic performance for wind power generation system applications.

Keywords: Doubly fed induction generetor, direct power control, space vector modulation, type-2 fuzzy logic control, neuro-fuzzy control, maximum power point tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
10286 On the Dynamic Behaviour of a Four-Bar Linkage Driven by a Velocity Controlled DC Motor

Authors: Giovanni Incerti

Abstract:

The dynamic behaviour of a four-bar linkage driven by a velocity controlled DC motor is discussed in the paper. In particular the author presents the results obtained by means of a specifically developed software, which implements the mathematical models of all components of the system (linkage, transmission, electric motor, control devices). The use of this software enables a more efficient design approach, since it allows the designer to check, in a simple and immediate way, the dynamic behaviour of the mechanism, arising from different values of the system parameters.

Keywords: Four-bar linkage, Speed control, Dynamic analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4059
10285 Accurate Calculation of Free Frequencies of Beams and Rectangular Plates

Authors: R .Lassoued, M. Guenfoud

Abstract:

An accurate procedure to determine free vibrations of beams and plates is presented. The natural frequencies are exact solutions of governing vibration equations witch load to a nonlinear homogeny system. The bilinear and linear structures considered simulate a bridge. The dynamic behavior of this one is analyzed by using the theory of the orthotropic plate simply supported on two sides and free on the two others. The plate can be excited by a convoy of constant or harmonic loads. The determination of the dynamic response of the structures considered requires knowledge of the free frequencies and the shape modes of vibrations. Our work is in this context. Indeed, we are interested to develop a self-consistent calculation of the Eigen frequencies. The formulation is based on the determination of the solution of the differential equations of vibrations. The boundary conditions corresponding to the shape modes permit to lead to a homogeneous system. Determination of the noncommonplace solutions of this system led to a nonlinear problem in Eigen frequencies. We thus, develop a computer code for the determination of the eigenvalues. It is based on a method of bisection with interpolation whose precision reaches 10 -12. Moreover, to determine the corresponding modes, the calculation algorithm that we develop uses the method of Gauss with a partial optimization of the "pivots" combined with an inverse power procedure. The Eigen frequencies of a plate simply supported along two opposite sides while considering the two other free sides are thus analyzed. The results could be generalized with the case of a beam by regarding it as a plate with low width. We give, in this paper, some examples of treated cases. The comparison with results presented in the literature is completely satisfactory.

Keywords: Free frequencies, beams, rectangular plates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2175
10284 Improvement of Synchronous Machine Dynamic Characteristics via Neural Network Based Controllers

Authors: S. A. Gawish, F. A. Khalifa, R. M. Mostafa

Abstract:

This paper presents Simulation and experimental study aimed at investigating the effectiveness of an adaptive artificial neural network stabilizer on enhancing the damping torque of a synchronous generator. For this purpose, a power system comprising a synchronous generator feeding a large power system through a short tie line is considered. The proposed adaptive neuro-control system consists of two multi-layered feed forward neural networks, which work as a plant model identifier and a controller. It generates supplementary control signals to be utilized by conventional controllers. The details of the interfacing circuits, sensors and transducers, which have been designed and built for use in tests, are presented. The synchronous generator is tested to investigate the effect of tuning a Power System Stabilizer (PSS) on its dynamic stability. The obtained simulation and experimental results verify the basic theoretical concepts.

Keywords: Adaptive artificial neural network, power system stabilizer, synchronous generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442
10283 VFAST TCP: A delay-based enhanced version of FAST TCP

Authors: Salem Belhaj, Moncef Tagina

Abstract:

This paper is aimed at describing a delay-based endto- end (e2e) congestion control algorithm, called Very FAST TCP (VFAST), which is an enhanced version of FAST TCP. The main idea behind this enhancement is to smoothly estimate the Round-Trip Time (RTT) based on a nonlinear filter, which eliminates throughput and queue oscillation when RTT fluctuates. In this context, an evaluation of the suggested scheme through simulation is introduced, by comparing our VFAST prototype with FAST in terms of throughput, queue behavior, fairness, stability, RTT and adaptivity to changes in network. The achieved simulation results indicate that the suggested protocol offer better performance than FAST TCP in terms of RTT estimation and throughput.

