Design of Experiment and Computational Fluid Dynamics Used to Optimize Hydrodynamic Characteristics of the Marine Propeller
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33087
Design of Experiment and Computational Fluid Dynamics Used to Optimize Hydrodynamic Characteristics of the Marine Propeller

Authors: Rohit Suryawanshi

Abstract:

In this study, the commercial Computational Fluid Dynamics (CFD), ANSYS-Fluent, has been used to optimize the marine propeller with the design of experiment (DOE) method. At the initial stage, different propeller parameters ware selected for the three different levels. The four characteristics factors are: no. of the blade, camber value, pitch delta & chord at the hub. Then, CAD modelling is performed by considering the selected factor and level. In this investigation, a total of 9 test models are simulated with the Reynolds-Averaged Navier-Stokes (RANS) equations. The standard, realizable

Keywords: Marine propeller, Computational Fluid Dynamics, optimization, DOE, propeller thrust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 895

References:


[1] R. Suryawanshi cfd used to design and optimization the marine propeller, Vol. 3, issue 6, IJSRED.
[2] A. Banik, M.R. Ullah, Computation of hydrodynamic characteristics of a marine propeller using induction factor method based on normal induced velocity, in: Procedia Eng., 2017. doi:10.1016/j.proeng.2017.08.125.
[3] E. Belhenniche Samir, A. Mohammed, I. Omar, Ç. Fahri, Effect of geometric configurations on hydrodynamic performance assessment of a marine propeller, Brodogradnja. (2016). doi:10.21278/brod67403.
[4] L.N. Loi, N.C. Cong, N. Van He, CFD results on hydrodynamic performances of a marine propeller, Tạp Chí Khoa Học và Công Nghệ Biển. (2019). doi:10.15625/1859-3097/19/3/13246.
[5] G. K. Saha, Md, H. I. Maruf, Md. R. Hasan, Marine propeller design using CFD tools.
[6] U. Hollenbach, O. Reinholz, Hydrodynamic Trends in Optimizing Propulsion, 2nd Int. Symp. Mar. Propulsors. (2011).
[7] G.-J. Zondervan, J. Holtrop, J. Windt, T. van Terwisga, On the Design and Analysis of Pre-Swirl Stators for Single and Twin Screw Ships, 2nd Int. Symp. Mar. Propulsors.
[8] J. K. Choi, H. T. Kim, An investigation on the effect of the wall treatments in RANS simulations of model and full-scale marine propeller flows, Int. J. Nav. Archit. Ocean Eng. (2014). doi.org/10.1016/j.ijnaoe.2020.12.001.
[9] K. Mizzi, Y.K. Demirel, C. Banks, O. Turan, P. Kaklis, M. Atlar, Design optimisation of Propeller Boss Cap Fins for enhanced propeller performance, Appl. Ocean Res. (2017). doi:10.1016/j.apor.2016.12.006.
[10] “Applied design of experiments and taguchi method” by K. Krishnaiah, K. Krishnaiah.
[11] S.S. Lim, T.W. Kim, D.M. Lee, C.G. Kang, S.Y. Kim, Parametric study of propeller boss cap fins for container ships, Int. J. Nav. Archit. Ocean Eng. (2014). doi:10.2478/IJNAOE-2013-0172.