Search results for: Metaheuristics
19 How to Build and Evaluate a Solution Method: An Illustration for the Vehicle Routing Problem
Authors: Nicolas Zufferey
Abstract:
The vehicle routing problem (VRP) is a famous combinatorial optimization problem. Because of its well-known difficulty, metaheuristics are the most appropriate methods to tackle large and realistic instances. The goal of this paper is to highlight the key ideas for designing VRP metaheuristics according to the following criteria: efficiency, speed, robustness, and ability to take advantage of the problem structure. Such elements can obviously be used to build solution methods for other combinatorial optimization problems, at least in the deterministic field.
Keywords: Vehicle routing problem, Metaheuristics, Combinatorial optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 207618 A Parameter-Tuning Framework for Metaheuristics Based on Design of Experiments and Artificial Neural Networks
Authors: Felix Dobslaw
Abstract:
In this paper, a framework for the simplification and standardization of metaheuristic related parameter-tuning by applying a four phase methodology, utilizing Design of Experiments and Artificial Neural Networks, is presented. Metaheuristics are multipurpose problem solvers that are utilized on computational optimization problems for which no efficient problem specific algorithm exist. Their successful application to concrete problems requires the finding of a good initial parameter setting, which is a tedious and time consuming task. Recent research reveals the lack of approach when it comes to this so called parameter-tuning process. In the majority of publications, researchers do have a weak motivation for their respective choices, if any. Because initial parameter settings have a significant impact on the solutions quality, this course of action could lead to suboptimal experimental results, and thereby a fraudulent basis for the drawing of conclusions.Keywords: Parameter-Tuning, Metaheuristics, Design of Experiments, Artificial Neural Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 178217 Metaheuristics Methods (GA and ACO) for Minimizing the Length of Freeman Chain Code from Handwritten Isolated Characters
Authors: Dewi Nasien, Habibollah Haron, Siti SophiayatiYuhaniz
Abstract:
This paper presents a comparison of metaheuristic algorithms, Genetic Algorithm (GA) and Ant Colony Optimization (ACO), in producing freeman chain code (FCC). The main problem in representing characters using FCC is the length of the FCC depends on the starting points. Isolated characters, especially the upper-case characters, usually have branches that make the traversing process difficult. The study in FCC construction using one continuous route has not been widely explored. This is our motivation to use the population-based metaheuristics. The experimental result shows that the route length using GA is better than ACO, however, ACO is better in computation time than GA.Keywords: Handwriting Recognition, Feature Extraction, Freeman Chain Code, Genetic Algorithm and Ant ColonyOptimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 205916 SMART: Solution Methods with Ants Running by Types
Authors: Nicolas Zufferey
Abstract:
Ant algorithms are well-known metaheuristics which have been widely used since two decades. In most of the literature, an ant is a constructive heuristic able to build a solution from scratch. However, other types of ant algorithms have recently emerged: the discussion is thus not limited by the common framework of the constructive ant algorithms. Generally, at each generation of an ant algorithm, each ant builds a solution step by step by adding an element to it. Each choice is based on the greedy force (also called the visibility, the short term profit or the heuristic information) and the trail system (central memory which collects historical information of the search process). Usually, all the ants of the population have the same characteristics and behaviors. In contrast in this paper, a new type of ant metaheuristic is proposed, namely SMART (for Solution Methods with Ants Running by Types). It relies on the use of different population of ants, where each population has its own personality.Keywords: Optimization, Metaheuristics, Ant Algorithms, Evolutionary Procedures, Population-Based Methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 172015 Symbiotic Organism Search (SOS) for Solving the Capacitated Vehicle Routing Problem
Authors: Ruskartina Eki, Vincent F. Yu, Santosa Budi, A. A. N. Perwira Redi
Abstract:
This paper introduces symbiotic organism search (SOS) for solving capacitated vehicle routing problem (CVRP). SOS is a new approach in metaheuristics fields and never been used to solve discrete problems. A sophisticated decoding method to deal with a discrete problem setting in CVRP is applied using the basic symbiotic organism search (SOS) framework. The performance of the algorithm was evaluated on a set of benchmark instances and compared results with best known solution. The computational results show that the proposed algorithm can produce good solution as a preliminary testing. These results indicated that the proposed SOS can be applied as an alternative to solve the capacitated vehicle routing problem.Keywords: Symbiotic organism search, vehicle routing problem, metaheuristics, Solution Representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 304214 A Comparative Study of Rigid and Modified Simplex Methods for Optimal Parameter Settings of ACO for Noisy Non-Linear Surfaces
Authors: Seksan Chunothaisawat, Pongchanun Luangpaiboon
Abstract:
There are two common types of operational research techniques, optimisation and metaheuristic methods. The latter may be defined as a sequential process that intelligently performs the exploration and exploitation adopted by natural intelligence and strong inspiration to form several iterative searches. An aim is to effectively determine near optimal solutions in a solution space. In this work, a type of metaheuristics called Ant Colonies Optimisation, ACO, inspired by a foraging behaviour of ants was adapted to find optimal solutions of eight non-linear continuous mathematical models. Under a consideration of a solution space in a specified region on each model, sub-solutions may contain global or multiple local optimum. Moreover, the algorithm has several common parameters; number of ants, moves, and iterations, which act as the algorithm-s driver. A series of computational experiments for initialising parameters were conducted through methods of Rigid Simplex, RS, and Modified Simplex, MSM. Experimental results were analysed in terms of the best so far solutions, mean and standard deviation. Finally, they stated a recommendation of proper level settings of ACO parameters for all eight functions. These parameter settings can be applied as a guideline for future uses of ACO. This is to promote an ease of use of ACO in real industrial processes. It was found that the results obtained from MSM were pretty similar to those gained from RS. However, if these results with noise standard deviations of 1 and 3 are compared, MSM will reach optimal solutions more efficiently than RS, in terms of speed of convergence.