Keywords: Fast tcp, RTT, delay estimation, delay-based congestion control, high speed TCP, large bandwidth delay product.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717
10282 Sensitizing Rules for Fuzzy Control Charts

Authors: N. Pekin Alakoç, A. Apaydın

Abstract:

Quality control charts indicate out of control conditions if any nonrandom pattern of the points is observed or any point is plotted beyond the control limits. Nonrandom patterns of Shewhart control charts are tested with sensitizing rules. When the processes are defined with fuzzy set theory, traditional sensitizing rules are insufficient for defining all out of control conditions. This is due to the fact that fuzzy numbers increase the number of out of control conditions. The purpose of the study is to develop a set of fuzzy sensitizing rules, which increase the flexibility and sensitivity of fuzzy control charts. Fuzzy sensitizing rules simplify the identification of out of control situations that results in a decrease in the calculation time and number of evaluations in fuzzy control chart approach.

Keywords: Fuzzy set theory, Quality control charts, Run Rules, Unnatural patterns.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3515
10281 Fuzzy Control of Thermally Isolated Greenhouse Building by Utilizing Underground Heat Exchanger and Outside Weather Conditions

Authors: Raghad Alhusari, Farag Omar, Moustafa Fadel

Abstract:

A traditional greenhouse is a metal frame agricultural building used for cultivation plants in a controlled environment isolated from external climatic changes. Using greenhouses in agriculture is an efficient way to reduce the water consumption, where agriculture field is considered the biggest water consumer world widely. Controlling greenhouse environment yields better productivity of plants but demands an increase of electric power. Although various control approaches have been used towards greenhouse automation, most of them are applied to traditional greenhouses with ventilation fans and/or evaporation cooling system. Such approaches are still demanding high energy and water consumption. The aim of this research is to develop a fuzzy control system that minimizes water and energy consumption by utilizing outside weather conditions and underground heat exchanger to maintain the optimum climate of the greenhouse. The proposed control system is implemented on an experimental model of thermally isolated greenhouse structure with dimensions of 6x5x2.8 meters. It uses fans for extracting heat from the ground heat exchanger system, motors for automatic open/close of the greenhouse windows and LED as lighting system. The controller is integrated also with environmental condition sensors. It was found that using the air-to-air horizontal ground heat exchanger with 90 mm diameter and 2 mm thickness placed 2.5 m below the ground surface results in decreasing the greenhouse temperature of 3.28 ˚C which saves around 3 kW of consumed energy. It also eliminated the water consumption needed in evaporation cooling systems which are traditionally used for cooling the greenhouse environment.

Keywords: Automation, earth-to-air heat exchangers, fuzzy control, greenhouse, sustainable buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 682
10280 Robust Control of a Parallel 3-RRR Robotic Manipulator via μ-Synthesis Method

Authors: A. Abbasi Moshaii, M. Soltan Rezaee, M. Mohammadi Moghaddam

Abstract:

Control of some mechanisms is hard because of their complex dynamic equations. If part of the complexity is resulting from uncertainties, an efficient way for solving that is robust control. By this way, the control procedure could be simple and fast and finally, a simple controller can be designed. One kind of these mechanisms is 3-RRR which is a parallel mechanism and has three revolute joints. This paper aims to robust control a 3-RRR planner mechanism and it presents that this could be used for other mechanisms. So, a significant problem in mechanisms control could be solved. The relevant diagrams are drawn and they show the correctness of control process.

Keywords: 3-RRR, dynamic equations, mechanisms control, structural uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2267
10279 Instability of a Nonlinear Differential Equation of Fifth Order with Variable Delay

Authors: Cemil Tunc

Abstract:

In this paper, we study the instability of the zero solution to a nonlinear differential equation with variable delay. By using the Lyapunov functional approach, some sufficient conditions for instability of the zero solution are obtained.

Keywords: Instability, Lyapunov-Krasovskii functional, delay differential equation, fifth order.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1439
10278 Model Transformation with a Visual Control Flow Language

Authors: László Lengyel, Tihamér Levendovszky, Gergely Mezei, Hassan Charaf

Abstract:

Graph rewriting-based visual model processing is a widely used technique for model transformation. Visual model transformations often need to follow an algorithm that requires a strict control over the execution sequence of the transformation steps. Therefore, in Visual Model Processors (VMPs) the execution order of the transformation steps is crucial. This paper presents the visual control flow support of Visual Modeling and Transformation System (VMTS), which facilitates composing complex model transformations of simple transformation steps and executing them. The VMTS Visual Control Flow Language (VCFL) uses stereotyped activity diagrams to specify control flow structures and OCL constraints to choose between different control flow branches. This paper introduces VCFL, discusses its termination properties and provides an algorithm to support the termination analysis of VCFL transformations.

