
  
Abstract—In this paper, we propose Hermite collocation method 

for solving Thomas-Fermi equation that is nonlinear ordinary 
differential equation on semi-infinite interval. This method reduces 
the solution of this problem to the solution of a system of algebraic 
equations. We also present the comparison of this work with solution 
of other methods that shows the present solution is more accurate and 
faster convergence in this problem. 
 

Keywords—Collocation method, Hermite function, Semi-infinite, 
Thomas-Fermi equation. 

I. INTRODUCTION 

A. Spectral Method 
ANY of the current science and engineering problems 
are set in unbounded domains. In the context of spectral 

methods such as collocation and Galerkin methods [1], a 
number of approaches for treating unbounded domains have 
been proposed and investigated. The most common method is 
the use of polynomials that are orthogonal over unbounded 
domains, such as the transformed Hermite and Laguerre 
spectral method [2]–[9]. 

Guo [10]-[13] proposed a method that proceeds by mapping 
the original problem in an unbounded domain to a problem in 
a bounded domain, and then using suitable Jacobi polynomials 
such as Gegenbauer polynomials to approximate the resulting 
problems. The Jacobi polynomials are a class of classical 
orthogonal polynomials and the Gegenbauer polynomials, and 
thus also the Legendre and Chebyshev polynomials, are 
special cases of these polynomials which have been used in 
sevral literatures for solving some problems [14], [15]. 

On more approach is replacing infinite domain with 
],[ LL−  and semi-infinite interval with ][0, L  by choosing 

L , sufficiently large. This method is named domain 
truncation [16]. 

There is another effective direct approach for solving such 
problems which is based on rational approximations. Christov 
[17] and Boyd [18], [19] developed some spectral methods on 
unbounded intervals by using mutually orthogonal systems of 
rational functions. Boyd [18] defined a new spectral basis, 
named rational Chebyshev functions on the semi-
infiniteinterval, by mapping to the Chebyshev polynomials. 
Guo et al. [20] introduced a new set of rational Legendre 
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functions which are mutually orthogonal in )(0,2 ∞L . They 
applied a spectral scheme using the rational Legendre 
functions for solving the Korteweg-de Vries equation on the 
half-line. Boyd et al. [21] applied pseudospectral methods on a 
semi-infinite interval and compared rational Chebyshev, 
Laguerre and mapped Fourier sine methods. 

Parand et al. [22]–[27], applied spectral method to solve 
nonlinear ordinary differential equations on semi-infinite 
intervals. Their approach was based on rational tau and 
collocation methods. 

B. Introduction of the Problem 
Thomas-Fermi equation is one of the most important 

nonlinear ordinary differential equations that occurs in semi-
infinite interval, as following [25], [28], [29]:  
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which appears in the problem of determining the effective 
nuclear charge in heavy atoms. Also, it has following 
Boundary conditions:  
 

 0.=)(    1,=(0) ∞yy        (2) 
 
The Thomas-Fermi equation is useful for calculating 

formfactors and for obtaining effective potentials which can 
be used as initial trial potentials in self-consistent field 
calculations. The problem has been solved by different 
techniques [25], [30]–[39]. 

References [31]–[33] used perturbative approach to 
determine analytic solutions for Thomas-Fermi equation. 
Adomian [34] applied the decomposition method for solving 
Thomas-Fermi equation and then Wazwaz [35] proposed a 
nonperturbative approximate solution to this equation by using 
the modified decomposition method in a direct manner 
without any need to a perturbative expansion or restrictive 
assumptions. Liao [36] solved Thomas-Fermi equation by 
homotopy analysis method. Khan [37], used the homotopy 
analysis method (HAM) with a new and better transformation 
which improved the results in comparison with Liao’s work. 
In [38], the quasilinearization approach was applied for 
solving (1). This method approximated the solution of a 
nonlinear differential equation by treating the nonlinear terms 
as a perturbation about the linear ones, and unlike perturbation 
theories is not based on the existence of some kind of a small 
parameter. Ramos [39] presented two piecewise 
quasilinearization methods for the numerical solution of (1). 
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Both methods were based on the piecewise linearization of 
ordinary differential equations [25]. In addition, Parand [25] 
Solved Thomas-Fermi equation by Rational Chebyshev 
pseudospectral approach. 

In this paper, we are going to solve Thomas-Fermi equation 
numerically by using the transformed Hermite functions via 
collocation method. we also have a comparison with a 
numerical solution. 

Sections II reviews the desirable properties of Hermit 
functions with solution of the problem with collocation 
method by these functions, respectively. In Section IV we 
describe our results via tables and figures. Finally, concluding 
remarks will be presented in Section V. 

