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Abstract—Nonlinear solitary structures of electron plasmaesa
have been investigated by using nonlinear quantuid &quations
for electrons with an arbitrary temperature. Itsisown that the
electron degeneracy parameter has significant teffec the linear
and nonlinear properties of electron plasma wabegending on its
value both compressive and rarefactive solitonsheaexcited in the
model plasma under consideration.

But in most practical cases the plasma temperagufiaite
and not approaching zero. Recently Eliasson andI&Hu4]
have developed nonlinear fluid equations taking iatcount
the moments of the Wigner equation and by usingFdeni
Dirac equilibrium distribution for electrons wittmaarbitrary
temperature. The model thus developed is expeotdddcribe
a finite temperature quantum plasma. The linearraomdinear
properties of electron plasma waves in a quantasnph have

Keywords—Electron Plasma Waves, Finite Temperature Modebeen studied by a few authors in the ultra-coldtlimg using

Modulational Instability, Quantum Plasma, Solitatsucture

|. INTRODUCTION

QHD model [15-18]. To the best of our knowledgeome has
studied this problem including finite temperatufieets. The
motivation of the present paper is to study theedmnand

HE gquantum plasmas which are characterized by higtonlinear properties of electron plasma waves ifinde

particle density and low temperature are ubiquitous
white dwarfs, neutron stars, galactic plasma,
nanostructures, intense laser-solid interaction andnany
other environments. In recent years propagatiorvasfous
electrostatic modes such as ion-acoustic wavegtrefe
acoustic waves, dust-acoustic waves, dust ion-gicowsves
etc. in quantum plasma have been studied by mahpm1]-
[12].

Quantum effects in plasmas are usually studied thitthelp
of two well-known formulations, viz. the Wigner-Bsbn and
the Schrodinger-Poisson formulations. The Wignesftm
model is often used in the study of quantum kink&baviour
of plasma. The Schrodinger-Poisson model describes
hydrodynamic behaviour of plasma particles in quant
scales. The quantum hydrodynamic (QHD) model isvddr
by taking velocity space moments of the Wigner &qoa.
The QHD model generalizes the classical fluid mofiel
plasma with the inclusion of a quantum correctiermt also
known as the Bohm potential [1]. The model incogtes
guantum statistical effects through the equation stdte.

Because of simplicity, straight forward approachd anf(X'V,t)=

numerical efficiency the QHD model has been widedgd by
several authors [1]-[12]. Different approaches fodeling
quantum plasmas in electrostatic limit have begieveed by

temperature quantum plasma by using a finite teatpes

metguantum hydrodynamic model.

Il.  THEFINITE TEMPERATUREQHD MODEL EQUATIONS

The model as developed by Eliasson and Shukla ig4]
based on 3D Fermi-Dirac equilibrium distributiom &ectrons
with an arbitrary temperature. Propagation of plane
longitudinal electron plasma waves in a collisi@slguantum
plasma leads to adiabatic compression along onerdiion
only and hence to a temperature anisotropy of thetren
distribution.

In quantum picture the classical incompressibitifyphase
fluid is violated by quantum tunneling. However aofirst
approximation one may assume the incompressililityhe
electron phase fluid. It may also be assumed tieathemical
potential (1) remains constant during the nonéeouiim
dynamics of plasma. Based on these assumptionsnaye
consider the following nonequilibrium particle dibution
function:

1)

2(m/2mn)’
exp{(,/_?mlz)[(vx Vo )’ +V2 +vf]—/3u} +1

where m is the electronic massis the Plank constant divided

Manfredi [13].The QHD model as used by most authiers bY 2t, B =1/ksTeo, ks is the Boltzmann constant angy s the

valid for quantum plasmas in the ultra-cold limit.
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background temperature, p is the chemical potentiglis the

mean velocity of the particles given by
Vo (X, 1) =(V,) =ni_"vX fdv @

and nex (%,1) = Ted Tex(X,D=[no/ne(x,1)]? is the temperature
anisotropy of the distribution function which isfiled from
the number density variations whergis given by:
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_1 (sz2 Im EY2dE B [ll.  DISPERSIONCHARACTERISTICS
Ry e exp| B(E-p)+1] - 3) In order to investigate the nonlinear behaviourelsfctron
1 om?? (3 plasma waves we make the following perturbationa@sjon
_2772/3372[?) r[})“az[‘eXp(ﬂﬂ)] for the field quantities o Ve, , n. and @ about their