Keywords: Control Flow, Metamodel-Based Visual ModelTransformation, OCL, Termination Properties, UML.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673
10277 Optimal Parameters of Double Moving Average Control Chart

Authors: Y. Areepong

Abstract:

The objective of this paper is to present explicit analytical formulas for evaluating important characteristics of Double Moving Average control chart (DMA) for Poisson distribution. The most popular characteristics of a control chart are Average Run Length ( 0 ARL ) - the mean of observations that are taken before a system is signaled to be out-of control when it is actually still incontrol, and Average Delay time ( 1 ARL ) - mean delay of true alarm times. An important property required of 0 ARL is that it should be sufficiently large when the process is in-control to reduce a number of false alarms. On the other side, if the process is actually out-ofcontrol then 1 ARL should be as small as possible. In particular, the explicit analytical formulas for evaluating 0 ARL and 1 ARL be able to get a set of optimal parameters which depend on a width of the moving average ( w ) and width of control limit ( H ) for designing DMA chart with minimum of 1 ARL

Keywords: Optimal parameters, Average Run Length, Average Delay time, Double Moving Average chart.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2311
10276 Scatterer Density in Edge and Coherence Enhancing Nonlinear Anisotropic Diffusion for Medical Ultrasound Speckle Reduction

Authors: Ahmed Badawi, J. Michael Johnson, Mohamed Mahfouz

Abstract:

This paper proposes new enhancement models to the methods of nonlinear anisotropic diffusion to greatly reduce speckle and preserve image features in medical ultrasound images. By incorporating local physical characteristics of the image, in this case scatterer density, in addition to the gradient, into existing tensorbased image diffusion methods, we were able to greatly improve the performance of the existing filtering methods, namely edge enhancing (EE) and coherence enhancing (CE) diffusion. The new enhancement methods were tested using various ultrasound images, including phantom and some clinical images, to determine the amount of speckle reduction, edge, and coherence enhancements. Scatterer density weighted nonlinear anisotropic diffusion (SDWNAD) for ultrasound images consistently outperformed its traditional tensor-based counterparts that use gradient only to weight the diffusivity function. SDWNAD is shown to greatly reduce speckle noise while preserving image features as edges, orientation coherence, and scatterer density. SDWNAD superior performances over nonlinear coherent diffusion (NCD), speckle reducing anisotropic diffusion (SRAD), adaptive weighted median filter (AWMF), wavelet shrinkage (WS), and wavelet shrinkage with contrast enhancement (WSCE), make these methods ideal preprocessing steps for automatic segmentation in ultrasound imaging.

Keywords: Nonlinear anisotropic diffusion, ultrasound imaging, speckle reduction, scatterer density estimation, edge based enhancement, coherence enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
10275 Two-Dimensional Solitary Wave Solution to the Quadratic Nonlinear Schrdinger Equation

Authors: Sarun Phibanchon

Abstract:

The solitary wave solution of the quadratic nonlinear Schrdinger equation is determined by the iterative method called Petviashvili method. This solution is also used for the initial condition for the time evolution to study the stability analysis. The spectral method is applied for the time evolution.

Keywords: soliton, iterative method, spectral method, plasma

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848
10274 PID Controller Design for Following Control of Hard Disk Drive by Characteristic Ratio Assignment Method

Authors: Chaoraingern J., Trisuwannawat T., Numsomran A.

Abstract:

The author present PID controller design for following control of hard disk drive by characteristic ratio assignment method. The study in this paper concerns design of a PID controller which sufficiently robust to the disturbances and plant perturbations on following control of hard disk drive. Characteristic Ratio Assignment (CRA) is shown to be an efficient control technique to serve this requirement. The controller design by CRA is based on the choice of the coefficients of the characteristic polynomial of the closed loop system according to the convenient performance criteria such as equivalent time constant and ration of characteristic coefficient. Hence, in this study, CRA method is applied in PID controller design for following control of hard disk drive. Matlab simulation results shown that CRA design is fairly stable and robust whilst giving the convenience in controller-s parameters adjustment.

Keywords: Following Control, Hard Disk Drive, PID, CRA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947
10273 Numerical Approach to a Mathematical Modeling of Bioconvection Due to Gyrotactic Micro-Organisms over a Nonlinear Inclined Stretching Sheet

Authors: Madhu Aneja, Sapna Sharma

Abstract:

The water-based bioconvection of a nanofluid containing motile gyrotactic micro-organisms over nonlinear inclined stretching sheet has been investigated. The governing nonlinear boundary layer equations of the model are reduced to a system of ordinary differential equations via Oberbeck-Boussinesq approximation and similarity transformations. Further, the modified set of equations with associated boundary conditions are solved using Finite Element Method. The impact of various pertinent parameters on the velocity, temperature, nanoparticles concentration, density of motile micro-organisms profiles are obtained and analyzed in details. The results show that with the increase in angle of inclination δ, velocity decreases while temperature, nanoparticles concentration, a density of motile micro-organisms increases. Additionally, the skin friction coefficient, Nusselt number, Sherwood number, density number are computed for various thermophysical parameters. It is noticed that increasing Brownian motion and thermophoresis parameter leads to an increase in temperature of fluid which results in a reduction in Nusselt number. On the contrary, Sherwood number rises with an increase in Brownian motion and thermophoresis parameter. The findings have been validated by comparing the results of special cases with existing studies.

