Search results for: planting design.
4096 Optimization of Hemp Fiber Reinforced Concrete for Mix Design Method
Authors: Zoe Chang, Max Williams, Gautham Das
Abstract:
The purpose of this study is to evaluate the incorporation of hemp fibers (HF) in concrete. Hemp fiber reinforced concrete (HFRC) is becoming more popular as an alternative for regular mix designs. This study was done to evaluate the compressive strength of HFRC regarding mix procedure. HF were obtained from the manufacturer and hand processed to ensure uniformity in width and length. The fibers were added to concrete as both wet and dry mix to investigate and optimize the mix design process. Results indicated that the dry mix had a compressive strength of 1157 psi compared to the wet mix of 985 psi. This dry mix compressive strength was within range of the standard mix compressive strength of 1533 psi. The statistical analysis revealed that the mix design process needs further optimization and uniformity concerning the addition of HF. Regression analysis revealed that the standard mix design had a coefficient of 0.9 as compared to the dry mix of 0.375 indicating a variation in the mixing process. While completing the dry mix, the addition of plain HF caused them to intertwine creating lumps and inconsistency. However, during the wet mixing process, combining water and HF before incorporation allows the fibers to uniformly disperse within the mix hence the regression analysis indicated a better coefficient of 0.55. This study concludes that HRFC is a viable alternative to regular mixes however more research surrounding its characteristics needs to be conducted.
Keywords: hemp fibers, hemp reinforced concrete, wet and dry, freeze thaw testing, compressive strength
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5674095 The Effects on the People's Preference on the Cityscape by the Spatial Characteristics of the Streetscape-Centered on 'Design Seoul Street'-
Authors: Eun-JungKo, Bur-Deul Yoon, Sung-Won Choi, Hong-Kyu Kim
Abstract:
Jacobs, A.B. (1993) stated that "When I think of a city, the first thing that comes to mind is the street. If the street is interesting, the rest of the city is interesting. If the street is mundane, the city is also mundane." In this statement, he expresses the importance of the streetscape and the street environment. The objective of this paper is to analyze the spatial relationships of the streetscape that affect the general public's preference of the cityscape. Furthermore, this research focuses on the important role that streetscape plays in public perception of the city by the pedestrians who experience it daily. The subject of this paper is eight of the "Design Seoul Street."The analysis and survey results show the preference criteria that affect the streetscape and ultimately the cityscape. This research endeavor shows that differences in physical form, shape, size, color, locations, and context are important.Keywords: Cityscape, Design Seoul Street, street, streetscape.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12924094 Design of a Statistics Lecture for Multidisciplinary Postgraduate Students Using a Range of Tools and Techniques
Abstract:
Teaching statistics is a critical and challenging issue especially to students from multidisciplinary and diverse postgraduate backgrounds. Postgraduate research students require statistics not only for the design of experiments; but also for data analysis. Students often perceive statistics as a complex and technical subject; thus, they leave data analysis to the last moment. The lecture needs to be simple and inclusive at the same time to make it comprehendible and address the learning needs of each student. Therefore, the aim of this work was to design a simple and comprehendible statistics lecture to postgraduate research students regarding ‘Research plan, design and data collection’. The lecture adopted the constructive alignment learning theory which facilitated the learning environments for the students. The learning environment utilized a student-centered approach and used interactive learning environment with in-class discussion, handouts and electronic voting system handsets. For evaluation of the lecture, formative assessment was made with in-class discussions and poll questions which were introduced during and after the lecture. The whole approach showed to be effective in creating a learning environment to the students who were able to apply the concepts addressed to their individual research projects.
