Search results for: Harmonic equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1471

Search results for: Harmonic equations

721 Complex Fuzzy Evolution Equation with Nonlocal Conditions

Authors: Abdelati El Allaoui, Said Melliani, Lalla Saadia Chadli

Abstract:

The objective of this paper is to study the existence and uniqueness of Mild solutions for a complex fuzzy evolution equation with nonlocal conditions that accommodates the notion of fuzzy sets defined by complex-valued membership functions. We first propose definition of complex fuzzy strongly continuous semigroups. We then give existence and uniqueness result relevant to the complex fuzzy evolution equation.

Keywords: Complex fuzzy evolution equations, nonlocal conditions, mild solution, complex fuzzy semigroups.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1038
720 An Asymptotic Solution for the Free Boundary Parabolic Equations

Authors: Hsuan-Ku Liu, Ming Long Liu

Abstract:

In this paper, we investigate the solution of a two dimensional parabolic free boundary problem. The free boundary of this problem is modelled as a nonlinear integral equation (IE). For this integral equation, we propose an asymptotic solution as time is near to maturity and develop an integral iterative method. The computational results reveal that our asymptotic solution is very close to the numerical solution as time is near to maturity.

Keywords: Integral equation, asymptotic solution, free boundary problem, American exchange option.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463
719 Design of Experiment and Computational Fluid Dynamics Used to Optimize Hydrodynamic Characteristics of the Marine Propeller

Authors: Rohit Suryawanshi

Abstract:

In this study, the commercial Computational Fluid Dynamics (CFD), ANSYS-Fluent, has been used to optimize the marine propeller with the design of experiment (DOE) method. At the initial stage, different propeller parameters ware selected for the three different levels. The four characteristics factors are: no. of the blade, camber value, pitch delta & chord at the hub. Then, CAD modelling is performed by considering the selected factor and level. In this investigation, a total of 9 test models are simulated with the Reynolds-Averaged Navier-Stokes (RANS) equations. The standard, realizable

Keywords: Marine propeller, Computational Fluid Dynamics, optimization, DOE, propeller thrust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 872
718 Integration of Virtual Learning of Induction Machines for Undergraduates

Authors: Rajesh Kumar, Puneet Aggarwal

Abstract:

In context of understanding problems faced by undergraduate students while carrying out laboratory experiments dealing with high voltages, it was found that most of the students are hesitant to work directly on machine. The reason is that error in the circuitry might lead to deterioration of machine and laboratory instruments. So, it has become inevitable to include modern pedagogic techniques for undergraduate students, which would help them to first carry out experiment in virtual system and then to work on live circuit. Further advantages include that students can try out their intuitive ideas and perform in virtual environment, hence leading to new research and innovations. In this paper, virtual environment used is of MATLAB/Simulink for three-phase induction machines. The performance analysis of three-phase induction machine is carried out using virtual environment which includes Direct Current (DC) Test, No-Load Test, and Block Rotor Test along with speed torque characteristics for different rotor resistances and input voltage, respectively. Further, this paper carries out computer aided teaching of basic Voltage Source Inverter (VSI) drive circuitry. Hence, this paper gave undergraduates a clearer view of experiments performed on virtual machine (No-Load test, Block Rotor test and DC test, respectively). After successful implementation of basic tests, VSI circuitry is implemented, and related harmonic distortion (THD) and Fast Fourier Transform (FFT) of current and voltage waveform are studied.

Keywords: Block rotor test, DC test, no-load test, virtual environment, VSI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 877
717 Modeling Approaches for Large-Scale Reconfigurable Engineering Systems

Authors: Kwa-Sur Tam

Abstract:

This paper reviews various approaches that have been used for the modeling and simulation of large-scale engineering systems and determines their appropriateness in the development of a RICS modeling and simulation tool. Bond graphs, linear graphs, block diagrams, differential and difference equations, modeling languages, cellular automata and agents are reviewed. This tool should be based on linear graph representation and supports symbolic programming, functional programming, the development of noncausal models and the incorporation of decentralized approaches.