Li,(y) is the polylogarithm function. In the ultra dolimit i.e. equilibrium values:
T—0, we havgi—ow and p—Er.

where n, 1 nél) néZ)
_ P30, 2
B =(3n, ) (" / 2m) @ v [=|o]+e[ VO |+£2| @ [+...... (10)
Now using the zeroth and first moments of the Wigne 0 ¢1) (0(2)
equation with the Fermi-Dirac distribution functioand

assuming that the Bohm potential is independetitethermal

fluctuations in a finite temperature plasma one darive the Substituting the expansion (12) in Egs. (9)-(11d ahen

continuity and momentum equation in the followiogrh: linearizing and assuming that all the field quasditvary as
expli (x—at )|, we get for normalized wave frequensyand

on,  o(ny,) _ 0 (5) Wave number k, the following linear dispersion tiela
ot ox
2 2
Yo yy, Lo 200 o =1+k2(3(3a2+k H j (12)
ot ox m, ox 4
(6) In the dimensional form the dispersion relationdrees:
v o) w0 [ 1 o'Jn, } P
2 2 4 2
X ox 2m’” ox \/”_e ox @ = @, + a2 + kKVAH
where R and y, are respectively the particle density and fluid pe (12)
velocity of electron;@ is the electrostatic wave potential and = 7 +3GKAL2 4 kKVAH?
: , . e 4
v, =4k T /mis the themal speed. G is the ratio of two pe
polylogarithm functions given by:

The degeneracy parameter G determines the tramsitio

G :M (7) between the ultra cold and thermal cases. In the lo
Liy, (-explBu]) twmperature limip—oo, P~ Er= (MVe2)/2 and G= 2BEH5,
The system is closed by the Poisson equation, then the dispersion relation (11) takes the form
°p
bl - 8
v 4me(n,—n) (8) kKAVAH? (13)

W =af, + kA2 +
We now introduce the following normalization: 5 4af,
X = X, Ve t - tw, @0 - epl 2T n, - n /n, and

: 5 which is similar to the dispersion relation for @ten plasma
Uj - U /Ve, Here g = j4me” /m, the electron plasma o es in a quantum plasma obtained by using onertiional
oscillation frequency ang,__ = /2kBTFe/”L is the Fermi speed QHD Model. In high temperature linf— -0 so that G-1
and then the dispersion relation (12) reduces & Bbhm-

of electrons. Using the above normalization Eqs6(and 8) Gross dispersion relation for electron plasma wawmes hot

can be recast as:

plasma
X
kVetH 2
2 2 W = o, +3KAL 2+ ——Fe (14)
[£+vex i)vex =a—¢—3Gcr2ne on (H'0| 19 ‘/;Te (9) pe T 4Wp
ot~ ox ox ox 2 9x|[n, ox pe

@:(n -n) In many cases of practical interest the last temnthe RHS
ox’ ° _ _ _ may be neglected and then one gets the well knoaomB
whereH =hw,/2kgTe, 18 @ nondimensional quantum Gross dispersion relation of electron plasma wamea hot
parameter proportional to the quantum diffractiond a Plasma. It may be noted that in the frequency ramigerew?