Keywords: Teaching, statistics, lecture, multidisciplinary, postgraduate, learning theory, learning environment, student-centered approach, data analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11404093 Evaluation of Dynamic Behavior a Machine Tool Spindle System through Modal and Unbalance Response Analysis
Authors: Khairul Jauhari, Achmad Widodo, Ismoyo Haryanto
Abstract:
The spindle system is one of the most important components of machine tool. The dynamic properties of the spindle affect the machining productivity and quality of the work pieces. Thus, it is important and necessary to determine its dynamic characteristics of spindles in the design and development in order to avoid forced resonance. The finite element method (FEM) has been adopted in order to obtain the dynamic behavior of spindle system. For this reason, obtaining the Campbell diagrams and determining the critical speeds are very useful to evaluate the spindle system dynamics. The unbalance response of the system to the center of mass unbalance at the cutting tool is also calculated to investigate the dynamic behavior. In this paper, we used an ANSYS Parametric Design Language (APDL) program which based on finite element method has been implemented to make the full dynamic analysis and evaluation of the results. Results show that the calculated critical speeds are far from the operating speed range of the spindle, thus, the spindle would not experience resonance, and the maximum unbalance response at operating speed is still with acceptable limit. ANSYS Parametric Design Language (APDL) can be used by spindle designer as tools in order to increase the product quality, reducing cost, and time consuming in the design and development stages.Keywords: ANSYS parametric design language (APDL), Campbell diagram, Critical speeds, Unbalance response, The Spindle system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28394092 Multipurpose Agricultural Robot Platform: Conceptual Design of Control System Software for Autonomous Driving and Agricultural Operations Using Programmable Logic Controller
Authors: P. Abhishesh, B. S. Ryuh, Y. S. Oh, H. J. Moon, R. Akanksha
Abstract:
This paper discusses about the conceptual design and development of the control system software using Programmable logic controller (PLC) for autonomous driving and agricultural operations of Multipurpose Agricultural Robot Platform (MARP). Based on given initial conditions by field analysis and desired agricultural operations, the structural design development of MARP is done using modelling and analysis tool. PLC, being robust and easy to use, has been used to design the autonomous control system of robot platform for desired parameters. The robot is capable of performing autonomous driving and three automatic agricultural operations, viz. hilling, mulching, and sowing of seeds in the respective order. The input received from various sensors on the field is later transmitted to the controller via ZigBee network to make the changes in the control program to get desired field output. The research is conducted to provide assistance to farmers by reducing labor hours for agricultural activities by implementing automation. This study will provide an alternative to the existing systems with machineries attached behind tractors and rigorous manual operations on agricultural field at effective cost.
Keywords: Agricultural operations, autonomous driving, MARP, PLC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22024091 Identifying Significant Factors of Brick Laying Process through Design of Experiment and Computer Simulation: A Case Study
Authors: M. H. Zarei, A. Nikakhtar, A. H. Roudsari, N. Madadi, K. Y. Wong
Abstract:
Improving performance measures in the construction processes has been a major concern for managers and decision makers in the industry. They seek for ways to recognize the key factors which have the largest effect on the process. Identifying such factors can guide them to focus on the right parts of the process in order to gain the best possible result. In the present study design of experiment (DOE) has been applied to a computer simulation model of brick laying process to determine significant factors while productivity has been chosen as the response of the experiment. To this end, four controllable factors and their interaction have been experimented and the best factor level has been calculated for each one. The results indicate that three factors, namely, labor of brick, labor of mortar and inter arrival time of mortar along with interaction of labor of brick and labor of mortar are significant.Keywords: Brick laying process, computer simulation, design of experiment, significant factors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21064090 A Novel Switched Reluctance Motor with U-type Segmental Rotor Pairs: Design, Analysis and Simulation Results
Abstract:
This paper describes the design and modeling procedure of a novel 5-phase segment type switched reluctance motor (ST-SRM) under simultaneous two-phase (bipolar) excitation of windings. The rotor cores of ST-SRM are embedded in an aluminum block as well as to improve the performance characteristics. The magnetic circuit of the produced ST-SRM is constructed so that the magnetic flux paths are short and exclusive to each phase, thereby minimizing the commutation switching and eddy current losses in the laminations. The design and simulation principles presented apply primarily to conventional SRM and ST-SRM. It is proved that the novel 5-phase switched reluctance motor under two-phase excitation is superior among the criteria used in comparison. The purposed model is particularly well suited for high torque and weight constrained applications such as automobiles, aerospace and military applications.Keywords: Segmental Rotor Pairs, Two-phase Excitation, Commutation Switching, Aluminum Block.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32714089 Design of Optimal Proportional Integral Derivative Attitude Controller for an Uncoupled Flexible Satellite Using Particle Swarm Optimization
Authors: Martha C. Orazulume, Jibril D. Jiya
Abstract:
Flexible satellites are equipped with various appendages which vibrate under the influence of any excitation and make the attitude of the satellite to be unstable. Therefore, the system must be able to adjust to balance the effect of these appendages in order to point accurately and satisfactorily which is one of the most important problems in satellite design. Proportional Integral Derivative (PID) Controller is simple to design and computationally efficient to implement which is used to stabilize the effect of these flexible appendages. However, manual turning of the PID is time consuming, waste energy and money. Particle Swarm Optimization (PSO) is used to tune the parameters of PID Controller. Simulation results obtained show that PSO tuned PID Controller is able to re-orient the spacecraft attitude as well as dampen the effect of mechanical resonance and yields better performance when compared with manually tuned PID Controller.