Keywords: Interdisciplinary, dynamic, functional programming, object-oriented.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1483
716 Sliding Mode Control of a Bus Suspension System

Authors: Mujde Turkkan, Nurkan Yagiz

Abstract:

The vibrations, caused by the irregularities of the road surface, are to be suppressed via suspension systems. In this paper, sliding mode control for a half bus model with air suspension system is presented. The bus is modelled as five degrees of freedom (DoF) system. The mathematical model of the half bus is developed using Lagrange Equations. For time domain analysis, the bus model is assumed to travel at certain speed over the bump road. The numerical results of the analysis indicate that the sliding mode controllers can be effectively used to suppress the vibrations and to improve the ride comfort of the busses.

Keywords: Sliding mode control, bus model, air suspension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757
715 Method of Moments Applied to a Cuboidal Cavity Resonator: Effect of Gravitational Field Produced by a Black Hole

Authors: Arti Vaish, Harish Parthasarathy

Abstract:

This paper deals with the formulation of Maxwell-s equations in a cavity resonator in the presence of the gravitational field produced by a blackhole. The metric of space-time due to the blackhole is the Schwarzchild metric. Conventionally, this is expressed in spherical polar coordinates. In order to adapt this metric to our problem, we have considered this metric in a small region close to the blackhole and expressed this metric in a cartesian system locally.

Keywords: Method of moments, General theory of relativity, Electromagnetism, Metric tensor, schwarzchild metric, Wave Equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666
714 Analysis for MHD Flow of a Maxwell Fluid past a Vertical Stretching Sheet in the Presence of Thermophoresis and Chemical Reaction

Authors: Noor Fadiya Mohd Noor

Abstract:

The hydromagnetic flow of a Maxwell fluid past a vertical stretching sheet with thermophoresis is considered. The impact of chemical reaction species to the flow is analyzed for the first time by using the homotopy analysis method (HAM). The h-curves for the flow boundary layer equations are presented graphically. Several values of wall skin friction, heat and mass transfer are obtained and discussed.

Keywords: homotopy, MHD, thermophoresis, chemical reaction, Maxwell

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2061
713 Error Propagation in the RK5GL3 Method

Authors: J.S.C. Prentice

Abstract:

The RK5GL3 method is a numerical method for solving initial value problems in ordinary differential equations, and is based on a combination of a fifth-order Runge-Kutta method and 3-point Gauss-Legendre quadrature. In this paper we describe the propagation of local errors in this method, and show that the global order of RK5GL3 is expected to be six, one better than the underlying Runge- Kutta method.

Keywords: RK5GL3, RKrGLm, Runge-Kutta, Gauss-Legendre, initial value problem, order, local error, global error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1204
712 Evaluation of drought Tolerance Indices in Dryland Bread wheat Genotypes under Post-Anthesis drought Stress

Authors: Mokhtar Ghobadi , Mohammad-Eghbal Ghobadi, Danial Kahrizi, Alireza Zebarjadi, Mahdi Geravandi

Abstract:

Post-anthesis drought stress is the most important problem affecting wheat production in dryland fields, specially in Mediterranean regions. The main objective of this research was to evaluate drought tolerance indices in dryland wheat genotypes under post-anthesis drought stress. The research was including two different experiments. In each experiment, twenty dryland bread wheat genotypes were sown in a randomized complete blocks design (RCBD) with three replications. One of experiments belonged to rain-fed conditions (post-anthesis drought stress) and other experiment was under non-stress conditions (with supplemental irrigation). Different drought tolerance indices include Stress Tolerance (Tol), Mean Productivity (MP), Geometric Mean Productivity (GMP), Stress Susceptibility Index (SSI), Stress Tolerance Index (STI), Harmonic Mean (HAM), Yield Index (YI) and Yield Stability Index (YSI) were evaluate based on grain yield under rain-fed (Ys) and supplemental irrigation (Yp) environments. G10 and G12 were the most tolerant genotypes based on TOL and SSI. But, based on MP, GMP, STI, HAM and YI indices, G1 and G2 were selected. STI, GMP and MP indices had high correlation with grain yield under rain-fed and supplementary irrigation conditions and were recognized as appropriate indices to identify genotypes with high grain yield and low sensitivity to drought stress environments.

