
 
Abstract—This paper deals with a robust model free terminal 

sliding mode with gravity compensation approach used to control an 
exoskeleton-upper limb system. The considered system is a 2-DoF 
robot in interaction with an upper limb used for rehabilitation. The 
aim of this paper is to control the flexion/extension movement of the 
shoulder and the elbow joints in presence of matched disturbances. In 
the first part, we present the exoskeleton-upper limb system 
modeling. Then, we controlled the considered system by the model 
free terminal sliding mode with gravity compensation. A stability 
study is realized. To prove the controller performance, a robustness 
analysis was needed. Simulation results are provided to confirm the 
robustness of the gravity compensation combined with to the Model 
free terminal sliding mode in presence of uncertainties.  

 
Keywords—Exoskeleton-upper limb system, gravity 

compensation, model free terminal sliding mode, robustness analysis, 
Monte Carlo, H∞ methods. 

I. INTRODUCTION 
 

BILITY to move upper limbs is very necessary to ensure 
the basic activities of human everyday life.  The upper 

limb is characterized by its mobility and its ability to handle 
and grasp objects [1]. The inability to operate the upper limb, 
due to an accident, makes human life more complex. So, it is 
necessary to find a solution to help these people and improve 
their comforts. 

Robotics naturally emerged in the field of upper/lower limb 
rehabilitation in the 1960s [4], [5], as an evolution of existing 
mechanical devices and in response to the need to improve the 
quality of treatments. 

Rehabilitation robots are systems in physical interaction 
with humans used to encourage the subject's participation in 
the movement, even when assisted. They act as an amplifier 
that augment, reinforce or restore human performances. This 
interaction must then be fine enough to meet the requirements 
of human motor control and allow the establishment of 
controls dedicated to rehabilitation.  

In literature, upper limb exoskeletons are utilized in 
different fields of applications. In the medical field, 
exoskeletons are used to perform basic activities of daily life 
for hemiplegics or for rehabilitation [6]. For military 
application, they are employed to increase the physical 
endurance of soldiers and to help them to lift heavy loads. 
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Also, exoskeletons are used for assistance to dependent 
persons. A motorized exoskeleton can allow monitoring and 
robotic assistance of sports training (achieving the perfect 
gesture with adequate strength, speed and precision) [7]. 

With the use of exoskeletons distributed along the limb, it 
becomes possible to control not only the movements of the 
hand but one can also control the articular movements of the 
subject's arm [21]. This method makes it possible to approach 
the problem of neuromotor rehabilitation differently. Joint 
rehabilitation also allows better recovery in people with 
hemiparetics. 

The objective of controlling an exoskeleton is to follow the 
movements of a healthy user. To achieve this goal, it is 
necessary to apply appropriate, performing and robust 
controllers. The dynamic of the exoskeleton-upper limb 
system is characterized by its complexity, so researchers 
developed many control laws like the sliding mode [10], the 
mixed force and position controller [11], universal 
approximations of fuzzy logic or neural networks approaches 
[12], adaptive control [24], etc. 

Uncertainties and disturbances can influence the 
performance and the effectiveness of the applied controllers 
when tracking the desired trajectories. So, we are interested in 
the robustness study of the exoskeleton-upper limb system. 
The robustness test is important in order to identify the 
operating factors that are not necessarily studied during the 
development phase of the method, but which could have an 
influence on the results, and consequently to anticipate the 
problems that may occur at the moment of control application. 

The contribution of this paper is to develop a robust Model 
Free Terminal Sliding mode algorithm with gravity 
compensation to control a 2-DoF exoskeleton-upper limb 
system. As a robustness study in presence of matched 
uncertainties, Monte Carlo and H∞ methods were used. 

The paper is organized as follows: The modelling of the 
exoskeleton-upper limb system is presented in Section II. 
Section III deals with the control and the stability study. The 
robustness analysis of the considered system using Monte 
Carlo and H∞ methods is given in Section IV. In Section V, 
simulation and results are given. Finally, Section VI is kept for 
the conclusion and future work.  