Keywords: Attitude control, flexible satellite, particle swarm optimization, PID controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12804088 Controller Design of Discrete Systems by Order Reduction Technique Employing Differential Evolution Optimization Algorithm
Authors: J. S. Yadav, N. P. Patidar, J. Singhai
Abstract:
One of the main objectives of order reduction is to design a controller of lower order which can effectively control the original high order system so that the overall system is of lower order and easy to understand. In this paper, a simple method is presented for controller design of a higher order discrete system. First the original higher order discrete system in reduced to a lower order model. Then a Proportional Integral Derivative (PID) controller is designed for lower order model. An error minimization technique is employed for both order reduction and controller design. For the error minimization purpose, Differential Evolution (DE) optimization algorithm has been employed. DE method is based on the minimization of the Integral Squared Error (ISE) between the desired response and actual response pertaining to a unit step input. Finally the designed PID controller is connected to the original higher order discrete system to get the desired specification. The validity of the proposed method is illustrated through a numerical example.Keywords: Discrete System, Model Order Reduction, PIDController, Integral Squared Error, Differential Evolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19114087 Multimachine Power System Stabilizers Design Using PSO Algorithm
Authors: H. Shayeghi, A. Safari, H. A. Shayanfar
Abstract:
In this paper, multiobjective design of multi-machine Power System Stabilizers (PSSs) using Particle Swarm Optimization (PSO) is presented. The stabilizers are tuned to simultaneously shift the lightly damped and undamped electro-mechanical modes of all machines to a prescribed zone in the s-plane. A multiobjective problem is formulated to optimize a composite set of objective functions comprising the damping factor, and the damping ratio of the lightly damped electromechanical modes. The PSSs parameters tuning problem is converted to an optimization problem which is solved by PSO with the eigenvalue-based multiobjective function. The proposed PSO based PSSs is tested on a multimachine power system under different operating conditions and disturbances through eigenvalue analysis and some performance indices to illustrate its robust performance.
Keywords: PSS Design, Particle Swarm Optimization, Dynamic Stability, Multiobjective Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26544086 A Parameter-Tuning Framework for Metaheuristics Based on Design of Experiments and Artificial Neural Networks
Authors: Felix Dobslaw
Abstract:
In this paper, a framework for the simplification and standardization of metaheuristic related parameter-tuning by applying a four phase methodology, utilizing Design of Experiments and Artificial Neural Networks, is presented. Metaheuristics are multipurpose problem solvers that are utilized on computational optimization problems for which no efficient problem specific algorithm exist. Their successful application to concrete problems requires the finding of a good initial parameter setting, which is a tedious and time consuming task. Recent research reveals the lack of approach when it comes to this so called parameter-tuning process. In the majority of publications, researchers do have a weak motivation for their respective choices, if any. Because initial parameter settings have a significant impact on the solutions quality, this course of action could lead to suboptimal experimental results, and thereby a fraudulent basis for the drawing of conclusions.Keywords: Parameter-Tuning, Metaheuristics, Design of Experiments, Artificial Neural Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17894085 Framework for Government ICT Projects
Authors: Manal Rayes
Abstract:
In its efforts to utilize the information and communication technology to enhance the quality of public service delivery, national and local governments around the world are competing to introduce more ICT applications as tools to automate processes related to law enforcement or policy execution, increase citizen orientation, trust, and satisfaction, and create one-stop-shops for public services. In its implementation, e-Government ICTs need to maintain transparency, participation, and collaboration. Due to this diverse of mixed goals and requirements, e-Government systems need to be designed based on special design considerations in order to eliminate the risks of failure to compliance to government regulations, citizen dissatisfaction, or market repulsion. In this article we suggest a framework with guidelines for designing government information systems that takes into consideration the special requirements of the public sector. Then we introduce two case studies and show how applying those guidelines would result in a more solid system design.
