WASET
	%0 Journal Article
	%A M. M. Rahman
	%D 2013
	%J International Journal of Mathematical and Computational Sciences
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 77, 2013
	%T Thermophoretic Deposition of Nanoparticles Due Toa Permeable Rotating Disk: Effects of Partial Slip, Magnetic Field, Thermal Radiation, Thermal-Diffusion, and Diffusion-Thermo
	%U https://publications.waset.org/pdf/3791
	%V 77
	%X The present contribution deals with the
thermophoretic deposition of nanoparticles over a rapidly rotating
permeable disk in the presence of partial slip, magnetic field, thermal
radiation, thermal-diffusion, and diffusion-thermo effects. The
governing nonlinear partial differential equations such as continuity,
momentum, energy and concentration are transformed into nonlinear
ordinary differential equations using similarity analysis, and the
solutions are obtained through the very efficient computer algebra
software MATLAB. Graphical results for non-dimensional
concentration and temperature profiles including thermophoretic
deposition velocity and Stanton number (thermophoretic deposition
flux) in tabular forms are presented for a range of values of the
parameters characterizing the flow field. It is observed that slip
mechanism, thermal-diffusion, diffusion-thermo, magnetic field and
radiation significantly control the thermophoretic particles deposition
rate. The obtained results may be useful to many industrial and
engineering applications.
	%P 798 - 810