Keywords: Dryland wheat, Supplemental irrigation, Tolerance indices

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2042
711 New Product-Type Estimators for the Population Mean Using Quartiles of the Auxiliary Variable

Authors: Amer Ibrahim Falah Al-Omari

Abstract:

In this paper, we suggest new product-type estimators for the population mean of the variable of interest exploiting the first or the third quartile of the auxiliary variable. We obtain mean square error equations and the bias for the estimators. We study the properties of these estimators using simple random sampling (SRS) and ranked set sampling (RSS) methods. It is found that, SRS and RSS produce approximately unbiased estimators of the population mean. However, the RSS estimators are more efficient than those obtained using SRS based on the same number of measured units for all values of the correlation coefficient.

Keywords: Product estimator, auxiliary variable, simple random sampling, extreme ranked set sampling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
710 The Adsorption of SDS on Ferro-Precipitates

Authors: R.Marsalek

Abstract:

This paper present a new way to find the aerodynamic characteristic equation of missile for the numerical trajectories prediction more accurate. The goal is to obtain the polynomial equation based on two missile characteristic parameters, angle of attack (α ) and flight speed (ν ). First, the understudied missile is modeled and used for flow computational model to compute aerodynamic force and moment. Assume that performance range of understudied missile where range -10< α <10 and 0< ν <200. After completely obtained results of all cases, the data are fit by polynomial interpolation to create equation of each case and then combine all equations to form aerodynamic characteristic equation, which will be used for trajectories simulation.

Keywords: ferro-precipitate, adsorption, SDS, zeta potential

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898
709 3D Modelling and Numerical Analysis of Human Inner Ear by Means of Finite Elements Method

Authors: C. Castro-Egler, A. Durán-Escalante, A. García-González

Abstract:

This paper presents a method to generate a finite element model of the human auditory inner ear system. The geometric model has been realized using 2D images from a virtual model of temporal bones. A point cloud has been gotten manually from those images to construct a whole mesh with hexahedral elements. The main difference with the predecessor models is the spiral shape of the cochlea with its three scales completely defined: scala tympani, scala media and scala vestibuli; which are separate by basilar membrane and Reissner membrane. To validate this model, numerical simulations have been realised with two models: an isolated inner ear and a whole model of human auditory system. Ideal conditions of displacement are applied over the oval window in the isolated Inner Ear model. The whole model is made up of the outer auditory channel, the tympani, the ossicular chain, and the inner ear. The boundary condition for the whole model is 1Pa over the auditory channel entrance. The numerical simulations by FEM have been done using a harmonic analysis with a frequency range between 100-10.000 Hz with an interval of 100Hz. The following results have been carried out: basilar membrane displacement; the scala media pressure according to the cochlea length and the transfer function of the middle ear normalized with the pressure in the tympanic membrane. The basilar membrane displacements and the pressure in the scala media make it possible to validate the response in frequency of the basilar membrane.

Keywords: Finite elements method, human auditory system model, numerical analysis, 3D modelling cochlea.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1522
708 Nonlinear Solitary Structures of Electron Plasma Waves in a Finite Temperature Quantum Plasma

Authors: Swarniv Chandra, Basudev Ghosh

Abstract:

Nonlinear solitary structures of electron plasma waves have been investigated by using nonlinear quantum fluid equations for electrons with an arbitrary temperature. It is shown that the electron degeneracy parameter has significant effects on the linear and nonlinear properties of electron plasma waves. Depending on its value both compressive and rarefactive solitons can be excited in the model plasma under consideration.

Keywords: Electron Plasma Waves, Finite Temperature Model, Modulational Instability, Quantum Plasma, Solitary structure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712
707 An H1-Galerkin Mixed Method for the Coupled Burgers Equation

Authors: Xianbiao Jia, Hong Li, Yang Liu, Zhichao Fang

Abstract:

In this paper, an H1-Galerkin mixed finite element method is discussed for the coupled Burgers equations. The optimal error estimates of the semi-discrete and fully discrete schemes of the coupled Burgers equation are derived.