Keywords: e-government, framework, guidelines, system design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16664084 Probe Selection for Pathway-Specific Microarray Probe Design Minimizing Melting Temperature Variance
Authors: Fabian Horn, Reinhard Guthke
Abstract:
In molecular biology, microarray technology is widely and successfully utilized to efficiently measure gene activity. If working with less studied organisms, methods to design custom-made microarray probes are available. One design criterion is to select probes with minimal melting temperature variances thus ensuring similar hybridization properties. If the microarray application focuses on the investigation of metabolic pathways, it is not necessary to cover the whole genome. It is more efficient to cover each metabolic pathway with a limited number of genes. Firstly, an approach is presented which minimizes the overall melting temperature variance of selected probes for all genes of interest. Secondly, the approach is extended to include the additional constraints of covering all pathways with a limited number of genes while minimizing the overall variance. The new optimization problem is solved by a bottom-up programming approach which reduces the complexity to make it computationally feasible. The new method is exemplary applied for the selection of microarray probes in order to cover all fungal secondary metabolite gene clusters for Aspergillus terreus.
Keywords: bottom-up approach, gene clusters, melting temperature, metabolic pathway, microarray probe design, probe selection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15674083 Design of Medical Information Storage System – ECG Signal
Authors: A. Rubiano F, N. Olarte, D. Lara
Abstract:
This paper presents the design, implementation and results related to the storage system of medical information associated to the ECG (Electrocardiography) signal. The system includes the signal acquisition modules, the preprocessing and signal processing, followed by a module of transmission and reception of the signal, along with the storage and web display system of the medical platform. The tests were initially performed with this signal, with the purpose to include more biosignal under the same system in the future.Keywords: Acquisition, ECG Signal, Storage, Web Platform
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22754082 Layout Design Optimization of Spars under Multiple Load Cases of the High-Aspect-Ratio Wing
Authors: Yu Li, Jingwu He, Yuexi Xiong
Abstract:
The spar layout will affect the wing’s stiffness characteristics, and irrational spar arrangement will reduce the overall bending and twisting resistance capacity of the wing. In this paper, the active structural stiffness design theory is used to match the stiffness-center axis position and load-cases under the corresponding multiple flight conditions, in order to achieve better stiffness properties of the wing. The combination of active stiffness method and principle of stiffness distribution is proved to be reasonable supplying an initial reference for wing designing. The optimized layout of spars is eventually obtained, and the high-aspect-ratio wing will have better stiffness characteristics.
Keywords: Active structural stiffness design theory, high-aspect-ratio wing, flight load cases, layout of spars.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11164081 Optimal Design of Two-Channel Recursive Parallelogram Quadrature Mirror Filter Banks
Authors: Ju-Hong Lee, Yi-Lin Shieh
Abstract:
This paper deals with the optimal design of two-channel recursive parallelogram quadrature mirror filter (PQMF) banks. The analysis and synthesis filters of the PQMF bank are composed of two-dimensional (2-D) recursive digital all-pass filters (DAFs) with nonsymmetric half-plane (NSHP) support region. The design problem can be facilitated by using the 2-D doubly complementary half-band (DC-HB) property possessed by the analysis and synthesis filters. For finding the coefficients of the 2-D recursive NSHP DAFs, we appropriately formulate the design problem to result in an optimization problem that can be solved by using a weighted least-squares (WLS) algorithm in the minimax (L∞) optimal sense. The designed 2-D recursive PQMF bank achieves perfect magnitude response and possesses satisfactory phase response without requiring extra phase equalizer. Simulation results are also provided for illustration and comparison.