II. THE EXOSKELETON-UPPER LIMB SYSTEM MODELING 

To control the flexion/extension movement of the shoulder 
and the elbow joints of the exoskeleton-upper limb system, we 
start by modeling the considered system. 
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The system is an exoskeleton in interaction with a human 
upper limb [13], [14] presented by Fig. 1. 

 

 

Fig. 1 General configuration of a 2 DoF exoskeleton-upper limb 
system 

 
The kinematic model of the considered system is given by 

Fig. 2. 
Referring to Euler Lagrange equation, the dynamic model 

of the system having two degrees of freedom (DoF) in the 
presence of friction is given by: 
 

M(q)𝑞 +C(q,𝑞)𝑞 +G(q)+fv q+kisign(qi)=τexo+τarm+τext  (1) 
  

M(q)𝑞 +C(q,𝑞)𝑞 + G(q) + F (q, q) = τexo+ τarm +τext   (2) 
 
with q ∈ ℝ2 present the joint positions vector; q ∈ ℝ2 is the 
joint velocities vector; q ∈ℝ2 is the joint accelerations vector; 
M(q)∈ℝ 2x 2 is the inertia matrix; C(q,q)∈ℝ 2x2 is the Coriolis 
matrix; G(q) ∈ ℝ2 is the gravitational vector; F(q,q) ∈ ℝ2 is 
the force generated by friction; τ exo∈ ℝ 2 is the control vector 
applied by exoskeleton; τ arm ∈ ℝ 2 is the torque applied by the 
human; τ ext ∈ ℝ 2 is the external torque; F (q, q) = fv q + ki 
sign (qi); ki sign (qi) is the resistive torque due to dry friction; 
fv q corresponds to the resistive torque due to the viscous 
friction of the human exoskeleton-arm system;                         
 
M(q) =    M11   M12    ; C(q,  𝑞) =   C11  C12      ; G(q) =   G1 
                M21   M22                                  C21    C22                           G2 
 
where α = q1 + q2; l1 = O1G1; l2 = O2G2; mi are the exoskeleton 
joint mass; mii are the arm joint mass; lii are the arm joint 
length; Iii are the arm joint inertia; M11 = m1 l1

2 + m11 l11
2 + I1 

+ I11+ (m2+ m22)L2
2; M12 = 2 L2 (m2 l2 + m22 l22) cos (α - q1); 

M21 = 2 L2 (m2 l2 + m22 l22) cos (α - q1); M22 = I2 + I22 + m22 l22
2 

+ m2 l2
2; C11 = 0; C12 = - 𝛼 (m2 l2 + m22 l22) L2 sin (α - q1); C21 

= 0; C22 = 𝑞1 (m2 l2 + m22 l22) L2 sin (α - q1); G1 = [m1 l1+ m11 
l11+ (m2+ m22) L2] g cos q1; G2 = [m2 l2 + m22 l22] g cos α. 

We developed then a control law used in order to get good 
desired trajectories tracking by the exoskeleton-upper limb 
system. 

 

Fig. 2 Kinematic model of 2 DoF exoskeleton-upper limb system 
 

The operating principle of the exoskeleton-upper limb 
system is described in Fig. 3. In the next sections, we suppose 
that τ ext = 0 and we consider U = τ exo - τ arm. 

III. THE EXOSKELETON-UPPER LIMB SYSTEM CONTROL 

In this section, we developed a control law in order to track 
the desired trajectories. So, a Model Free Terminal Sliding 
Mode with gravity compensation was proposed. 

A. Gravity Compensation  

Gravity compensation applied to robotics could avoid some 
problems. It acts as a corrector that only compensates for all of 
the forces that create the overshoot and the asymmetric 
transient behavior of the system. Also, the control with gravity 
compensation is able to reach the control objective in position 
globally for n DOF robots. 

The use of gravity compensation is beneficial for robotic 
system which can be operated with relatively small actuators 
generating less torque [25]. 