Keywords: Bioconvection, inclined stretching sheet, Gyrotactic micro-organisms, Brownian motion, thermophoresis, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 700
10272 Dynamics and Control of Bouncing Ball

Authors: A. K. Kamath, N. M. Singh, R. Pasumarthy

Abstract:

This paper investigates the control of a bouncing ball using Model Predictive Control. Bouncing ball is a benchmark problem for various rhythmic tasks such as juggling, walking, hopping and running. Humans develop intentions which may be perceived as our reference trajectory and tries to track it. The human brain optimizes the control effort needed to track its reference; this forms the central theme for control of bouncing ball in our investigations.

Keywords: Bouncing Ball, impact dynamics, intermittent control, model predictive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1998
10271 Maximum Power Point Tracking Based on Estimated Power for PV Energy Conversion System

Authors: Zainab Almukhtar, Adel Merabet

Abstract:

In this paper, a method for maximum power point tracking of a photovoltaic energy conversion system is presented. This method is based on using the difference between the power from the solar panel and an estimated power value to control the DC-DC converter of the photovoltaic system. The difference is continuously compared with a preset error permitted value. If the power difference is more than the error, the estimated power is multiplied by a factor and the operation is repeated until the difference is less or equal to the threshold error. The difference in power will be used to trigger a DC-DC boost converter in order to raise the voltage to where the maximum power point is achieved. The proposed method was experimentally verified through a PV energy conversion system driven by the OPAL-RT real time controller. The method was tested on varying radiation conditions and load requirements, and the Photovoltaic Panel was operated at its maximum power in different conditions of irradiation.

Keywords: Control system, power error, solar panel, MPPT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1308
10270 Adaptive Functional Projective Lag Synchronization of Lorenz System

Authors: Tae H. Lee, J.H. Park, S.M. Lee, H.Y. Jung

Abstract:

This paper addresses functional projective lag synchronization of Lorenz system with four unknown parameters, where the output of the master system lags behind the output of the slave system proportionally. For this purpose, an adaptive control law is proposed to make the states of two identical Lorenz systems asymptotically synchronize up. Based on Lyapunov stability theory, a novel criterion is given for asymptotical stability of the null solution of an error dynamics. Finally, some numerical examples are provided to show the effectiveness of our results.

Keywords: Adaptive function projective synchronization, Chaotic system, Lag synchronization, Lyapunov method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
10269 Stability Analysis of Two-delay Differential Equation for Parkinson's Disease Models with Positive Feedback

Authors: M. A. Sohaly, M. A. Elfouly

Abstract:

Parkinson's disease (PD) is a heterogeneous movement disorder that often appears in the elderly. PD is induced by a loss of dopamine secretion. Some drugs increase the secretion of dopamine. In this paper, we will simply study the stability of PD models as a nonlinear delay differential equation. After a period of taking drugs, these act as positive feedback and increase the tremors of patients, and then, the differential equation has positive coefficients and the system is unstable under these conditions. We will present a set of suggested modifications to make the system more compatible with the biodynamic system. When giving a set of numerical examples, this research paper is concerned with the mathematical analysis, and no clinical data have been used.

Keywords: Parkinson's disease, stability, simulation, two delay differential equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 643
10268 Optimization Parameters of Rotary Positioner Controller using CDM

Authors: Meemongkol A., Tipsuwanporn V., Numsomran A.

Abstract:

The authors present optimization parameters of rotary positioner controller in hard disk drive servo track writing process using coefficient diagram method; CDM. Due to estimation parameters in PI Positioning Control System by expected ratio method cannot meet the required specification of response effectively, we suggest coefficient diagram method for defining controller parameters under the requirement of the system. Finally, the simulation results show that our proposed method can improve the problem in tuning parameter of rotary positioner controller. It is satisfied specification of performance of control system. Furthermore, it is very convenient as a fast adjustment damping ratio as well as a high speed response.