Keywords: Parallelogram Quadrature Mirror Filter Bank, Doubly Complementary Filter, Nonsymmetric Half-Plane Filter, Weighted Least Squares Algorithm, Digital All-Pass Filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15474080 Optimum Design of Heat Exchanger in Diesel Engine Cold EGR for Pollutants Reduction
Authors: Nasser Ghassembaglou, Armin Rahmatfam, Faramarz Ranjbar
Abstract:
Using cold EGR method with variable venturi and turbocharger has a very significant effect on reduction of NOX and grime simultaneously. EGR cooler is one of the most important parts in the cold EGR circuit. In this paper optimum design of cooler for working in different percentages of EGR and for determining optimum temperature of exhausted gases, growth of efficiency, reduction of weight, dimension, expenditures, sediment and also optimum performance by using gasoil which has significant amounts of brimstone are investigated and optimized.
Keywords: Cold EGR, NOX, Cooler.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39094079 Application of Generalized NAUT B-Spline Curveon Circular Domain to Generate Circle Involute
Authors: Ashok Ganguly, Pranjali Arondekar
Abstract:
In the present paper, we use generalized B-Spline curve in trigonometric form on circular domain, to capture the transcendental nature of circle involute curve and uncertainty characteristic of design. The required involute curve get generated within the given tolerance limit and is useful in gear design.
Keywords: Bézier, Circle Involute, NAUT B-Spline, Spur Gear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17984078 Stochastic Control of Decentralized Singularly Perturbed Systems
Authors: Walid S. Alfuhaid, Saud A. Alghamdi, John M. Watkins, M. Edwin Sawan
Abstract:
Designing a controller for stochastic decentralized interconnected large scale systems usually involves a high degree of complexity and computation ability. Noise, observability, and controllability of all system states, connectivity, and channel bandwidth are other constraints to design procedures for distributed large scale systems. The quasi-steady state model investigated in this paper is a reduced order model of the original system using singular perturbation techniques. This paper results in an optimal control synthesis to design an observer based feedback controller by standard stochastic control theory techniques using Linear Quadratic Gaussian (LQG) approach and Kalman filter design with less complexity and computation requirements. Numerical example is given at the end to demonstrate the efficiency of the proposed method.
Keywords: Decentralized, optimal control, output, singular perturb.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15754077 On the Design of Electronic Control Unitsfor the Safety-Critical Vehicle Applications
Authors: Kyung-Jung Lee, Hyun-Sik Ahn
Abstract:
This paper suggests a design methodology for the hardware and software of the electronic control unit (ECU) of safety-critical vehicle applications such as braking and steering. The architecture of the hardware is a high integrity system such thatit incorporates a high performance 32-bit CPU and a separate peripheral controlprocessor (PCP) together with an external watchdog CPU. Communication between the main CPU and the PCP is executed via a common area of RAM and events on either processor which are invoked by interrupts. Safety-related software is also implemented to provide a reliable, self-testing computing environment for safety critical and high integrity applications. The validity of the design approach is shown by using the hardware-in-the-loop simulation (HILS)for electric power steering(EPS) systemswhich consists of the EPS mechanism, the designed ECU, and monitoring tools.