Keywords: Ant colony optimisation, metaheuristics, modified simplex, non-linear, rigid simplex.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162413 Integrated Approaches to Enhance Aggregate Production Planning with Inventory Uncertainty Based On Improved Harmony Search Algorithm
Authors: P. Luangpaiboon, P. Aungkulanon
Abstract:
This work presents a multiple objective linear programming (MOLP) model based on the desirability function approach for solving the aggregate production planning (APP) decision problem upon Masud and Hwang-s model. The proposed model minimises total production costs, carrying or backordering costs and rates of change in labor levels. An industrial case demonstrates the feasibility of applying the proposed model to the APP problems with three scenarios of inventory levels. The proposed model yields an efficient compromise solution and the overall levels of DM satisfaction with the multiple combined response levels. There has been a trend to solve complex planning problems using various metaheuristics. Therefore, in this paper, the multi-objective APP problem is solved by hybrid metaheuristics of the hunting search (HuSIHSA) and firefly (FAIHSA) mechanisms on the improved harmony search algorithm. Results obtained from the solution of are then compared. It is observed that the FAIHSA can be used as a successful alternative solution mechanism for solving APP problems over three scenarios. Furthermore, the FAIHSA provides a systematic framework for facilitating the decision-making process, enabling a decision maker interactively to modify the desirability function approach and related model parameters until a good optimal solution is obtained with proper selection of control parameters when compared.
Keywords: Aggregate Production Planning, Desirability Function Approach, Improved Harmony Search Algorithm, Hunting Search Algorithm and Firefly Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 192712 A New Heuristic for Improving the Performance of Genetic Algorithm
Authors: Warattapop Chainate, Peeraya Thapatsuwan, Pupong Pongcharoen
Abstract:
The hybridisation of genetic algorithm with heuristics has been shown to be one of an effective way to improve its performance. In this work, genetic algorithm hybridised with four heuristics including a new heuristic called neighbourhood improvement were investigated through the classical travelling salesman problem. The experimental results showed that the proposed heuristic outperformed other heuristics both in terms of quality of the results obtained and the computational time.Keywords: Genetic Algorithm, Hybridisation, Metaheuristics, Travelling Salesman Problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 185011 Reservoir Operating by Ant Colony Optimization for Continuous Domains (ACOR) Case Study: Dez Reservoir
Authors: A. B. Dariane, A. M. Moradi
Abstract:
A direct search approach to determine optimal reservoir operating is proposed with ant colony optimization for continuous domains (ACOR). The model is applied to a system of single reservoir to determine the optimum releases during 42 years of monthly steps. A disadvantage of ant colony based methods and the ACOR in particular, refers to great amount of computer run time consumption. In this study a highly effective procedure for decreasing run time has been developed. The results are compared to those of a GA based model.
Keywords: Ant colony optimization, continuous, metaheuristics, reservoir, decreasing run time, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 203010 Stealth Laser Dicing Process Improvement via Shuffled Frog Leaping Algorithm
Authors: Pongchanun Luangpaiboon, Wanwisa Sarasang
Abstract:
In this paper, performances of shuffled frog leaping algorithm was investigated on the stealth laser dicing process. Effect of problem on the performance of the algorithm was based on the tolerance of meandering data. From the customer specification it could be less than five microns with the target of zero microns. Currently, the meandering levels are unsatisfactory when compared to the customer specification. Firstly, the two-level factorial design was applied to preliminarily study the statistically significant effects of five process variables. In this study one influential process variable is integer. From the experimental results, the new operating condition from the algorithm was superior when compared to the current manufacturing condition.
