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Abstract—This paper examines the behavior of a system, which 
upon failure is either replaced with certain probability p or 
imperfectly repaired with probability q. The system is analyzed using 
Kolmogorov's forward equations method; the analytical expression 
for the steady state availability is derived as an indicator of the 
system’s performance. It is found that the analysis becomes more 
complex as the number of imperfect repairs increases. It is also 
observed that the availability increases as the number of states and 
replacement probability increases. Using such an approach in more 
complex configurations and in dynamic systems is cumbersome; 
therefore, it is advisable to resort to simulation or heuristics. In this 
paper, an example is provided for demonstration. 
 

Keywords—Repairable models, imperfect, availability, 
exponential distribution. 

I. INTRODUCTION 

PERATING systems, such as mechanical systems, 
consist of components; these components may fail in 

different modes such as fatigue, leak, rupture, creep, wear, 
corrosion, and deformation. Failed components may either be 
replaced or repaired; repairable systems when failed usually 
receive repair or maintenance actions that restore their 
functions. These actions affect the system behavior and alter 
the makeup of the system. Repair brings the system either to 
as good as new “perfect repair” or to a status prior to failure 
“minimal repair”, or to an inferior state called ‘imperfect 
repair”. The aim of the different maintenance actions is to 
enhance systems’ performance; reliability is one of the 
performance measures used to insure system effectiveness and 
produce quality characteristic products required by consumers. 
Another important performance criterion is availability, which 
encompasses both reliability and maintainability; it is the 
probability that a system is operational and executes its 
required functions at a given point of time 

Systems’ performance has been addressed extensively in the 
literature; for example, Abdel-Hameed [1] examined an age-
dependent minimal repair model where the failed system is 
either perfectly repaired with probability p (t) or minimally 
repaired with probability 1−p (t). Brown and Proschan [2] 
developed optimal replacement policies for a system, which 
upon failure either undergoes perfect repair with probability p 
or is minimally repaired with probability (1-p). Meanwhile, 
Beichelt [3] considered the total repair cost limit replacement 
policy, where the system is replaced as soon as its total repair 
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cost reaches a specific level. Moustafa [4] studied Markov 
models for the transient analysis of the reliability of k-out-of-N: 
G systems with and without repair subject to M failure modes. 
Zhao [5] studied the failure pattern of repairable components 
when a failed component is either perfectly or imperfectly 
repaired. In this work, the lifetime of a component is assumed 
to have a general distribution. Several asymptotic quantities 
were derived such as the mean number of failures in a specific 
component position, the fraction of time the system is down 
due to failure in a particular component position, and the 
availability of the system. 

Dimitrov et al. [6] examined an age-dependent repair model 
with imperfect repair, obtaining the warranty costs for the 
products under a nonhomogeneous Poisson process scenario. 
The behavior of multiple repairable systems was inspected by 
Pan and Rigdon [7] using Bayesian methods for models that 
are between as “bad as old” and “good-as-new”. Monte Carlo 
methods were used to approximate the properties of the 
posterior distributions. Pandey et al. [8] developed a 
mathematical model to assist decision makers in selecting 
proper maintenance scenarios under imperfect repair. 
Examples were used to validate the applicability of the 
proposed method. Results indicated that the introducing of 
imperfect repair better facilitates the allocation of maintenance 
resources. Meanwhile, El-Damcese and Shama [9] studied the 
performance of a 2-state repairable system with two types of 
failures. Laplace transform techniques were utilized to 
develop expressions for several performance measures 
including availability, reliability, and mean time to failure 
under exponentially distributed times between failures and 
repair times. Neguyen et al. [10] studied repairable systems 
under imperfect repair where the time between the failures of a 
new system follows the Weibull distribution. Furthermore, an 
analytical approach for the distribution of the inter-failure 
times was obtained in addition to producing under steady 
conditions, an optimal preventive maintenance policy under a 
static, a dynamic, or a failure limit policy. 