Keywords: Electronic control unit, electric power steering, functional safety, hardware-in-the-loop simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33764076 Dual-Polarized Multi-Antenna System for Massive MIMO Cellular Communications
Authors: Naser Ojaroudi Parchin, Haleh Jahanbakhsh Basherlou, Raed A. Abd-Alhameed, Peter S. Excell
Abstract:
In this paper, a multiple-input/multiple-output (MIMO) antenna design with polarization and radiation pattern diversity is presented for future smartphones. The configuration of the design consists of four double-fed circular-ring antenna elements located at different edges of the printed circuit board (PCB) with an FR-4 substrate and overall dimension of 75×150 mm2. The antenna elements are fed by 50-Ohm microstrip-lines and provide polarization and radiation pattern diversity function due to the orthogonal placement of their feed lines. A good impedance bandwidth (S11 ≤ -10 dB) of 3.4-3.8 GHz has been obtained for the smartphone antenna array. However, for S11 ≤ -6 dB, this value is 3.25-3.95 GHz. More than 3 dB realized gain and 80% total efficiency are achieved for the single-element radiator. The presented design not only provides the required radiation coverage but also generates the polarization diversity characteristic.
Keywords: Cellular communications, MIMO systems, mobile-phone antenna, polarization diversity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10234075 Crashworthiness Optimization of an Automotive Front Bumper in Composite Material
Authors: S. Boria
Abstract:
In the last years, the crashworthiness of an automotive body structure can be improved, since the beginning of the design stage, thanks to the development of specific optimization tools. It is well known how the finite element codes can help the designer to investigate the crashing performance of structures under dynamic impact. Therefore, by coupling nonlinear mathematical programming procedure and statistical techniques with FE simulations, it is possible to optimize the design with reduced number of analytical evaluations. In engineering applications, many optimization methods which are based on statistical techniques and utilize estimated models, called meta-models, are quickly spreading. A meta-model is an approximation of a detailed simulation model based on a dataset of input, identified by the design of experiments (DOE); the number of simulations needed to build it depends on the number of variables. Among the various types of meta-modeling techniques, Kriging method seems to be excellent in accuracy, robustness and efficiency compared to other ones when applied to crashworthiness optimization. Therefore the application of such meta-model was used in this work, in order to improve the structural optimization of a bumper for a racing car in composite material subjected to frontal impact. The specific energy absorption represents the objective function to maximize and the geometrical parameters subjected to some design constraints are the design variables. LS-DYNA codes were interfaced with LS-OPT tool in order to find the optimized solution, through the use of a domain reduction strategy. With the use of the Kriging meta-model the crashworthiness characteristic of the composite bumper was improved.
Keywords: Composite material, crashworthiness, finite element analysis, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11374074 The Design and Construction of the PV-Wind Autonomous System for Greenhouse Plantations in Central Thailand
Authors: Napat Watjanatepin, Wikorn Wong-SatieanNapat Watjanatepin, Wikorn Wong-Satiean
Abstract:
The objective of this research is to design and construct the PV-Wind hybrid autonomous system for the greenhouse plantation, and analyze the technical performance of the PV-Wind energy system. This design depends on the water consumption in the greenhouse by using 24 of the fogging mist each with the capability of 24 liter/min. The operating time is 4 times per day, each round for 15 min. The fogging system is being driven by water pump with AC motor rating 0.5 hp. The load energy consumed is around 1.125 kWh/d. The designing results of the PV-Wind hybrid energy system is that sufficient energy could be generated by this system. The results of this study can be applied as a technical data reference for other areas in the central part of Thailand.
Keywords: Central part of Thailand, fogging system, greenhouse plantation, PV-Wind hybrid autonomous system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19614073 Modeling and Simulation Methods Using MATLAB/Simulink
Authors: Jamuna Konda, Umamaheswara Reddy Karumuri, Sriramya Muthugi, Varun Pishati, Ravi Shakya,
Abstract:
This paper investigates the challenges involved in mathematical modeling of plant simulation models ensuring the performance of the plant models much closer to the real time physical model. The paper includes the analysis performed and investigation on different methods of modeling, design and development for plant model. Issues which impact the design time, model accuracy as real time model, tool dependence are analyzed. The real time hardware plant would be a combination of multiple physical models. It is more challenging to test the complete system with all possible test scenarios. There are possibilities of failure or damage of the system due to any unwanted test execution on real time.