Keywords: Stealth Laser Dicing Process, Meandering, Metaheuristics, Shuffled Frog Leaping Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26369 An Optimal Steganalysis Based Approach for Embedding Information in Image Cover Media with Security
Authors: Ahlem Fatnassi, Hamza Gharsellaoui, Sadok Bouamama
Abstract:
This paper deals with the study of interest in the fields of Steganography and Steganalysis. Steganography involves hiding information in a cover media to obtain the stego media in such a way that the cover media is perceived not to have any embedded message for its unintended recipients. Steganalysis is the mechanism of detecting the presence of hidden information in the stego media and it can lead to the prevention of disastrous security incidents. In this paper, we provide a critical review of the steganalysis algorithms available to analyze the characteristics of an image stego media against the corresponding cover media and understand the process of embedding the information and its detection. We anticipate that this paper can also give a clear picture of the current trends in steganography so that we can develop and improvise appropriate steganalysis algorithms.Keywords: Optimization, heuristics and metaheuristics algorithms, embedded systems, low-power consumption, Steganalysis Heuristic approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11848 Reformulations of Big Bang-Big Crunch Algorithm for Discrete Structural Design Optimization
Authors: O. Hasançebi, S. Kazemzadeh Azad
Abstract:
In the present study the efficiency of Big Bang-Big Crunch (BB-BC) algorithm is investigated in discrete structural design optimization. It is shown that a standard version of the BB-BC algorithm is sometimes unable to produce reasonable solutions to problems from discrete structural design optimization. Two reformulations of the algorithm, which are referred to as modified BB-BC (MBB-BC) and exponential BB-BC (EBB-BC), are introduced to enhance the capability of the standard algorithm in locating good solutions for steel truss and frame type structures, respectively. The performances of the proposed algorithms are experimented and compared to its standard version as well as some other algorithms over several practical design examples. In these examples, steel structures are sized for minimum weight subject to stress, stability and displacement limitations according to the provisions of AISC-ASD.Keywords: Structural optimization, discrete optimization, metaheuristics, big bang-big crunch (BB-BC) algorithm, design optimization of steel trusses and frames.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23907 Particle Swarm Optimization with Reduction for Global Optimization Problems
Authors: Michiharu Maeda, Shinya Tsuda
Abstract:
This paper presents an algorithm of particle swarm optimization with reduction for global optimization problems. Particle swarm optimization is an algorithm which refers to the collective motion such as birds or fishes, and a multi-point search algorithm which finds a best solution using multiple particles. Particle swarm optimization is so flexible that it can adapt to a number of optimization problems. When an objective function has a lot of local minimums complicatedly, the particle may fall into a local minimum. For avoiding the local minimum, a number of particles are initially prepared and their positions are updated by particle swarm optimization. Particles sequentially reduce to reach a predetermined number of them grounded in evaluation value and particle swarm optimization continues until the termination condition is met. In order to show the effectiveness of the proposed algorithm, we examine the minimum by using test functions compared to existing algorithms. Furthermore the influence of best value on the initial number of particles for our algorithm is discussed.Keywords: Particle swarm optimization, Global optimization, Metaheuristics, Reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16236 A Genetic and Simulated Annealing Based Algorithms for Solving the Flow Assignment Problem in Computer Networks
Authors: Tarek M. Mahmoud
Abstract:
Selecting the routes and the assignment of link flow in a computer communication networks are extremely complex combinatorial optimization problems. Metaheuristics, such as genetic or simulated annealing algorithms, are widely applicable heuristic optimization strategies that have shown encouraging results for a large number of difficult combinatorial optimization problems. This paper considers the route selection and hence the flow assignment problem. A genetic algorithm and simulated annealing algorithm are used to solve this problem. A new hybrid algorithm combining the genetic with the simulated annealing algorithm is introduced. A modification of the genetic algorithm is also introduced. Computational experiments with sample networks are reported. The results show that the proposed modified genetic algorithm is efficient in finding good solutions of the flow assignment problem compared with other techniques.Keywords: Genetic Algorithms, Flow Assignment, Routing, Computer network, Simulated Annealing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22565 Elitist Self-Adaptive Step-Size Search in Optimum Sizing of Steel Structures
Authors: Oğuzhan Hasançebi, Saeid Kazemzadeh Azad
Abstract:
Keywords: Structural design optimization, optimal sizing, metaheuristics, self-adaptive step-size search, steel trusses, steel frames.}
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14244 Metaheuristic Algorithms for Decoding Binary Linear Codes
Authors: Hassan Berbia, Faissal Elbouanani, Rahal Romadi, Mostafa Belkasmi
Abstract:
This paper introduces two decoders for binary linear codes based on Metaheuristics. The first one uses a genetic algorithm and the second is based on a combination genetic algorithm with a feed forward neural network. The decoder based on the genetic algorithms (DAG) applied to BCH and convolutional codes give good performances compared to Chase-2 and Viterbi algorithm respectively and reach the performances of the OSD-3 for some Residue Quadratic (RQ) codes. This algorithm is less complex for linear block codes of large block length; furthermore their performances can be improved by tuning the decoder-s parameters, in particular the number of individuals by population and the number of generations. In the second algorithm, the search space, in contrast to DAG which was limited to the code word space, now covers the whole binary vector space. It tries to elude a great number of coding operations by using a neural network. This reduces greatly the complexity of the decoder while maintaining comparable performances.Keywords: Block code, decoding, methaheuristic, genetic algorithm, neural network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20833 Enhanced Imperialist Competitive Algorithm for the Cell Formation Problem Using Sequence Data
Authors: S. H. Borghei, E. Teymourian, M. Mobin, G. M. Komaki, S. Sheikh
Abstract:
Imperialist Competitive Algorithm (ICA) is a recent meta-heuristic method that is inspired by the social evolutions for solving NP-Hard problems. The ICA is a population-based algorithm which has achieved a great performance in comparison to other metaheuristics. This study is about developing enhanced ICA approach to solve the Cell Formation Problem (CFP) using sequence data. In addition to the conventional ICA, an enhanced version of ICA, namely EICA, applies local search techniques to add more intensification aptitude and embed the features of exploration and intensification more successfully. Suitable performance measures are used to compare the proposed algorithms with some other powerful solution approaches in the literature. In the same way, for checking the proficiency of algorithms, forty test problems are presented. Five benchmark problems have sequence data, and other ones are based on 0-1 matrices modified to sequence based problems. Computational results elucidate the efficiency of the EICA in solving CFP problems.Keywords: Cell formation problem, Group technology, Imperialist competitive algorithm, Sequence data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15892 Predicting the Minimum Free Energy RNA Secondary Structures using Harmony Search Algorithm
Authors: Abdulqader M. Mohsen, Ahamad Tajudin Khader, Dhanesh Ramachandram, Abdullatif Ghallab
Abstract:
The physical methods for RNA secondary structure prediction are time consuming and expensive, thus methods for computational prediction will be a proper alternative. Various algorithms have been used for RNA structure prediction including dynamic programming and metaheuristic algorithms. Musician's behaviorinspired harmony search is a recently developed metaheuristic algorithm which has been successful in a wide variety of complex optimization problems. This paper proposes a harmony search algorithm (HSRNAFold) to find RNA secondary structure with minimum free energy and similar to the native structure. HSRNAFold is compared with dynamic programming benchmark mfold and metaheuristic algorithms (RnaPredict, SetPSO and HelixPSO). The results showed that HSRNAFold is comparable to mfold and better than metaheuristics in finding the minimum free energies and the number of correct base pairs.
Keywords: Metaheuristic algorithms, dynamic programming algorithms, harmony search optimization, RNA folding, Minimum free energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23381 A Hybridization of Constructive Beam Search with Local Search for Far From Most Strings Problem
Authors: Sayyed R Mousavi
Abstract:
The Far From Most Strings Problem (FFMSP) is to obtain a string which is far from as many as possible of a given set of strings. All the input and the output strings are of the same length, and two strings are said to be far if their hamming distance is greater than or equal to a given positive integer. FFMSP belongs to the class of sequences consensus problems which have applications in molecular biology. The problem is NP-hard; it does not admit a constant-ratio approximation either, unless P = NP. Therefore, in addition to exact and approximate algorithms, (meta)heuristic algorithms have been proposed for the problem in recent years. On the other hand, in the recent years, hybrid algorithms have been proposed and successfully used for many hard problems in a variety of domains. In this paper, a new metaheuristic algorithm, called Constructive Beam and Local Search (CBLS), is investigated for the problem, which is a hybridization of constructive beam search and local search algorithms. More specifically, the proposed algorithm consists of two phases, the first phase is to obtain several candidate solutions via the constructive beam search and the second phase is to apply local search to the candidate solutions obtained by the first phase. The best solution found is returned as the final solution to the problem. The proposed algorithm is also similar to memetic algorithms in the sense that both use local search to further improve individual solutions. The CBLS algorithm is compared with the most recent published algorithm for the problem, GRASP, with significantly positive results; the improvement is by order of magnitudes in most cases.
Keywords: Bioinformatics, Far From Most Strings Problem, Hybrid metaheuristics, Matheuristics, Sequences consensus problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746