Keywords: The coupled Burgers equation, H1-Galerkin mixed finite element method, Backward Euler's method, Optimal error estimates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541
706 The Global Stability Using Lyapunov Function

Authors: R. Kongnuy, E. Naowanich, T. Kruehong

Abstract:

An important technique in stability theory for differential equations is known as the direct method of Lyapunov. In this work we deal global stability properties of Leptospirosis transmission model by age group in Thailand. First we consider the data from Division of Epidemiology Ministry of Public Health, Thailand between 1997-2011. Then we construct the mathematical model for leptospirosis transmission by eight age groups. The Lyapunov functions are used for our model which takes the forms of an Ordinary Differential Equation system. The globally asymptotically for equilibrium states are analyzed.

Keywords: Age Group, Leptospirosis, Lyapunov Function, Ordinary Differential Equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135
705 Existence of Iterative Cauchy Fractional Differential Equation

Authors: Rabha W. Ibrahim

Abstract:

Our main aim in this paper is to use the technique of non expansive operators to more general iterative and non iterative fractional differential equations (Cauchy type ). The non integer case is taken in sense of Riemann-Liouville fractional operators. Applications are illustrated.

Keywords: Fractional calculus, fractional differential equation, Cauchy equation, Riemann-Liouville fractional operators, Volterra integral equation, non-expansive mapping, iterative differential equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2675
704 Forward Kinematics Analysis of a 3-PRS Parallel Manipulator

Authors: Ghasem Abbasnejad, Soheil Zarkandi, Misagh Imani

Abstract:

In this article the homotopy continuation method (HCM) to solve the forward kinematic problem of the 3-PRS parallel manipulator is used. Since there are many difficulties in solving the system of nonlinear equations in kinematics of manipulators, the numerical solutions like Newton-Raphson are inevitably used. When dealing with any numerical solution, there are two troublesome problems. One is that good initial guesses are not easy to detect and another is related to whether the used method will converge to useful solutions. Results of this paper reveal that the homotopy continuation method can alleviate the drawbacks of traditional numerical techniques.

Keywords: Forward kinematics, Homotopy continuationmethod, Parallel manipulators, Rotation matrix

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2645
703 Using Hermite Function for Solving Thomas-Fermi Equation

Authors: F. Bayatbabolghani, K. Parand

Abstract:

In this paper, we propose Hermite collocation method for solving Thomas-Fermi equation that is nonlinear ordinary differential equation on semi-infinite interval. This method reduces the solution of this problem to the solution of a system of algebraic equations. We also present the comparison of this work with solution of other methods that shows the present solution is more accurate and faster convergence in this problem.

Keywords: Collocation method, Hermite function, Semi-infinite, Thomas-Fermi equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2136
702 Exponential Stability of Linear Systems under a Class of Unbounded Perturbations

Authors: Safae El Alaoui, Mohamed Ouzahra

Abstract:

In this work, we investigate the exponential stability of a linear system described by x˙ (t) = Ax(t) − ρBx(t). Here, A generates a semigroup S(t) on a Hilbert space, the operator B is supposed to be of Desch-Schappacher type, which makes the investigation more interesting in many applications. The case of Miyadera-Voigt perturbations is also considered. Sufficient conditions are formulated in terms of admissibility and observability inequalities and the approach is based on some energy estimates. Finally, the obtained results are applied to prove the uniform exponential stabilization of bilinear partial differential equations.

Keywords: Exponential stabilization, unbounded operator, Desch-Schappacher, Miyadera-Voigt operator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 343
701 Trajectory Planning Design Equations and Control of a 4 - axes Stationary Robotic Arm

Authors: T.C. Manjunath,

Abstract:

This paper features the trajectory planning design of a indigenously developed 4-Axis SCARA robot which is used for doing successful robotic manipulation task in the laboratory. Once, a trajectory is being designed and given as input to the robot, the robot's gripper tip moves along that specified trajectory. Trajectories have to be designed in the work space only. The main idea of this paper is to design a continuous path trajectory model for the indigenously developed SCARA robot arm during its maneuvering from one point to another point (during pick and place operations) in a workspace avoiding all the obstacles in its path of motion.