Keywords: Model Based Design, MATLAB, Simulink, Stateflow, plant model, real time model, real-time workshop, target language compiler.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17034072 Utilizing Taguchi Experimental Design for Optimizing Effective Parameters in Tire Vulcanization
Authors: Ipak Torkpour
Abstract:
In order to convert natural rubber or related polymers to material with varying physical properties such as elastic modulus or durability, a chemical process named sulfur vulcanization is needed. This can be either done by heating sulfur or sulfur-containing compounds. The main goal of this process is to produce untreated natural rubber latex that can be the main source of manufacturing for several rubber producers. Temperature, pressure, and time are considered as three crucial factors in the tire vulcanization process. The present study is an attempt to optimize these crucial parameters, with the aim of achieving maximum tire modulus using Taguchi experimental design. The results revealed that the optimal parameter values are as follows: a temperature of 170 °C, a pressure of 110 bar, and a time duration of 230 seconds. Under these optimized conditions, the obtained tire modulus reached 8.8 kgf.
Keywords: Rubber vulcanization, experimental design, Taguchi, polymers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524071 Introductory Design Optimisation of a Machine Tool using a Virtual Machine Concept
Authors: Johan Wall, Johan Fredin, Anders Jönsson, Göran Broman
Abstract:
Designing modern machine tools is a complex task. A simulation tool to aid the design work, a virtual machine, has therefore been developed in earlier work. The virtual machine considers the interaction between the mechanics of the machine (including structural flexibility) and the control system. This paper exemplifies the usefulness of the virtual machine as a tool for product development. An optimisation study is conducted aiming at improving the existing design of a machine tool regarding weight and manufacturing accuracy at maintained manufacturing speed. The problem can be categorised as constrained multidisciplinary multiobjective multivariable optimisation. Parameters of the control and geometric quantities of the machine are used as design variables. This results in a mix of continuous and discrete variables and an optimisation approach using a genetic algorithm is therefore deployed. The accuracy objective is evaluated according to international standards. The complete systems model shows nondeterministic behaviour. A strategy to handle this based on statistical analysis is suggested. The weight of the main moving parts is reduced by more than 30 per cent and the manufacturing accuracy is improvement by more than 60 per cent compared to the original design, with no reduction in manufacturing speed. It is also shown that interaction effects exist between the mechanics and the control, i.e. this improvement would most likely not been possible with a conventional sequential design approach within the same time, cost and general resource frame. This indicates the potential of the virtual machine concept for contributing to improved efficiency of both complex products and the development process for such products. Companies incorporating such advanced simulation tools in their product development could thus improve its own competitiveness as well as contribute to improved resource efficiency of society at large.Keywords: Machine tools, Mechatronics, Non-deterministic, Optimisation, Product development, Virtual machine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19774070 Optimization of Lipase Production Using Bacillus subtilis by Response Surface Methodology
Authors: A. Shyamala Devi, K. Chitra Devi, R. Rajendiran
Abstract:
A total of 6 isolates of Bacillus subtilis were isolated from oil mill waste collected in Namakkal district, Tamilnadu, India. The isolated bacteria were screened using lipase screening medium containing Tween 80. BS-3 isolate exhibited a greater clear zone than the others, indicating higher lipase activity. Therefore, this isolate was selected for media optimization studies. Ten process variables were screened using Plackett–Burman design and were further optimized by central composite design of response surface methodology for lipase production in submerged fermentation. Maximum lipase production of 16.627 U/min/ml were predicted in medium containing yeast extract (9.3636g), CaCl2 (0.8986g) and incubation periods (1.813 days). A mean value of 16.98 ± 0.2286 U/min/ml of lipase was acquired from real experiments.