II. HERMITE FUNCTIONS 
This section are devoted to elaborate the properties of 

Hermite functions. First of all, we should mention Hermite 
polynomials are generally not suitable in practice due to their 
wild asymptotic behavior at infinities [40]; therefore, we shall 
consider the Hermite functions. The normalized Hermite 
functions of degree n  is defined by [41]  
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That }{
~

nH  is an orthogonal system in )(2 RL . 
In the contrary to Hermite Polynomials, the Hermite 

functions are well behaved with the decay property:  
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and, the three-term recurrence relation of Hermite functions 
implies [41]  
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For more details you can study [41]–[43]. 
Steady flow problem is defined on the interval )(0,+∞ , 

but Hermite functions are defined on the interval ),( +∞−∞ . 
One of the approaches to construct an approximation on the 
interval )(0,+∞  is using mapping that is changing variable of 
the form [41]  

 

 ),(1=)(= zln
k

zw Φ
  

(6) 

 
where k  is a constant. 

he transformed Hermite functions are  

 )),((=)()()(
~~^

xHxoxHxH nnn ΦΦ≡   (7) 
 
The inverse map of )(= zw Φ  is  
 

 .=)(= 1 kwewz −Φ   (8) 
 
Therefore, we may define the inverse images of the spaced 

nodes 
+∞

−∞

=

=}{ jx

jxjx  as [41]  
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and  

 …0,1,2,=  ,=)(= 1
~

jexx jx

jj
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(10) 
 
Let )(xw  denotes a non-negative, integrable, real-valued 

function over the interval Γ , We define [41]  
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where  
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1
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(12) 

 

is the norm induced by the inner product of the space )(2 ΓwL  
[41],  
 

 .)()()(=>,<
0

dxxwxvxuvu w ∫
∞

  
(13) 

 

Thus, Nnn xH ∈)}({
^

 denotes a system which is mutually 
orthogonal  

 

 .=)(),( )(
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(14) 

 

This system is complete in )(2 ΓwL . Therefore, for any 

function )(2 Γ∈ wLf  the following expansion holds [41]  
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Now we define an orthogonal projection based on the 

transformed Hermite function as given below [41]. 
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Let  

)}.(,),(),({=
^

1

^

0

^^
xHxHxHspanH nN …  (17) 

 

The )(2 ΓL -orthogonal projection NN HL
^

2
^

)(: →Γξ  is 

a mapping in a way that for any )(2 Γ∈ Ly  [41],  
 

 ,   0=,
^^

NN Hyy ∈∀〉−〈 φφξ   (18) 
 
or equivalently,  

 ).(=)(
^^

0=

^
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N

i
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(19) 

III. SOLVING THE PROBLEM WITH HERMITE FUNCTIONS 

For solving Thomas-Fermi, we used )(1 xln
k

 for changing 

variable. Also, because of boundary conditions, we set 
following function: 

  

 ,
1

1=)( 2xx
xp

++ λ   
(20) 

 
and λ  is constant. 

Finally, we have  
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that  
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To find the unknown coefficients ia
^

’s, we substitute the 

truncated series )(
^

xfNξ  into (1). Also, we define Residual 
function of the form  

 

0.=)}()({)()(=)( 2
3^

2
1^

xfxpxxfxpxRes NN ξξ +−′′+′′
−

 (23) 
 
By applying x  in (23) with the N  collocation points 

which are roots of transformed Hermite function, we have N  
equations that generates a set of N  nonlinear equations. 
Now, all of these equations can be solved by Newton method 
for the unknown coefficients. 

IV. RESULT 
The initial slope (0)y′  of the Thomas-Fermi equation is 

calculated by Kobayashi [44] as 1.588071=(0) −′y . Table I 
shows the approximations of )(xy  and (0)y′  obtained by the 

present method for 15=N , 0.9=k  and 1.588071=λ , 
and those obtained by Liao [45] and Kobayashi [44]. 

 
TABLE I 

COMPARISON BETWEEN TRANSFORMED HERMITE FUNCTION AND LIAO [45] 

WITH 15=N , 0.9=k AND 1.588071=λ . 
x  Present method Liao [45] 

00.25 0.754795330 0.755202000 
00.50 0.606658908 0.606987000 
00.75 0.502110510 0.502347000 
01.00 0.423811203 0.424008000 
01.25 0.363027725 0.363202000 
02.00 0.242918233 0.243009000 
02.25 0.215819818 0.215895000 
02.50 0.192917948 0.192984000 
02.75 0.173379623 0.173441000 
03.00 0.156573773 0.156633000 
03.25 0.142013368 0.142070000 
03.50 0.129316613 0.129370000 
03.75 0.118180209 0.118229000 
04.00 0.108360441 0.108404000 
08.00 0.036580427 0.036587300 
15.00 0.010803774 0.010805400 
20.00 0.005792831 0.005784940 
30.00 0.002252634 0.005784940 

y′  Present method Kobayashi [44] 

(0)y′  -1.588071 -1.588071 

 
Fig. 1 shows the resulting graph of Thomas-Fermi for 

15=N , 0.9=k  and 1.588071=λ  which tends to zero as x 
increases by boundary condition 0=)(∞y . It is compared 
with Liao’s results that show by square.  

 

 

Fig. 1 Graph of comparison numerical approximate )(xy  by 
transformed Hermite functions to Liao [45] with 15=N , 0.9=k  

and 1.588071=λ  
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V. CONCLUSIONS 
In the above discussion, we applied the collocation method 

to solve the Thomas-fermi equation that is defined in a semi-
infinite interval which has singularity at 0=x  and its 
boundary condition occurs in infinity. Our scheme was based 
on transformed Hermite function that solved the non-linear 
differential equations on the semi-infinite domain without 
truncating it to a finite domain. Transformed Hermite function 
was proposed to provide simple way to improve the 
convergence of the solution by collocation method. Finally, 
we reported our numerical finding and demonstrated the 
present solution was highly accurate.  
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