In the literature, we find the use of two design approaches 
to obtain gravity compensation. The first approach is to use 
counterweights to compensate for the weight of the links. The 
counterweights can be mounted directly on the manipulator 
[26], [27], [8], [9].  

The main advantage of this approach is the maintenance of 
the center of mass of the fixed mechanism for any given 
orientation of the gravity acceleration vector. This is 
particularly interesting when the manipulators have to operate 
with their base mounted in an arbitrary orientation. 

The second approach is based on the storage of potential 
energy in elastic components such as springs. The advantage 
of this method is to add a smaller mass and inertia to the 
system. On the other hand, the resulting mechanism tends to 
be more complex: it can lead to mechanical interference and 
have a limited range of motion [27]. 

B. Model Free Terminal Sliding Mode Control with 
Gravity Compensation (MFTSMCGC) 

The proposed control law consists in combining the Model 
Free (MF) with the Terminal Sliding Mode (TSM) using 
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gravity compensation. The system control block diagram is 
shown in Fig. 4. 

 

 

 

Fig. 3 The operating principle of the exoskeleton-upper limb system 
 

The TSM has been developed by adding the non-linear 
fractional power element to the sliding surface to offer certain 
superior properties, such as the convergence in finite time of 
the state variables, faster and better tracking precision [28]-
[30]. 

The MF control consists of a PID controller supplemented 
by compensation conditions provided by the online estimation 
of the system dynamics [19]-[21]. 

The MF controller is presented by [22], [23]: 
 

  q = F(t) + α uMF (t)    (3) 
 
where q presents the output. F is an unknown nonlinear term 
including unmodeled dynamics and uncertainties. α is the 
input gain. uMF is the corresponding input signal. 

By closing the loop via the intelligent proportional-
derivative controller (iPD), we get: 

 

                    uMF = ‐            (4) 
 

with uc presents the feedback controller to track the desired 
output signal. qd is a desired output trajectory. uc is defined as 
the classic PD controller with: 
 

     uc = KD 𝑒 + Kp e    (5) 
 

and: 
                  e = q - qd               (6) 

    

with e = q – qd is the error of trajectory tracking. Kd and Ki are 
the PD's gains matrices. 𝑞d presented the desired velocity. We 
get:  
 

           uMF = ‐      
           (7) 

From (3) and (4), we get: 
 

                            e + uc = F - F    (8) 
 

The estimation method is given as: 
 

 F(t) = F(t) = F(t - ε) = q (t- ε) – α uMF (t- ε) (9) 
 

where ε is a small time delay. 
According to the previous equations, we get: 

 
   e + KD e + Kp e = eest     (10) 

 

with: eest = F - 𝐹. 
To remove the estimation error, the TSMC is combined 

with the MF control [12], and this gives the following 
MFTSMC: 
 

U= uMF+ uTSM 
where uTSM presents the TSM control law. uMF presents the MF 
control law. We get: 
 

   U = ‐ 
    

 + uTSM    (11) 

 
We get: 

 
                       e + KD e + Kp e = eest+ α uTSM   (12) 

 
We considered the following system: 

 

  x1 = e                          𝑥1 = x2  
    

  x2 = e                         𝑥2 = - KD e - Kp e + eest+ α uTSM 

 
To ensure a fast follow-up of the desired trajectory, the 
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surface in sliding mode is defined as [18]: 
 

                                      St = x1 +  x2 r/s                                            (13) 

 
with: β > 0; r and s are positive odd integers satisfying the 
condition r > s. 