Keywords: Bacillus subtilis, extracellular lipase, Plackett–Burman design, response surface methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41534069 Effective Wind-Induced Natural Ventilation in a Residential Apartment Typology
Authors: Tanvi P. Medshinge, Prasad Vaidya, Monisha E. Royan
Abstract:
In India, cooling loads in residential sector is a major contributor to its total energy consumption. Due to the increasing cooling need, the market penetration of air-conditioners is further expected to rise. Natural Ventilation (NV), however, possesses great potential to save significant energy consumption especially for residential buildings in moderate climates. As multifamily residential apartment buildings are designed by repetitive use of prototype designs, deriving individual NV based design prototype solutions for a combination of different wind incidence angles and orientations would provide significant opportunity to address the rise in cooling loads by residential sector. This paper presents the results of NV performance of a selected prototype apartment design with a cluster of four units in Pune, India, and an attempt to improve the NV performance through design modifications. The water table apparatus, a physical modelling tool, is used to study the flow patterns and simulate wind-induced NV performance. Quantification of NV performance is done by post processing images captured from video recordings in terms of percentage of area with good and poor access to ventilation. NV performance of the existing design for eight wind incidence angles showed that of the cluster of four units, the windward units showed good access to ventilation for all rooms, and the leeward units had lower access to ventilation with the bedrooms in the leeward units having the least access. The results showed improved performance in all the units for all wind incidence angles to more than 80% good access to ventilation. Some units showed an additional improvement to more than 90% good access to ventilation. This process of design and performance evaluation improved some individual units from 0% to 100% for good access to ventilation. The results demonstrate the ease of use and the power of the water table apparatus for performance-based design to simulate wind induced NV.
Keywords: Prototype design, water table apparatus, NV, wind incidence angles, simulations, fluid dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11104068 Design of Roller Compacting Concrete Pavement
Authors: O. Zarrin, M. Ramezan Shirazi
Abstract:
The quality of concrete is usually defined by compressive strength, but flexural strength is the most important characteristic of concrete in a pavement which control the mix design of concrete instead of compressive strength. Therefore, the aggregates which are selected for the pavements are affected by higher flexural strength. Roller Compacting Concrete Pavement (RCCP) is not a new construction method. The other characteristic of this method is no bleeding and less shrinkage due to the lower amount of water. For this purpose, a roller is needed for placing and compacting. The surface of RCCP is not smooth; therefore, the most common use of this pavement is in an industrial zone with slower traffic speed which requires durable and tough pavement. For preparing a smoother surface, it can be achieved by asphalt paver. RCCP decrease the finishing cost because there are no bars, formwork, and the lesser labor need for placing the concrete. In this paper, different aspect of RCCP such as mix design, flexural, compressive strength and focus on the different part of RCCP on detail have been investigated.Keywords: Flexural Strength, Compressive Strength, Pavement, Asphalt.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20724067 Using Daily Light Integral Concept to Construct the Ecological Plant Design Strategy of Urban Landscape
Authors: Chuang-Hung Lin, Cheng-Yuan Hsu, Jia-Yan Lin
Abstract:
It is an indispensible strategy to adopt greenery approach on architectural bases so as to improve ecological habitats, decrease heat-island effect, purify air quality, and relieve surface runoff as well as noise pollution, all of which are done in an attempt to achieve sustainable environment. How we can do with plant design to attain the best visual quality and ideal carbon dioxide fixation depends on whether or not we can appropriately make use of greenery according to the nature of architectural bases. To achieve the goal, it is a need that architects and landscape architects should be provided with sufficient local references. Current greenery studies focus mainly on the heat-island effect of urban with large scale. Most of the architects still rely on people with years of expertise regarding the adoption and disposition of plantation in connection with microclimate scale. Therefore, environmental design, which integrates science and aesthetics, requires fundamental research on landscape environment technology divided from building environment technology. By doing so, we can create mutual benefits between green building and the environment. This issue is extremely important for the greening design of the bases of green buildings in cities and various open spaces. The purpose of this study is to establish plant selection and allocation strategies under different building sunshade levels. Initially, with the shading of sunshine on the greening bases as the starting point, the effects of the shades produced by different building types on the greening strategies were analyzed. Then, by measuring the PAR (photosynthetic active radiation), the relative DLI (daily light integral) was calculated, while the DLI Map was established in order to evaluate the effects of the building shading on the established environmental greening, thereby serving as a reference for plant selection and allocation. The discussion results were to be applied in the evaluation of environment greening of greening buildings and establish the “right plant, right place” design strategy of multi-level ecological greening for application in urban design and landscape design development, as well as the greening criteria to feedback to the eco-city greening buildings.Keywords: Daily light integral, plant design, urban open space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962