Keywords: SCARA, Trajectory, Planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4210
700 Numerical Study of Flow around Flat Tube between Parallel Walls

Authors: Hamidreza Bayat, Arash Mirabdolah Lavasani, Meysam Bolhasani, Sajad Moosavi

Abstract:

Flow around a flat tube is studied numerically. Reynolds number is defined base on equivalent circular tube and it is varied in range of 100 to 300. Equations are solved by using finite volume method and results are presented in form of drag and lift coefficient. Results show that drag coefficient of flat tube is up to 66% lower than circular tube with equivalent diameter. In addition, by increasing l/D from 1 to 2, the drag coefficient of flat tube is decreased about 14-27%.

Keywords: Laminar flow, flat-tube, drag coefficient, cross-flow, heat exchanger.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2023
699 Tsunami Modelling using the Well-Balanced Scheme

Authors: Ahmad Izani M. Ismail, Md. Fazlul Karim, Mai Duc Thanh

Abstract:

A well balanced numerical scheme based on stationary waves for shallow water flows with arbitrary topography has been introduced by Thanh et al. [18]. The scheme was constructed so that it maintains equilibrium states and tests indicate that it is stable and fast. Applying the well-balanced scheme for the one-dimensional shallow water equations, we study the early shock waves propagation towards the Phuket coast in Southern Thailand during a hypothetical tsunami. The initial tsunami wave is generated in the deep ocean with the strength that of Indonesian tsunami of 2004.

Keywords: Tsunami study, shallow water, conservation law, well-balanced scheme, topography. Subject classification: 86 A 05, 86 A 17.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
698 Comparison Results of Two-point Fuzzy Boundary Value Problems

Authors: Hsuan-Ku Liu

Abstract:

This paper investigates the solutions of two-point fuzzy boundary value problems as the form x = f(t, x(t)), x(0) = A and x(l) = B, where A and B are fuzzy numbers. There are four different solutions for the problems when the lateral type of H-derivative is employed to solve the problems. As f(t, x) is a monotone function of x, these four solutions are reduced to two different solutions. As f(t, x(t)) = λx(t) or f(t, x(t)) = -λx(t), solutions and several comparison results are presented to indicate advantages of each solution.

Keywords: Fuzzy derivative, lateral type of H-derivative, fuzzy differential equations, fuzzy boundary value problems, boundary value problems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
697 Single Phase 13-Level D-STATCOM Inverter with Distributed System

Authors: R. Kamalakannan, N. Ravi Kumar

Abstract:

The global energy consumption is increasing persistently and need for distributed power generation through renewable energy is essential. To meet the power requirements for consumers without any voltage fluctuations and losses, modeling and design of multilevel inverter with Flexible AC Transmission System (FACTS) capability is presented. The presented inverter is provided with 13-level cascaded H-bridge topology of Insulated Gate Bipolar Transistor (IGBTs) connected along with inbuilt Distributed Static Synchronous Compensators (DSTATCOM). The DSTATCOM device provides control of power factor stability at local feeder lines and the inverter eliminates Total Harmonic Distortion (THD). The 13-level inverter utilizes 52 switches of each H-bridge is fed with single DC sources separately and the Pulse Width Modulation (PWM) technique is used for switching IGBTs. The control strategy implemented for inverter transmits active power to grid as well as it maintains power factor to be stable with achievement of steady state power transmission. Significant outcome of this project is improvement of output voltage quality with steady state power transmission with low THD. Simulation of inverter with DSTATCOM is performed using MATLAB/Simulink environment. The scaled prototype model of proposed inverter is built and its results were validated with simulated results.