We calculate 𝑆t : 

 

                                St = x1 +    x2 (r/s)-1x2                          (14) 
 

 
We get: 

  

           St= x1 +   x2 (r/s)-1 (- KD e - Kp e + eest+ α uTSM)  (15) 

 
We have:  
 

uTSM = ueq + un 
 

with: un = -  sign(St) 

The function of the second term, called correction control, 
is to force the system's trajectories to achieve the sliding 
surface. ueq is obtained when the condition 𝑆t = 0 is satisfied. 
So: 

 

ueq= -  e 2-r/s - 
 
 e + 

 
 e          (16) 

 
We get: 
 

  uTSM= -  e 2- r/s - 
 
 e + 

 
 e - 

 
 sign (St)  (17) 

 

We obtain so: 
 

U = -  e 2- r/s - 
 
 - 

 
 sign (St)    (18) 

 
Using gravity compensation [16], the control law is written 

in the following form: 
 

              U = -  𝑒 2- r/s - 
 
 - 

 
 sign (St) + G(qd)       (19) 

 
The system control block diagram is shown in Fig. 4. 
To prove the stability of the considered system, we use the 

following Lyapunov function: 
 

                           V =    qT M(q) q +   St
2                                    (20) 

 

                      V =  𝑞T M(q) 𝑞+   𝑞T 𝑀(q) 𝑞 + St St                (21) 

 

                      V  =  qT M(q) q+   qT M(q) q + St St              (22) 

 

Replacing St by its expression, we get: 
 

𝑉  = 𝑞T [ -  𝑒 2- r/s - 
 
 - 

 
 sign (St) – C(q, 𝑞) 𝑞] +   𝑞T 

𝑀(q) 𝑞 + St [    x2 (r/s)-1 (eest - Ksign(St))]    (23) 

 

𝑉  = 𝑞T [ -  𝑒 2- r/s - 
 
 - 

 
 sign (St)] +   𝑞T [𝑀(q) – 2 

C(q, 𝑞)] 𝑞 + St [    x2 (r/s)-1 (eest - Ksign(St))]    (24) 

 

 

Fig. 4 The MF TSM with gravity compensation block diagram 
 

As the inertia matrix and the Coriolis matrix are 
asymmetric, that is to say that they satisfy the following 
relation [31], [2]: 
 

𝑞T [𝑀(q) – 2 C (q,𝑞)] 𝑞 = 0 
 

We can eliminate the term  𝑞T [𝑀(q) – 2 C (q,𝑞)] 𝑞. So we 

get: 
 

V  = - qT [  e 2- r/s + 
 
+ 

 
 sign (St)] +   x2(r/s)-1  
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                                 (St eest - St K sign(St))                             (25) 
  

            V  < - |q|T  e 2- r/s 
 
 |q|T -   K x2 (r/s)-1 |S|t       (26) 

 
As: 

- r and s are positive odd integers; 
- 1 <r /s <2, then x2 (r/s)-1 > 0 for tt x2 ≠ 0 and 𝑒 2- r/s > 0; 
- K, β and α are positive. 

So, for x2 ≠ 0, we have 𝑉  <0. 

IV. ROBUSTNESS ANALYSIS 

The robustness of a system is defined as the stability of its 
performance in presence of disturbances. The robustness test 
is important in order to identify the operational factors which 
are not necessarily studied during the development phase of 
the method, but which could have an influence on the results, 
and therefore anticipate the problems that may arise at the 
time of the application of the method. 

In this part, we will study the robustness of the considered 
system in presence of matched disturbances using Monte 
Carlo and H∞ methods. 

A. Monte Carlo 

This method is applied in different fields like finance, 
telecommunication, physical engineering, biology, social 
sciences [33], [32]. It is a powerful and very general 
mathematical tool which has earned it a wide range of 
applications. It is used to study the effects of parameters on 
stability properties. 

The Monte Carlo method uses exhaustive and repeated 
simulations, where a specific value for each independent 
parameter of a model is drawn randomly from a given range of 
values, and then the output is computed. It constitutes a 
powerful and very general mathematical tool which has earned 
a wide range of applications [3]. 

The Monte Carlo method is done according to the following 
steps: 
- Identifying and characterizing the uncertain parameters in 

the model. 
- Sampling and randomly generation tests according to the 

identified probabilistic laws.  
- The propagation of the uncertainty defined by the dataset 

resulting from step 2 will be done. 
- The identification of the output set.  
- A statistical analysis of the set results corresponding to 

the data set. 
- Analyzing the convergence of the distribution of the 

model output. 