II. SYSTEM DESCRIPTIONS 

The purpose of this paper is to study the availability of a 
system, which upon failure is either replaced with certain 
probability or imperfectly repaired. The failure and repair rate 
times are assumed to follow exponential distribution. The 
system is analyzed using Kolmogorov's forward equations 
method. Other assumptions include availability, and the travel 
time to repair station is negligible. The analysis is based on the 
availability of one repair person. 

At each failure, the system is either imperfectly repaired 
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with probability q or is perfectly repaired with probability p. 
After each perfect repair, the system becomes as new, while 
following the imperfect repair, the system’s performance 
decreases as time progresses. Thus, the failure rate increases 
after each repair (i+1 ≥ i for i = 1, 2, n); similarly, the rate of 
repair declines after each repair; i+1 ≤ i for i = 1, 2,.., n. The 
system is replaced after undergoing a specified number of 
repairs (n).  

A pictorial presentation of the state transitions is shown in 
Fig. 1. The rectangular shapes in the figure represent the 
operational state, while the oval shapes are the failed states. 

The process starts at state 1, where the system is new; after 
failure (1), at state 1, the system moves to state 2 for repair. 
At state 2, the system is either perfectly repaired with 
probability pn+1 to state 1 or imperfectly repaired with 
probability q 1 (q + p =1) to state 3. Similarly, after failure 
with a failure rate of 1, the system transitions to state 4. At 
state 4, the system is either perfectly repaired to state 1 or 
imperfectly repaired to state 2 with probability q 2. Finally, 
after the n+1 failure, the system is replaced and moves to state 
1, and the process is regenerated. 

 

 

Fig. 1 A pictorial presentation of the transition process of the system 
 

A. Availability Analysis 

The transition probability P(t) for the systems is as: 
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The steady state system with exponential Markov with 

continuous time is expressed as: 
 

Qπ = 0 
 

where π is the state transition probability matrix and Q is the 
state transition rate matrix Q is: 
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Solving the system of equations Qπ = 0, the steady state 

transition probability is:  
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Equations can be written in terms of π1 as follows: 
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Utilizing (5)-(7), the expression for the probability of being 

in the initial state 1(π1) is as: 
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III. EXAMPLES 

To illustrate the process, an example is presented for a 
system that undergoes imperfect repairs before complete 
failure and regeneration; the transition states are presented in 
Fig. 2. 

The state transition matrix for this problem is presented as: 
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Fig. 2 A pictorial presentation of a system with two imperfect repairs 
before replacement 

 
From the above matrix, the system’s transition probabilities 

are presented and the expression for the steady state 
probability of being at state 1 is derived as follows: 
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Summing the probabilities of the operational states, we 

obtain the steady state availability of the system as follows:  
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Dividing the numerator and the denominator by 

1 2 3 1 2( )( )p q p q         and rearranging and 

simplifying, the following expression is derived: 
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The system availability for various values of repair and 
failure rates is exhibited in Figs. 3 and 4. In Fig. 4, for a 
constant repair, the availability increases as the failure rates 
increase.  

 

 

Fig. 3 Availability vs. replacement probability for the system (1 = 
0.05, 2= 0.30, 3= 0.70; 1= 2.0, 2= 1.75, 3= 1.5;  = 3.0) 

 

 

Fig. 4 Availability vs. replacement probability for the system (1= 
0.6 2 = 0.90, 3 = 1.5; 1= 2.0, 2 = 1.75, 3 = 1.5;  = 3.0) 

IV. CONCLUSIONS AND FUTURE RESEARCH 

Most the maintenance problems that are investigated in 
literature are based on the assumption of perfect maintenance; 
this work is an attempt to study imperfect repair phenomena, 
which often occurs in real-world situations. In this regard, 
expressions for several performance measures are derived 
expressions. These expressions are generic and apply not only 
to imperfect repair, but also to perfect repair. The expressions 
become more complicated as the number of states increases. 
Furthermore, the system may become rather cumbersome, if 
non-exponential distributions are used. Complexity is also 
attributed to the increase in the number of repair channels, and 
by adding the time element. Simulation may be utilized to 
address large scale, dynamic maintenance problems. 
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