Keywords: FACTS devices, distributed-Static synchronous compensators, DSTATCOM, total harmonics elimination, modular multilevel converter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445
696 Stochastic Repair and Replacement with a Single Repair Channel

Authors: Mohammed A. Hajeeh

Abstract:

This paper examines the behavior of a system, which upon failure is either replaced with certain probability p or imperfectly repaired with probability q. The system is analyzed using Kolmogorov's forward equations method; the analytical expression for the steady state availability is derived as an indicator of the system’s performance. It is found that the analysis becomes more complex as the number of imperfect repairs increases. It is also observed that the availability increases as the number of states and replacement probability increases. Using such an approach in more complex configurations and in dynamic systems is cumbersome; therefore, it is advisable to resort to simulation or heuristics. In this paper, an example is provided for demonstration.

Keywords: Repairable models, imperfect, availability, exponential distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 843
695 Improving the Shunt Active Power Filter Performance Using Synchronous Reference Frame PI Based Controller with Anti-Windup Scheme

Authors: Consalva J. Msigwa, Beda J. Kundy, Bakari M. M. Mwinyiwiwa

Abstract:

In this paper the reference current for Voltage Source Converter (VSC) of the Shunt Active Power Filter (SAPF) is generated using Synchronous Reference Frame method, incorporating the PI controller with anti-windup scheme. The proposed method improves the harmonic filtering by compensating the winding up phenomenon caused by the integral term of the PI controller. Using Reference Frame Transformation, the current is transformed from om a - b - c stationery frame to rotating 0 - d - q frame. Using the PI controller, the current in the 0 - d - q frame is controlled to get the desired reference signal. A controller with integral action combined with an actuator that becomes saturated can give some undesirable effects. If the control error is so large that the integrator saturates the actuator, the feedback path becomes ineffective because the actuator will remain saturated even if the process output changes. The integrator being an unstable system may then integrate to a very large value, the phenomenon known as integrator windup. Implementing the integrator anti-windup circuit turns off the integrator action when the actuator saturates, hence improving the performance of the SAPF and dynamically compensating harmonics in the power network. In this paper the system performance is examined with Shunt Active Power Filter simulation model.

Keywords: Phase Locked Loop (PLL), Voltage SourceConverter (VSC), Shunt Active Power Filter (SAPF), PI, Pulse WidthModulation (PWM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558
694 Dengue Transmission Model between Infantand Pregnant Woman with Antibody

Authors: R. Kongnuy, P. Pongsumpun

Abstract:

Dengue, a disease found in most tropical and subtropical areas of the world. It has become the most common arboviral disease of humans. This disease is caused by any of four serotypes of dengue virus (DEN1-DEN4). In many endemic countries, the average age of getting dengue infection is shifting upwards, dengue in pregnancy and infancy are likely to be encountered more frequently. The dynamics of the disease is studied by a compartmental model involving ordinary differential equations for the pregnant, infant human and the vector populations. The stability of each equilibrium point is given. The epidemic dynamic is discussed. Moreover, the numerical results are shown for difference values of dengue antibody.

Keywords: Dengue antibody, infant, pregnant human, mathematical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469
693 Exterior Calculus: Economic Profit Dynamics

Authors: Troy L. Story

Abstract:

A mathematical model for the Dynamics of Economic Profit is constructed by proposing a characteristic differential oneform for this dynamics (analogous to the action in Hamiltonian dynamics). After processing this form with exterior calculus, a pair of characteristic differential equations is generated and solved for the rate of change of profit P as a function of revenue R (t) and cost C (t). By contracting the characteristic differential one-form with a vortex vector, the Lagrangian is obtained for the Dynamics of Economic Profit.

Keywords: Differential geometry, exterior calculus, Hamiltonian geometry, mathematical economics, economic functions, and dynamics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2525
692 The Application of Hybrid Orthonomal Bernstein and Block-Pulse Functions in Finding Numerical Solution of Fredholm Fuzzy Integral Equations

Authors: Mahmoud Zarrini, Sanaz Torkaman

Abstract:

In this paper, we have proposed a numerical method for solving fuzzy Fredholm integral equation of the second kind. In this method a combination of orthonormal Bernstein and Block-Pulse functions are used. In most cases, the proposed method leads to the exact solution. The advantages of this method are shown by an example and calculate the error analysis.

Keywords: Fuzzy Fredholm Integral Equation, Bernstein, Block-Pulse, Orthonormal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022