B. H∞ Methods 

H∞ methods are developed in order to synthesize 
algorithms to reach stabilization with assured performance and 
robustness. 

H∞ techniques have the advantage over conventional 
control techniques in that they are easily applicable to 
problems involving multivariate systems with cross-coupling 
between channels. 

This technique can be used to minimize the closed loop 
impact of a disturbance: depending on the formulation of the 
problem, the impact will be measured in terms of either 
stabilization or performance. 

In this part, we applied a uniform random distribution to the 
system which will have the following form in presence of 
matched uncertainties [15], [17]: 

 
                q = (f (q, q, t) + g (q) (u(t) + δ1)                 (27)  

 
where δ1 presents matched uncertainties. 

V. SIMULATION AND RESULTS 

Simulation results are provided to prove the efficiency of 
gravity compensation applied to the proposed controller law. 

The desired trajectories are given by: 
- q1d= sin (2*pi*t); 
- q2d= sin (2*pi*t);  

The initial conditions of the real trajectories are: 
- q (0) = [0; 0] ; 
- 𝑞 (0) = [0; 0]; 

Fig. 5 presents the measured and the desired trajectories of 
the released tests as well as the tracking trajectories errors in 
position and velocity. From this figure, we can clearly see the 
good position as well as velocity tracking of the desired 
trajectories in presence of matched uncertainties using the MF 
TSM controller with gravity compensation. 

By calculating the Root-Mean-Square (RMS), the mean 
(Mean) and the standard deviation (Std), a robustness study is 
done in order to prove the controller performance when 
tracking the desired trajectories. 

The RMS is calculated using the following expression: 
 

                      q RMS =  ∑ |q n|2                        (28) 

 
The Std can be expressed by: 

 

         Σq= E q E q 2] = E q E q 2             (29) 
 

and the sample mean is defined as: 
 

                          q =  ∑ qi    (30)  
 

TABLE I 
THE RESULTS SUMMARY OF THE ROBUSTNESS STUDY: THE RMS, THE ERROR 

AVERAGE VALUE AND THE STANDARD DEVIATION CALCULATION FOR EACH 

JOINT Q1 AND Q2 USING THE MF TSM CONTROL WITH GRAVITY 

COMPENSATION WHEN TRACKING THE DESIRED TRAJECTORIES IN POSITIONS 

IN PRESENCE OF MATCHED UNCERTAINTIES 
RMS [rad] 

10-3 
Mean [rad] 

10-3 
Std [rad] 10-

3 

Monte Carlo 
q1 0.88 0.64 0.74 

q2 0.92 0.86 0.82 

H∞ method 
q1 1.05 0.89 1.01 

q2 1.11 0.97 1.07 
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Fig. 5 Simulation results of q1 and q2 joints using the MF TSM with 
gravity compensation Control 

 

Table I presents RMS, the error average value and the 
standard deviation calculation for each joint q1 and q2 using 
the MF TSM control gravity compensation when tracking the 
desired trajectories in positions in presence of matched 
uncertainties. It illustrates the robustness analysis using Monte 
Carlo and H∞ methods. Both of these methods approve the 
efficiency of the proposed controller in terms of performance 
and robustness. 

VI.  CONCLUSION  

In this paper, the control, the stability study and the 
robustness analysis of an exoskeleton-upper limb system, used 
for rehabilitation, in presence of matched uncertainties, were 
presented. First, the modeling of the considered system was 
done. Then, a MF TSM algorithm with gravity compensation 
is developed. A robustness study using Monte Carlo and H∞ 
methods was done to analyze the performance of the 
exoskeleton-upper limb system in presence of matched 
uncertainties. Simulation results are provided to prove the 
performance and the robustness of the gravity compensation 
applied to the MF TSM when tracking the desired trajectories. 
As a future work, experimental results will be done when the 
exoskeleton is worn by the human upper limb. 
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