Keywords: Optimization Parameters, Rotary Positioner, CDM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
10267 Sliding Mode Control of an Internet Teleoperated PUMA 600 Robot

Authors: Abdallah Ghoul, Bachir Ouamri, Ismail Khalil Bousserhane

Abstract:

In this paper, we have developed a sliding mode controller for PUMA 600 manipulator robot, to control the remote robot a teleoperation system was developed. This system includes two sites, local and remote. The sliding mode controller is installed at the remote site. The client asks for a position through an interface and receives the real positions after running of the task by the remote robot. Both sites are interconnected via the Internet. In order to verify the effectiveness of the sliding mode controller, that is compared with a classic PID controller. The developed approach is tested on a virtual robot. The results confirmed the high performance of this approach.

Keywords: Internet, manipulator robot, PID controller, remote control, sliding mode, teleoperation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 937
10266 DC-Link Voltage Control of DC-DC Boost Converter-Inverter System with PI Controller

Authors: Thandar Aung, Tun Lin Naing

Abstract:

In this paper, the DC-link voltage control of DC-DC boost converter–inverter system is proposed. The mathematical model is developed from four different sub-circuits that depended on the switch positions. The developed differential equations are combined to develop the dynamic model. Transfer function is generated from the switched function model. Fluctuation of DC-link voltage causes connected loads malfunction. For this problem, a kind of traditional controller, the PI controller is applied to achieve constant DC-link voltage. The PI controller gains are obtained based on transfer function step response. The simulation work has been studied by using MATLAB/Simulink software and hardware prototype is implemented with a low-cost microcontroller Arduino Nano. Experimental results are collected by using ArduinoIO library package. Closed-loop DC-link voltage control system is tested with various line and load disturbances. It is found that the experimental results give equal responses with the simulation results.

Keywords: ArduinoIO library package, boost converter-inverter system, low cost microcontroller, PI controller, switched function model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1390
10265 Kinematics and Control System Design of Manipulators for a Humanoid Robot

Authors: S. Parasuraman

Abstract:

In this work, a new approach is proposed to control the manipulators for Humanoid robot. The kinematics of the manipulators in terms of joint positions, velocity, acceleration and torque of each joint is computed using the Denavit Hardenberg (D-H) notations. These variables are used to design the manipulator control system, which has been proposed in this work. In view of supporting the development of a controller, a simulation of the manipulator is designed for Humanoid robot. This simulation is developed through the use of the Virtual Reality Toolbox and Simulink in Matlab. The Virtual Reality Toolbox in Matlab provides the interfacing and controls to an environment which is developed based on the Virtual Reality Modeling Language (VRML). Chains of bones were used to represent the robot.

Keywords: Mobile robot, Robot Kinematics, Robot Navigation, MATLAB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
10264 A Parametric Assessment of Friction Damper in Eccentric Braced Frame

Authors: J. Vaseghi, S.Navaei, B. Navayinia, F. Roshantabari

Abstract:

In This paper, the behavior of eccentric braced frame (EBF) is studied with replacing friction damper (FD) in confluence of these braces, in 5 and 10-storey steel frames. For FD system, the main step is to determine the slip load. For this reason, the performance indexes include roof displacement, base shear, dissipated energy and relative performance should be investigated. In nonlinear dynamic analysis, the response of structure to three earthquake records has been obtained and the values of roof displacement, base shear and column axial force for FD and EBF frames have been compared. The results demonstrate that use of the FD in frames, in comparison with the EBF, substantially reduces the roof displacement, column axial force and base shear. The obtained results show suitable performance of FD in higher storey structure in comparison with the EBF.

Keywords: Friction Damper (FD), Slip Load, Nonlinear Dynamic Analysis, Performance Index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2723
10263 Design of Robust Fuzzy Logic Power System Stabilizer

Authors: S. A. Taher, A. Shemshadi

Abstract:

Power system stabilizers (PSS) must be capable of providing appropriate stabilization signals over a broad range of operating conditions and disturbance. Traditional PSS rely on robust linear design method in an attempt to cover a wider range of operating condition. Expert or rule-based controllers have also been proposed. Recently fuzzy logic (FL) as a novel robust control design method has shown promising results. The emphasis in fuzzy control design center is around uncertainties in the system parameters & operating conditions. In this paper a novel Robust Fuzzy Logic Power System Stabilizer (RFLPSS) design is proposed The RFLPSS basically utilizes only one measurable Δω signal as input (generator shaft speed). The speed signal is discretized resulting in three inputs to the RFLPSS. There are six rules for the fuzzification and two rules for defuzzification. To provide robustness, additional signal namely, speed are used as inputs to RFLPSS enabling appropriate gain adjustments for the three RFLPSS inputs. Simulation studies show the superior performance of the RFLPSS compared with an optimally designed conventional PSS and discrete mode FLPSS.

Keywords: Controller design, Fuzzy Logic, PID, Power SystemStabilizer, Robust control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109