Q= (VTe/VFe)' The parameter H is proportional to the ratic>1 the dispersion relation (11) reduces to the form:

H%k?
between the plasma energyy  (energy of an elementary w=+3Gak+ (15)
- _ o 8J3Ga
excitation associated with an electron plasma wave) the  £ig 1 shows the linear dispersion characteristicsiffferent
Fermi energg, T - values of G.
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The electron degeneracy parameter is found to aser¢he _ (N
slope of the dispersion curve. i.e.as the valuGdhcreases ¢~ % Sed Y

the wave frequency increases for a given k. (21)
where the amplitudep,, and widthA of the soliton are given
by:

M
o A
and 4- [4B (23)

M
For the existence of soliton solution we require>B. It
requires that 3&° < V2- (H/2) or 3G@* > V2+ (H/2). The
nature of the solitary waves (i.e. whether the esystwill
support compressive or rarefactive solitary wavkg)ends on
the sign of A.
If A is positive (or negative) a compressive (orefactive)
solitary wave is excited. Thus for ab< V2- (H/2) rarefactive

K soliton and for 3G? > V? + (H/2) compressive soliton is
formed. From Eq (20) it is clear that the dispezsivefficient
Fig. 1 Linear dispersion curve for different vabfeG B vanishes for two critical values of the difframti parameter
H, given by
IV. DERIVATION OF THEKdV EQUATION
In order to study the nonlinear behaviour of electplasma  He= 2 (3G* -V?) for 3G > V? (24a)
waves we use the standard reductive perturbaticnigue He= 2 (V? -3Go?) for 3Gi* < V? (24b)
and the usual stretching of the space and timalvias:
E=e¥?(x-Wt) and r=¢¥% (16) Atthese values of H no soliton solution is possilsior H<

H¢; compressive solitons and for H < Harefactive solitons

where V is the normalized linear velocity of theweande is -
Are obtained.

the smallness parameter measuring the dispersioth
nonlinear effects.

Now writing the Egs. (9) in terms of these strettloo-
ordinates: andt and then applying the perturbation expansion Using the nonlinear quantum fluid equations forcetens
(10) and solving for the lowest order equation witre Wwith an arbitrary temperature and the standard atbck
boundary conditionn®  u®  and (p(l) 0as | £ | % perturbation technique both the linear and nontipeaperties

e e " of electron-plasma waves has been investigated.

V.RESULTS ANDDISCUSSION

the following solutions are obtained: The electron degeneracy parameter G is shown lieeimfe
n® = ' @ — V¢ . (17) the linear and nonlinear properties of the electpd@sma
*3Ga’ -V Wat-Vy waves in a significant way. Fig 1 shows that theveva

and then going for the next higher order termssimnd frequency increases with increase in the degengra@meter

following the usual method we obtain the desiredt&ioeg de G- The model plasma under consideration can suppmitt
Vries (KdV) equation: compressive and rarefactive types of soliton. Solamplitude

and width are found to depend significantly on degeneracy
parameter G. Fig. 2 shows that both the amplituttewidth

d 0 9°
202?182 % -0 of the compressive solitons increase with incréase.

or o0& & (18)

_ (3ea’+ar) (19)

2 (3a"-v?) =
2 _v2\2_ g2
B= (3G[7 \Y% ) H*/4 (20) 0.10
vl

To find the solution of Eqg. (18) we transform the 0097
independent variables andzt into one variabley =& - M 1 . .
where M is the normalized constant speed of theevieame. 000
Applying the boundary conditions that ag — * oo;

T T T
-20 -10 0 10 20

@D, D,f§0—>0 the possible stationary solution of Eq. (20) .
is obtained as: Fig. 2Compressive solitary wave profiles for differentues of
degeneracy parameter G
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plasmas. Finally we would like to point out thateth

found in white dwarfs, neutron stars and intenserasolid
plasma experiments.

TABLE |
VALUES OF ELECTRON DEGENERACY PARAMETER FOR DIFFERENPLASMAS

Type of Plasma Density (f | Temperature (K) G
Tokamak 10 10% 1
Inertial anfmement 107 108 1

Fusion
Metal and Metal 1028 10° 1.
clusters 4
Jupiter 10%2 10* i
White Dwarf 16° 10° 4
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